CONCEPTOS OPERATIVOS Y CONSTRUCTOS MENTALES EN LA ELABORACION DE LOS MODELOS Y DE LA TEORIA

Cuando Einstein concibió la Teoría de la Relatividad Restringida, inventó, como subproducto, un nuevo tipo de concepto o definición. En lugar de definir ciertos términos por las propiedades o cualidades esenciales del "objeto" al que se entiende que se refieren, los definió por las operaciones físicas que el investigador realiza a fin de averiguar la presencia del objeto o de medir su magnitud. Su preocupación inmediata fue precisar el significado de "simultaneidad" de dos eventos producidos en diferentes lugares; y demostró que este requería especificar las operaciones realizadas por el investigador.

El físico Bridgman generalizó este procedimiento y propuso el "operativismo" como programa universal del proceso científico: la física o cualquier otra disciplina científica deberían usar solamente definiciones operativas. Este temperamento fue rápidamente adoptado por representantes de varios campos, incluyendo a los filósofos. Su atractivo es fácilmente comprensible porque encajaba perfectamente en las ideas prevalecientes en muchos ámbitos: convino particularmente a los empíricos radicales en su insistencia sobre la observación de hechos, a los lógicos positivistas, en sus inclinaciones hacia el fisicalismo, a los partidarios del conductismo, en su antagonismo a todo lo que no es susceptible de observación.

215
ESTUDIOS ECONOMICOS

Por otra parte, la tesis de que los conceptos usados en la formación de la teoría deberían ser definidos operativamente fue rechazada por muchos, y con especial vigor por los físicos teóricos que habían llegado a una posición que podría describirse como "construccionalismo" (si no imaginacionismo). Entre ellos se halla el mismo Einstein quien, además de proponer el concepto operativo, también había aceptado enérgicamente el uso de constructos puramente mentales en la teoría física. A fin de ubicar la dicotomía entre conceptos operativos y puros constructos dentro de la debida perspectiva, pasaremos revista a algunas de las posiciones tomadas, principalmente por los físicos, sobre el tipo de concepto más adecuado para la elaboración de la teoría.

I. — LOS CONCEPTOS DE LOS FISICOS

Conceptos Libremente Creados

Einstein nunca se cansó de reiterar que los conceptos básicos de los físicos son "libres invenciones del intelecto humano" y que no constituyen "abstracciones de la experiencia": que su "carácter ficticio" es "evidente" porque se pueden construir esquemas conceptuales alternativos; y que el papel de la experiencia consiste parcialmente en "sugerir" algunos de los elementos conceptuales y principalmente, en probar la correspondencia entre las "experiencias separadas" y las "conclusiones" —esto es, las "deducciones lógicas"— del sistema teórico (1).

Einstein ofrece muchos ejemplos, sacados de la física, de los "conceptos e ideas libremente inventados"; menciona "masa, fuerza y un sistema de inercia" agregando que "estos conceptos son todos libres invenciones"; menciona también el conductor o aislador ideal", el "concepto de onda plana", etc., notando que cada uno es una "ficción que nunca puede ser materializada"; y generaliza: "Los conceptos físicos son libres creaciones de la mente humana y no están, a pesar de las apariencias, dete-

nados exclusivamente por el mundo exterior" (2). En respuesta a un escéptico que iba en búsqueda de lo "físicamente real" y que cuestionaba el uso de los "conceptos puramente imaginarios", contesta: "Hay solamente un camino de los datos de conciencia a la 'realidad', a saber, el camino de la construcción intelectual consciente o inconsciente ... Solemos poner más confianza en estas construcciones que en las interpretaciones que hacemos de nuestras sensaciones" (3).

