LA HEURÍSTICA DE REPRESENTATIVIDAD EN UN CASO DE DECISIÓN DE INVERSIÓN¹
REPRESENTATIVENESS HEURISTIC IN A CASE OF INVESTMENT DECISION-MAKING

Manzanal, Melisa N.²; El Alabi, Emilio³
Milanesi, Gastón S.⁴; Vigier, Hernán P. ⁵

Fecha de Recepción: 03-11-2014
Fecha de aceptación: 01-06-2015

Resumen

El objetivo de este artículo es evaluar el efecto que tiene la heurística de la representatividad en la percepción de la probabilidad que condiciona un evento en la toma de decisiones en condiciones de riesgo. Para ello, se desarrolla una adaptación ejemplificativa de un experimento presentado por Grether (1980) en un caso hipotético de decisión de inversión de una empresa comercial, empleando el criterio del valor actual neto. Se concluye que el razonamiento bayesiano, el cual arriba a resultados óptimos, no se encuentra presente en la formal real en que los agentes toman decisiones. Así, se demuestra la importancia de estudiar la Economía Conductual, en especial, la heurística de la representatividad, dentro del proceso decisional de los individuos.

Palabras clave: Heurísticas, representatividad, toma de decisiones.

JEL: C11, D03, D81.
Abstract

The objective of this paper is to evaluate the effect of representativeness heuristic in the probability perception conditioning an event in decision-making under risk. In order to do this, we adapt an experiment presented by Grether (1980) and we test the representativeness heuristic in business investment using the net present value criterion. We conclude that Bayesian reasoning, which produces optimal outcomes, is not present in the real manner in which individuals make decisions. Therefore, we demonstrate the importance of studying behavioral economics and, in particular, representativeness heuristic in the decision-making process.

Key words: Heuristics, representativeness, decision-making.

JEL: C11, D03, D81.
1. Introducción

Las primeras teorías formales en relación a la toma de decisiones se fueron en base al valor esperado de las mismas (Huygens, 1657). Luego de varios años y discusiones entre la familia Bernoulli, se presenta en Rusia la paradoja de St. Petersburgo. En ella, Daniel Bernoulli (1738) establece que, en determinadas situaciones, resulta imposible que los individuos decidan a partir del valor esperado de las mismas.

Transcurrieron más de 200 años hasta que von Neumann y Morgenstern (1944) definen la teoría de la utilidad esperada. Esta teoría se basa en la paradoja de St. Petersburgo, y plantea que las personas deciden a partir de la utilidad que les genera cada decisión teniendo en cuenta sus riquezas totales.

De esta forma, se incorpora una nueva manera de cuantificar las decisiones en condiciones de incertidumbre. Los axiomas de la teoría de la utilidad esperada son: comparabilidad, transitividad, independencia, mensurabilidad y orden. Los dos primeros suponen el comportamiento racional de los individuos. A partir de esto, se descarta la teoría propuesta por Huygens en la que las personas deciden a partir del valor esperado de sus decisiones, se introduce la subjetividad de las personas al momento de decidir, y se concluye que los agentes eligen la opción que les representa la mayor utilidad esperada. Esta teoría es la base del pensamiento racional en el campo de la toma de decisiones. A pesar de esto, las observaciones no tardaron en llegar.

El primero en revisar a la teoría de la utilidad esperada es Allais (1953), quien demuestra mediante ejercicios experimentales que las personas violan sistemáticamente los axiomas de racionalidad de la utilidad esperada. Esto se conoce como “la paradoja de Allais”. Basándose en este trabajo, Kahneman y Tversky (1979) desarrollan la teoría de perspectivas.

La teoría de perspectivas tiene cuatro elementos. El primero es que utiliza un punto de referencia, el segundo es la aversión a las pérdidas, el tercero es la disminución de la sensibilidad, y el cuarto es la ponderación de la probabilidad (Barberis y Thaler, 2003). Los primeros tres elementos se visualizan en la gráfica 1, mientras que el cuarto se explica en la gráfica 2.
En primer lugar, los agentes derivan su utilidad considerando ganancias y pérdidas, mensurado a partir de un punto de referencia en lugar de tomar en cuenta la riqueza total. Kahneman y Tversky demuestran este supuesto, conocido como *reference dependence*, con evidencia experimental explícita. Además, resaltan que nuestro sistema de percepción trabaja de la misma manera: somos más adeptos a cambios relativos que a cambios absolutos en atributos como brillo, sonido, y temperatura.

En segundo lugar, la nueva función de valor captura la “aversión a las pérdidas”. Es decir, la idea de que las personas son más sensibles a las pérdidas (incluso pérdidas muy pequeñas) que a las ganancias de la misma magnitud. Gráficamente, esto es demostrado a partir de una curva de utilidad más profunda en la región de las pérdidas que en la región de las ganancias.

En tercera instancia, la curva de utilidad es cóncava para las ganancias y convexa para las pérdidas. Se lo denomina disminución de la sensibilidad ya que implica que el impacto de intercambiar una ganancia (pérdida) de $100 por otra de $200 es mucho mayor que el impacto de intercambiar una ganancia (pérdida) de $1.000 por otra de $1.100. La concavidad sobre las ganancias captura el hecho que las personas tienden a ser adversas al riesgo sobre las ganancias: generalmente prefieren una ganancia segura de $500 a tener el 50 % de chance de ganar $1.000. Sin embargo, las personas tienden a ser amantes al riesgo al momento de las pérdidas: generalmente prefieren 50 % de chance de perder $1.000 a una pérdida segura de $500. Esto último llega a la convexidad en las pérdidas.
La heurística de representatividad en un caso de decisión de inversión...

Gráfica 1: Curva de Utilidad con Forma de “S”

[Diagrama de curva de utilidad con forma de “S”]

Fuente: Kahneman y Tversky, 1979.

El cuarto y último componente de la teoría prospectiva es la ponderación de la probabilidad. El mismo fue desarrollado también por Tversky y Kahneman (1992). En esta parte de la teoría, las personas no ponderan a los posibles resultados de manera objetiva. Más precisamente, los individuos sobre-ponderan las probabilidades bajas y subponderan las probabilidades altas. En la **Gráfica 2** se presenta la función de ponderación de probabilidad donde P es la probabilidad objetiva de ocurrencia y $w(P)$ es la ponderación que los agentes le dan a esa probabilidad.

Gráfica 2: Función de Ponderación de las Probabilidades

[Diagrama de función de ponderación de probabilidad]

Fuente: Barberis y Thaler, 2003.
Basándose en las críticas a la teoría de la utilidad esperada, las investigaciones sobre la racionalidad limitada de los individuos (Simon, 1955) y la aparición de la teoría de perspectivas, se desafía el supuesto que el hombre es una especie de *homo economicus* capaz de procesar toda la información disponible al momento de decidir. Si bien es cierto que sus pensamientos pueden ser conscientes y ordenados, no es la única forma ni la habitual en la que la mente opera.

La mayoría de los juicios y acciones de los individuos son apropiados, no obstante, al conducir sus vidas se guían por impresiones y sentimientos, es decir, juicios intuitivos, y la confianza en sus creencias y sus preferencias suelen estar justificadas, aunque no siempre. Éstas pueden conducir a las personas a situaciones subóptimas. Incluso pueden tomar decisiones o tener preferencias intuitivas incorrectas (sesgos), aun sabiendo y/o reconociendo ese error, debido a que violan las reglas de elección racional (Kahneman, 2011).

Por lo tanto, el presente trabajo pretende evaluar el efecto de la heurística de representatividad, analizando cómo impacta en los juicios y valoraciones acerca de la percepción de la probabilidad que condiciona un evento en la toma de decisiones bajo riesgo. Concretamente, a partir de la adaptación de un experimento desarrollado por Grether (1980), se estudia el mencionado impacto en un caso hipotético de decisión de inversión en una empresa comercial.