Bridgman estaba muy familiarizado con el rol jugado en la física por los "constructos mentales" concebidos con el fin de "tratar con situaciones físicas que no podemos experimentar directamente a través de nuestros sentidos, pero con los cuales hemos tenido contacto indirectamente y por inferencia. Tales constructos suelen contener en un mayor o menor grado un elemento de invención" (4). Bridgman no estaba satisfecho con tales procedimientos arbitrarios. Al comentar el aforismo de Poincaré referente a la multiplicidad de posibles explicaciones de cada fenómeno, decía: "Esto no es nada satisfactorio. Tenemos que ser capaces de encontrar el mecanismo real" (5). Pero no se opuso a todos los constructos. Estimaba que la "resistencia física", aunque "siempre más allá del alcance de la experiencia directa", es "un buen constructo" y estaba dispuesto "a atribuirle la realidad física porque está relacionada solamente con otros fenómenos físicos, independientes de aquéllos de que se formó su definición". En cambio, no le satisfacía el constructo del "campo eléctrico" debido a la ausencia de "cualquier operación física susceptible de ofrecer prueba de la existencia del campo, con independencia de la operación comprendida en la definición". Pero estuvo predispuesto muy favorablemente hacia el constructo

(5) BRIDGMAN, ibid., p. 49.
del "átomo" porque, aunque "nunca nadie tuvo experiencia directa del átomo y su existencia es completamente inferida", se ha acumulado al respecto tanta información nueva e independiente que "hasta ahora estamos tan convencidos de su realidad física como de la de nuestras manos y pies" (6).

Conceptos Operativos y "Operativismo"

En realidad, Bridgman aspiraba al uso exclusivo de los conceptos definidos operativamente: "se llega a la definición correcta de un concepto, no en términos de propiedades, sino en términos de operaciones reales" (p. 6). "En general, entendemos por concepto nada más que un conjunto de operaciones; el concepto es sinónimo del conjunto correspondiente de operaciones. Si el concepto pertenece a la física, como la longitud, las operaciones son operaciones físicas reales, es decir, aquéllas por las cuales se mide la longitud" (p. 5). (A esta altura Bridgman, como veremos más adelante, descubre un flanco indefenso: "si el concepto es mental, como la continuidad matemática, las operaciones son mentales"). Hay "mucha libertad en la selección de las operaciones, tenemos más de un concepto y, estrictamente hablando, un nombre separado debería corresponder a cada uno de los distintos conjuntos de operaciones (p. 10 y p. 23).

El operativismo (u operacionismo, como lo denominan los psicólogos), como programa, se sujeta entonces a las doctrinas neopositivistas: "Para que una pregunta específica pueda tener significado, debe ser posible encontrar operaciones por las cuales se le de contestación". Si tales "operaciones no pueden existir", la pregunta carece de todo significado (p. 28). Bridgman cree que "muchas preguntas formuladas sobre temas sociales y filosóficos carecen de significación al examinarlas desde el punto de vista de las operaciones. Se llegaría, sin ninguna duda, a pensar más claramente, si el modo operativo de pensamiento fuera adoptado en todos los campos de investigación, tanto como en el de la física" (p. 30).

(6) Ibid., pp. 54 y 59.
CONCEPTOS OPERATIVOS Y CONSTRUCTOS MENTALES

Se pueden dirigir a la posición de Bridgman y su programa varias objeciones. Nuestro comentario abarca los seis puntos siguientes:

1) El tipo de operaciones: físico, estadístico o puramente mental.
2) La "sinonímia" entre concepto y operaciones.
3) La operación como criterio de significación.
4) La multiplicidad de operaciones, significados y conceptos.
5) La relación entre operaciones y "existencia real".
6) La deseabilidad de usar solamente conceptos operativos en la formación de teorías.

Nuestra crítica se dirige ostensiblemente contra Bridgman, pero en realidad se aplica a todos los autores que han abrazado el "operativismo" como requerimiento del discurso científico. Algunas de las observaciones de Bridgman eran casuales, interrogativas, quizás aun parentéticas; ¿Por qué someterlas a una crítica detallada?. Porque algunos de los seguidores de Bridgman expusieron su plataforma metodológica con tanta intranquilidad, parece más conveniente tomar las manifestaciones de su maestro como blanco, si bien pidiendo disculpas por cualquier error de interpretación que pueda suceder.