2. Las heurísticas

Los desarrollos conceptuales en este campo del conocimiento han analizado diferentes atajos mentales conocidos como heurísticas, que pretenden contextualizar los modos que conforman la racionalidad limitada de los individuos.

Aunque en el presente trabajo se analiza específicamente una de ellas, se detalla a continuación una síntesis realizada por Shefrin (2010) de las heurísticas y sesgos más conocidos y desarrollados por distintos investigadores. Ellos son, la representatividad, la disponibilidad, el anclaje, el exceso de confianza, el optimismo irreal, la ilusión de control, la extrapolación, la confirmación, el conservadurismo, el afecto, la categorización y el *status quo*.
La heurística de representatividad en un caso de decisión de inversión...

Representatividad es la tendencia de crear estereotipos para formar juicios. Por ejemplo, la persona que recae en la representatividad puede ser un tanto necia en predecir que los futuros retornos de un determinado activo serán positivos porque el pasado de ese activo ha sido positivo. Esto sucede cuando se forman juicios basándose en que una performance pasada favorable es representativa de buenos activos. En la próxima sección esta heurística será explicada con mayor profundidad.

Disponibilidad es la tendencia de formar juicios basados en información que ya está disponible y desestimar información que todavía no lo está. Anclaje es la tendencia a formular una estimación usando un proceso que comienza con un número inicial (el ancla), y luego hacer ajustes relativos a ese ancla. El sesgo de anclaje hace que esos ajustes sean demasiado pequeños.

Aunque existen sesgos relacionados directamente con heurísticas particulares, existen otros que son consecuencia de distintos factores. Por ejemplo, los individuos tienden a tener exceso de confianza en sus habilidades y sus conocimientos, lo que significa generar una creencia inexacta de ambas características. Este tipo de personas termina siendo sorprendido por sus errores más veces de lo que ellos podrían haberlo anticipado.

El optimismo irreal refiere a sobrestimar las probabilidades de un evento favorable y subestimar las probabilidades de un evento desfavorable. Mientras que, la ilusión de control sobrestima el rol de las habilidades con respecto a la suerte en la determinación del resultado de un evento.

El sesgo de extrapolación lleva a la gente a sobreactuar, desarrollando estimaciones indeseadas en la que los recientes cambios van a continuar en el futuro. El sesgo de confirmación conduce a ponderar con mayor peso a la información que confirma sus posturas previas y a ponderar con menor peso a la información que rechaza esas posturas previas.

Conservadurismo es la tendencia de no reaccionar ante nueva información al ponderar con mayor peso a la información base. La heurística del afecto reúne a hacer juicios basándose en los sentimientos, sin considerar de los fundamentos de ese activo o decisión, o teniéndolos en cuenta, aunque de un modo no analítico.

Escritos Contables y de Administración - 97
Categorización es el acto de dividir objetos en categorías generales e ignorar las diferencias entre los miembros de las mismas categorías. Este sesgo puede ser severo si los miembros de las categorías son altamente diferentes entre sí. Por último, el sesgo de status quo predispone a la gente a favorecer la inacción antes que la acción, tal vez por la condición de aversión al arrepentimiento. Entonces, en lugar de tomar acción ante algún cambio de rumbo con el riesgo de que puedan llegar a tomar una decisión desacertada y arrepentirse, prefieren quedarse en las posiciones que están y desestimar la nueva información.

2.1 Heurística de representatividad

Tversky y Kahneman (1974) establecen que la valoración subjetiva de la probabilidad está basada en datos de validez limitada y que son procesados de acuerdo a heurísticas. Para ellos, en muchas situaciones de la vida cotidiana los individuos confían en la heurística de representatividad. Esto sucede cuando las probabilidades son evaluadas por el grado en que A es representativo o se asemeja a B. Entonces, cuando A es altamente representativo de B, la probabilidad que A se origine a partir de B es juzgada como alta. Por otro lado, si A no es similar a B, la probabilidad que A se origine a partir de B es evaluada como baja.

Kahneman (2003) en diversos estudios empíricos prueba que los sujetos sustituyen el atributo objetivo de probabilidad por el atributo de similitud más accesible. De esta forma, la heurística de representatividad es incorporada a una clase más amplia de heurísticas de prototipo, definiéndose como la tendencia a confiar en estereotipos para hacer juicios.

En línea con el autor anterior, Barberis y Thaler (2003) argumentan que los inversores pueden ver un reciente crecimiento de dividendos como representativo de un futuro crecimiento sostenido a largo plazo. Jegadeesh y Titman (1999) se refieren hacia esta heurística como la tendencia de los individuos a identificar un evento incierto, o una muestra, por el grado en que es similar a la población.
La heurística de representatividad en un caso de decisión de inversión...

A partir de distintos experimentos efectuados, Kahneman y Tversky (1972) arribaron a diversas conclusiones. Una de ellas es que si un agente evalúa la probabilidad mediante la representatividad, descuidan las probabilidades previas o a priori. Esta hipótesis fue testeada en un experimento donde se le brindó a un grupo de individuos una breve descripción de una persona determinada y, además, la probabilidad de que cualquier sujeto de la población sea abogado o ingeniero, debiendo definir su profesión. Quedó demostrado que las personas solo se valían de la descripción provista en función al estereotipo que se tiene de un individuo cuya profesión es la de abogado e ingeniero. Solo hacían uso de las probabilidades en los casos en los que no se les ofrecía ninguna característica del sujeto.

Estos autores también probaron la insensibilidad al tamaño de la muestra. Esto implica que para evaluar la probabilidad de obtener un resultado particular de una muestra de una población específica, las personas generalmente aplican la heurística de la representatividad. Consecuentemente, si probabilidades son evaluadas por esta heurística, entonces el juicio de probabilidad de una muestra estadística es independiente de su tamaño. Pero la teoría del muestreo implica que el número esperado de la variable de interés en una muestra sea más próxima al valor del parámetro poblacional y sufra menos desviaciones en una muestra grande, que en una muestra de tamaño menor. Esta noción fundamental de la estadística evidentemente no es parte del repertorio de intuiciones de los seres humanos.

Por lo tanto, más allá de las distorsiones que genera la presencia de la representatividad en el razonamiento bayesiano para la toma de decisiones, queda evidenciada su posible presencia y eventual desviación a la hora de optar de la alternativa más conveniente.

3. Caso de aplicación y resultados

Como ya se mencionó al inicio, el objetivo de este artículo es evaluar el efecto que tiene la heurística de representatividad en la percepción de la probabilidad que condiciona un evento en la toma de decisiones bajo riesgo. Para ilustrarlo, se realiza una ejemplificación adaptada del experimento desarrollado por
Grether (1980) en un caso de decisión de inversión de una empresa comercial, empleándose el criterio del valor actual neto (VAN) para la valoración de estrategias.

En el experimento original (Grether, 1980) se trabaja con tres cajas, la primera constituía la probabilidad de base y estaba compuesta por seis bolillas, 2 etiquetadas con S (strong) y 4 con W (weak). Si salía una bolilla S, se debía extraer una de las seis bolillas de la caja 2, de las cuales 4 estaban etiquetadas con la U (up) y 2 con la D (down). Si de la caja 1 salía una bolilla W, entonces se realizaba la segunda extracción de la caja 3, la cuál contenía 3 bolillas U y 3 bolillas D.