El tipo de operaciones

Para comprender el programa de operativismo, es necesario determinar con precisión lo que se entiende por "operación", o "conjunto de operaciones". La observación de Bridgman sobre "operaciones mentales" en la cual define los "conceptos mentales", provocó el siguiente comentario de Margenau: "Al principio, parece indudable que se tenían en vista operaciones experimentales, procesos conducentes a mediciones. Más tarde, sin embargo, Bridgman se refería a operaciones escritas y aun a operaciones mentales. Esto se puede interpretar como un paso atrás, porque si se incluye el pensamiento entre las operaciones, nadie podría poner reparos al operativismo, ni éste podría tener mucha significación" (7).

Es imposible que, en estas declaraciones, Bridgman haya querido referirse a las operaciones mentales. Esto habría contradicho su posición fundamental y repudiado toda su plataforma metodológica. Pero hay una interpretación plausible de lo que quiso decir. Habiendo asseverado que los conceptos no tienen significado, a menos que estén definidos en términos de operaciones, consideró necesario conceder que los conceptos de matemática pura no son vacíos. Trató de llevarlo a cabo admitiendo la legitimidad de las "operaciones mentales" para dar significado a los "conceptos mentales" puros —pero, indudablemente, intentó limitar esta concesión a conceptos metales de las disciplinas puramente formales, y no extenderla a los "conceptos mentales" en las ciencias empíricas. Otorgó así el derecho de admisión solidamente a los conceptos lógicos y matemáticos y no a los conceptos de la física u otras disciplinas empíricas (ni aun, quizás, a los "temas filosóficos").

¿Cuáles son, pues, las operaciones aceptadas? "Operaciones físicas" para "conceptos físicos", seguramente. ¿Y los conceptos biológicos, psicológicos y económicos? Bridgman, a mi juicio, estaba pensando en toda clase de operaciones instrumentales y en todo tipo de operaciones estadísticas que involucran datos registrados derivados de la observación. Entendía, obviamente, al hablar de estas operaciones, las lecturas de instrumentos y los registros de otros tipos de observación, con plena especificación de la acción de los instrumentos y de las operaciones de los observadores humanos.

**Sinonimia entre conceptos y operaciones**

Hablo cierta dificultad en el lenguaje usado en este estudio. Estoy acostumbrado a distinguir, de la palabra por la cual se denomina una idea, la idea misma; a referirme a la palabra como el "término" y a la idea como el "concepto"; y a comprender por definición toda proposición que afirma la equivalencia entre los dos. Si la definición expresa lo que significa la palabra, se debería pensar que el enunciado claro de un concepto es una definición del término que lo denota. No puedo comprender, entonces, por qué se debería hablar de la "definición del concepto" (como hace Bridgman), y por qué sería menester evitar (como lo hacen
algunos filósofos) hablar de “concepto operativo” e insistir en hablar, en cambio, de la “definición operativa del concepto” (8).

Convengamos que la definición de un término puede contener como elemento esencial la descripción de las operaciones que permiten encontrar o medir el “objeto” denotado. No veo, sin embargo, cómo puede sostenerse de manera general que el conjunto de operaciones debería ser sinónimo del definido. Mientras esta equivalencia tiene sentido para “distancia”, “tiempo”, “velocidad”, “peso”, “temperatura” y otras cantidades físicas, no lo tiene para muchos otros objetos, ya sean físicos o no. Es particularmente inapropiada cuando se necesitan definiciones taxonómicas. Hay libros de botánica y de zoología, destinados a ayudar al estudiante a averiguar por observaciones u operaciones apropiadas la clase, orden, género, especie (o sea lo que fue la clasificación empleada) de un especímen particular. Sería absurdo considerar en tal caso las operaciones del observador como “sinónimo” del concepto examinado. (Las operaciones de identificación de un cacto o un arácnido, seguramente nunca serán sinónimas de la planta o del animal considerado). El requerimiento de una definición operativa no sería en tales casos diferente de la determinación obvia de emplear procedimientos apropiados para averiguar la presencia de las propiedades esenciales del objeto definido, y allí no puede haber cuestión de sinonimia entre el concepto y las operaciones.