Supóngase una secuencia de eventos que condicionan el éxito o fracaso de una estrategia: La empresa tomada como ejemplo se dedica a la venta de cortinas de interiores y analiza la posibilidad de expandir su mercado geográfico. Su política de expansión se basa en operar dentro de mercados cuyas características sociales, económicas y demográficas se encuentren altamente correlacionadas de forma positiva con su mercado base, en función a las características de sus cuatro líneas de productos (blackout, roller, veneciana y romana). Definido el mercado, el éxito o fracaso del emprendimiento está condicionado al éxito o fracaso de las variables macroeconómicas y sectoriales del mercado objetivo. La tabla 1 define la secuencia del problema propuesto:

<table>
<thead>
<tr>
<th>Escenario</th>
<th>P(Escenario)</th>
<th>VAN (Inv.)</th>
<th>Van(Inv.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+ $2,5 (mill.)</td>
<td>- $0,2 (mill.)</td>
</tr>
<tr>
<td>Bueno</td>
<td>33 %</td>
<td>67 %</td>
<td>33 %</td>
</tr>
<tr>
<td>Malo</td>
<td>67 %</td>
<td>50 %</td>
<td>50 %</td>
</tr>
</tbody>
</table>

Como se observa, se plantean dos escenarios, bueno y malo, con probabilidades de ocurrencia del 33 % y 67 % respectivamente 8. Paralelamente, se definen los probables valores que arroje la estrategia de expansión. Si el escenario es bueno (B); se calculan seis estimaciones del VAN,
La heurística de representatividad en un caso de decisión de inversión…

en donde cuatro veces de las seis (67 %) el valor de la estrategia es de VAN $2,5 millones. Las pérdidas se presentaron por un valor actual de -$0,2 millones en dos casos de los seis casos (33 %). Si el escenario es malo (M), de seis observaciones, tres dan un resultado positivo (50 %) y las tres restantes un VAN negativo. Se supone que no existe flexibilidad estratégica adicional, por lo que el enfoque del VAN tradicional es suficiente para valor el proyecto⁹. No se debe perder de vista que la probabilidad de ocurrencia asociada a los resultados esperados (VAN), está condicionada por el contexto (escenario).

Para demostrar cómo funciona la heurística de representatividad, primero se debe entender la forma de pensamiento bayesiano para resolver el problema y asignar probabilidades de ocurrencia. El esquema mental de un clásico agente está dado como muestra la gráfica 3, por el siguiente árbol de decisión¹⁰:

Gráfica 3: Árbol de decisión bayesiano

![Árbol de decisión bayesiano](image)

Fuente: Elaboración propia.

Se realiza un experimento (Grether, 1980) que consiste revelar a los agentes sólo el resultado final de la estrategia expandida del árbol de decisión anterior. Si se selecciona el resultado satisfactorio (VAN+), surge la siguiente pregunta: ¿Cuál fue el escenario originó el resultado positivo? Similar razonamiento vale si se selecciona el resultado negativo del proceso (VAN-).
Si se aplica la lógica bayesiana inductivamente, la tarea se reduce a estimar la probabilidad de ocurrencia de un escenario bueno (malo) a partir de un VAN positivo. Cuando la probabilidad es mayor al 50 %, el sujeto bayesiano responderá que el escenario de origen fue bueno (malo). Para ello se debe determinar la probabilidad de obtener VAN + cuando el escenario es bueno, empleando la ecuación 1:

\[
P(VAN + / B) = \frac{n!}{m! (n - m)} (q)^m \times (1 - q)^{n-m}
\]

\[
P(VAN + / B) = \frac{6!}{4! (6 - 4)} (2/3)^4 \times (1/3)^{6-4} = 0,329
\]

Siendo n el número de casos (seis) en los que se estima el VAN, de los cuales si el escenario es bueno (B) entonces 4 son VAN+ y 2 son VAN-. El m, por su parte, es el número de casos en los que se presenta VAN+. De igual forma se debe determinar la probabilidad de obtener VAN+ cuando el escenario es malo, a través de las expresiones que figuran en la ecuación 2.

\[
P(VAN + / M) = \frac{n!}{m! (n - m)} (q)^m \times (1 - q)^{n-m}
\]

\[
P(VAN + / M) = \frac{6!}{3! (6 - 3)} (1/2)^3 \times (1/2)^{6-3} = 0,625
\]

Luego, en función de la fórmula de probabilidad marginal (Ecuación 3), se procede a calcular la probabilidad de que el valor de la estrategia sea positivo:

\[
P(VAN +) = [P(VAN + / B) \times P(B)] + [P(VAN + / M) \times P(M)]
\]

\[
P(VAN +) = 0,329 \times 0,33 + 0,625 \times 0,67 = 0,526
\]

Finalmente se calcula en la ecuación 4 la probabilidad condicional, aplicando la regla de Bayes:
La heurística de representatividad en un caso de decisión de inversión...

Ecuación 4

\[
P(B/VAN +) = \frac{[P(VAN +/B) \times P(B)]}{P(VAN+)}
\]

\[
P(B/VAN +) = \frac{0,329 \times 0,33}{0,526} = 0,208
\]

Se obtiene una probabilidad del 20,8 % de que el escenario bueno sea explicado por un resultado de VAN+. Haciendo uso del concepto de evento complemento, se determina que el agente bayesiano responde que el escenario malo se explica por un resultado de VAN+ con un 79,2 %.

Ahora bien, luego de comprender el razonamiento de nuestro agente perfecta e ilimitadamente racional se plantea el siguiente interrogante: ¿Cómo juega la heurística de la representatividad en la resolución de este problema? No se pierda de vista que representatividad implica asignar probabilidad de ocurrencia a un evento en base a la similitud que tienen sus características a un evento ya observado.

Para el ejemplo planteado, al observar el final de la secuencia y apreciar que esta tiene un valor favorable (VAN+), automáticamente responderá que el escenario macroeconómico y sectorial de base era el bueno (B). En el ejemplo planteado un resultado favorable (VAN+) era obtenido en ambos escenarios: con un 67% si el escenario era bueno (B) y con un 50% de probabilidad si era malo (M). La representatividad está presente en la manera en que las características de un evento conocido (VAN+) son asociadas a la probabilidad de ocurrencia del evento desconocido, el escenario base. A continuación, se presenta la tabla 2 que resume los resultados de la prueba aludida.

<table>
<thead>
<tr>
<th>Tabla 2: Síntesis de los resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probabilidad Escenario B</td>
</tr>
<tr>
<td>33%</td>
</tr>
<tr>
<td>Salidas Positivas</td>
</tr>
<tr>
<td>Media</td>
</tr>
<tr>
<td>Salidas Positivas</td>
</tr>
<tr>
<td>Media</td>
</tr>
</tbody>
</table>

Fuente: Adaptación Experimento de Grether (1980).
La tabla muestra dos tipos de resultados, el primer grupo un conjunto de individuos que no recibieron estímulos económicos para responder y el segundo donde se los incentivó económicamente. Se testearon dos resultados posibles de la estrategia, el primero donde solamente el 50 % de las veces el VAN es positivo (VAN+ = 3) y el segundo donde el 67 % de las observaciones arrojan un VAN positivo (VAN+ = 4). La pregunta formulada a los agentes fue la siguiente: ¿Qué tipo de escenario genera el resultado observado?

Si se enfoca en la segunda parte de la tabla con VAN+ = 4, el grupo 40 % de las personas del grupo sin incentivos respondió que el escenario base era el bueno. En el caso de incentivos, la cifra se incrementó al 47 %. Ambos grupos evidenciaron una fuerte presencia de la heurística de representatividad al asignar probabilidades de ocurrencia al escenario (evento) bueno-malo. En el punto anterior, se demostró analíticamente que un agente representativo de mentalidad “bayesiana” responde a favor de un escenario malo (79,2 %) dado que el escenario bueno tiene menor probabilidad de ocurrencia (21,8 %).

En la primera parte de la tabla, cuando el VAN+ = 3; solamente el 7 % respondió que el escenario base es bueno (B), esto se verifico tanto para el grupo incentivado económicamente como para aquel que no recibió recompensa. Se podría pensar que en este caso se evidenció una mayor presencia de la clásica racionalidad en las respuestas. No obstante también se puede interpretar el resultado como una fuerte presencia de la representatividad ya que las personas no realizaron un análisis bayesiano.

En efecto, las probabilidades de que el VAN sea positivo son sólo del 50 % y éstas son representativas de un escenario negativo, conforme surge de la tabla 2. Por lo tanto, esto indica que no se sostiene de manera concluyente la regla de Bayes, evidenciando que las decisiones en condiciones de incertidumbre se encuentran atravesadas por la heurística de representatividad.

En términos analíticos, implica una subestimación de la probabilidad apriorística de ocurrencia de un evento condicional, sin que los agentes la ignoren por completo. Formalmente, según la regla de Bayes, se predice un escenario bueno (B) si el ratio de probabilidad es mayor a la unidad. Esto se expone en la ecuación 5.
La heurística de representatividad en un caso de decisión de inversión...

Ecuación 5

\[
\frac{P(B/VAN +)}{P(M/VAN +)} \geq 1
\]

El ratio de la ecuación anterior se descompone como se expone en la ecuación 6:

Ecuación 6

\[
\frac{P(B/VAN +)}{P(M/VAN +)} = \frac{P(VAN +/B)}{P(VAN +/M)} \cdot \frac{P(B)}{P(M)}
\]

Para suavizar las variaciones en una serie de tiempo, la ecuación 6 puede transformarse en términos logarítmicos de la siguiente manera (ecuación 7):

Ecuación 7

\[
\ln \left(\frac{P(B/VAN +)}{P(M/VAN +)} \right) = \ln \left(\frac{P(VAN +/B)}{P(VAN +/M)} \right) + \ln \left(\frac{P(B)}{P(M)} \right)
\]

En la expresión precedente, un agente bayesiano otorga igual peso o ponderación a los términos del miembro derecho. Matemáticamente, la representatividad implica que la probabilidad no condicional inicial que el escenario sea bueno (B) o malo (M) es expresada por la ecuación 8;

Ecuación 8

\[
\ln \left(\frac{P(B)}{P(M)} \right)
\]

Esta es subestimada, asignando mayor peso o referencia para analizar una situación a la probabilidad de que el escenario es bueno (B) porque el resultado de la estrategia es positivo (Ecuación 9).

Ecuación 9

\[
\ln \left(\frac{P(VAN +/B)}{P(VAN +/M)} \right)
\]
Claramente, las características intrínsecas de un VAN positivo propio de la estrategia, predisponen al agente a inclinar la balanza hacia un contexto correlacionado de manera positiva con el resultado favorable presentado. Como se observa en la ecuación 10, Grether (1980) contrasta los resultados obtenidos en la encuesta con la regresión:

Ecuación 10

\[
\ln \left[\frac{P(B/VAN \, +)}{P(M/VAN \, +)} \right] \\
= \alpha_0 + \alpha_N \ln \left[\frac{P(VAN \, +/B)}{P(VAN \, +/M)} \right] \\
+ \alpha_p \ln \left[\frac{P(B)}{P(M)} \right]
\]

La expresión anterior define la regla de Bayes como combinación lineal de probabilidades condicionales y no condicionales. Los coeficientes \(\alpha_N \) y \(\alpha_P \) ponderan con valores positivos la participación de cada término de la ecuación. Si se supone un agente con razonamiento bayesiano en la toma de decisiones, entonces \(\alpha_N = \alpha_P \). Caso contrario, existe evidencia estadística de existencia de representatividad en la toma de decisiones, siempre que \(\alpha_N > \alpha_P \).

Los valores obtenidos en la regresión fueron de \(\alpha_N = 2.08 \) y \(\alpha_P = 1.69 \), la diferencia de 0.39 fue significativa desde el punto de vista estadístico, sugiriendo la presencia de representatividad en la toma de decisiones.

4. Consideraciones finales

La toma de decisiones es propia e inherente a la vida de los individuos. El acto de optar por la alternativa más conveniente ha sido, y aún lo es, objeto de estudio de muchas investigaciones. La teoría clásica bayesiana supone un agente racional, omnipotente en el procesamiento y manejo de la información, persiguiendo maximización de su riqueza final. Bayes, a partir de la suposición de racionalidad ilimitada, plantea entonces en su teoría un individuo que se asemeja a un semi-Dios, capaz de tomar decisiones de consumo-inversión de manera imparcial y optimizadora.

Sin embargo, dado el caso de aplicación presentado, se observa que las personas recaen en la heurística de representatividad al momento de tomar
decisiones. Esto, a su vez, demuestra que, sin ánimo de quitar mérito a una teoría clásica muy valiosa que permite arribar al resultado óptimo, el razonamiento bayesiano no se encuentra presente en la forma real en que los agentes perciben los hechos y toman decisiones frente a los mismos.

El concepto de heurística, en especial la estudiada representatividad, explica gran parte de las desviaciones en las elecciones de las personas, ya sea en su vida cotidiana y en el manejo de organizaciones. Por lo tanto, refleja la importancia de la consideración de la Economía Conductual dentro del proceso decisorio.

Bibliografía

1 Se trata de un artículo cuya versión previa fue presentada en la XLVIII Reunión Anual de la Asociación Argentina de Economía Política (AAEP). Es importante aclarar que se han tenido en cuenta las observaciones y las sugerencias realizadas por quien fue el comentarista del mencionado trabajo, al cual se la agradece por las mismas.

2 Becaria de la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-UPSO, CEDETS) y docente del Departamento de Ciencias de la Administración de la Universidad Nacional del Sur (DCA-UNS). Correo electrónico: melisa.manzanal@uns.edu.ar.

3 Becario del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y docente del Departamento de Ciencias de la Administración de la Universidad Nacional del Sur (DCA-UNS). Correo electrónico: emilio.elalabi@uns.edu.ar.

4 Profesor del Departamento de Ciencias de la Administración de la Universidad Nacional del Sur (DCA-UNS) y de la Universidad Provincial del Sudoeste (UPSO). Correo electrónico: milanesi@uns.edu.ar.

5 Investigador de la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC) y Profesor del Departamento de Ciencias de la Administración de la Universidad Nacional del Sur (DCA-UNS) y de la Universidad Provincial del Sudoeste (UPSO). Correo electrónico: hvigier@uns.edu.ar.

6 Para comprender las teorías anteriormente explicadas, imaginemos un individuo que debe elegir entre ganar $1,000 de forma segura (ve (alternativa segura) = $1,000) o tirar una moneda y, si sale cara gana $2,100 pero si sale cruz no gana nada (ve (alternativa con riesgo) = 0,5 * $2,100 + 0,5 * $0 = $1,050). De acuerdo a la teoría del valor esperado, las personas racionales elegirían la segunda opción ya que tiene un valor esperado mayor que la primera. Siguiendo con el mismo ejemplo, según la teoría de la utilidad esperada, los agentes decidirán entre $U(1,000) y $U((cara) * 0,5 + (cruz) * 0,5)$ dependiendo de, según sus curvas de indiferencia, cuál de las opciones anteriores les generan el mayor beneficio. La enseñanza que nos deja Von Neuman y Morgensten es que los inversores adversos al riesgo tendrán una función de utilidad cóncava para las ganancias para la cual se cumple que, si U es la utilidad y W es la riqueza, entonces, para ellos $U(E(W)) > E(U(W))$. En síntesis, los inversores maximizaran su riqueza a partir de la función de utilidad esperada.

7 Ver los problemas 11 y 12 de Kahneman y Tversky (1979).

8 Dichas probabilidades son derivadas del experimento de la cajas y bolillas de Grether (1980).

9 De existir flexibilidad estratégica el VAN tradicional debe complementarse con la estimación del VAN expandido aplicando el enfoque de opciones reales.

10 Se supone un mundo a tiempo discreto donde los eventos siguen distribuciones de probabilidad binomial (éxito-fracaso). En la figura 3 se incorpora la probabilidad de ocurrencia de cada evento.