Las operaciones como criterio de significado

Es muy importante distinguir los tres papeles que pueden ser asignados a la identificación o medición de las operaciones:

1) Las operaciones pueden ser consideradas como sinónimos del objeto; 2) pueden considerarse como indicaciones esenciales para encontrar el objeto; y 3) pueden ser consideradas como una prueba o criterio de significado. El tercero, en efecto, implica

(8) No desconozco la distinción hecha por los filósofos escolásticos, entre la definitio rei y la definitio nominis, pero no veo que esto sea de importancia en la sutileza del texto expuesto arriba. Para mí, un “concepto operativo” es lo mismo que un “término operativamente definido”. 221
una amenaza o una tentativa de intimidación destinada a obtener obediencia: "Si Ud. no especifica las operaciones físicas o estadísticas, sus términos y su concepto serán declarados vacíos de significado".

Esta imposición bajo penalidad de "denegación de significado" es arbitraria. Va aún más lejos que los edictos de los pragmatistas y neopositivistas, quienes han dictado análogas sentencias con respecto a las proposiciones, más bien que a los puros conceptos. Reichenbach, por ejemplo, sostiene que el "significado" es un predicado del conjunto de la oración, no de palabras aisladas; las palabras pueden tener "sentido" solamente si el "significado" se transfiere a las palabras por la proposición en la que están empleadas (9). El criterio de significado de las proposiciones recae en su valor-verdad, valor-probabilidad o verificabilidad; de acuerdo con Reichenbach, ni siquiera es necesario insistir sobre la "posibilidad técnica" de verificación; basta con "la posibilidad física", y en ciertos casos se podría generosamente aceptar la "posibilidad lógica" de verificación, aunque, ordinariamente, en su opinión, esto no sería muy ortodoxo (10). La opinión que se menciona más a menudo al respecto es la de Wittgenstein: "el significado de una proposición es el método de su verificación" (11).

Ahora, puede sostenerse que la verificabilidad directa de una proposición depende de la operatividad de los conceptos que la constituyen. La operatividad de los conceptos sería, entonces, una condición necesaria de la verificabilidad de la proposición, aunque ciertamente no sería una condición suficiente. (En verdad, una oración puede unir un sujeto operativamente definido con un predicado también definido operativamente y, sin embargo, ser patentamente carente de significado). Esta relación entre conceptos operativos y proposiciones verificables ha sido probablemente la base de las peticiones ocasionales de

(10) REICHENBACH, ibid., pp. 37-46.
CONCEPTOS OPERATIVOS Y CONSTRUCTOS MENTALES

"proposiciones operativas" (12). Los autores que insistían sobre la necesidad de verificación han pasado muy a menudo por alto la importante diferencia entre la verificación (directa) de una proposición empírica aislada y la verificación (indirecta) de un sistema teórico compuesto de varias proposiciones, algunas de las cuales no necesitan ser directamente verificables ni compuestas de conceptos operativos. Estas proposiciones que no son directamente verificables y estos conceptos no operativos pueden ser perfectamente significativos.

En una palabra, la pretensión de que los conceptos sean operativos para que tengan significado es insostenible y, de hecho, ha sido casi universalmente rechazada. Aun aquellos que perseveren en la afirmación de que la mayor parte de los conceptos de las ciencias empíricas "deben" ser operativos, ya no niegan que los conceptos no operativos puedan tener significado.

Multiplicidad de operaciones, significados y conceptos

La insistencia sobre el principio: "otras operaciones - otros conceptos" ha sido criticada debido principalmente a "la consecuencia... que para cualquier objeto científico ordinario... la multiplicidad de métodos existentes" para detectar su presencia daría para "cada término una familia de distintos significados". Esta objeción fue atribuida a la falta de distinción entre verificación e inferencia" (13). Si hacemos esta distinción y nos damos cuenta que nuestros experimentos no "verifican" la presencia del objeto, sino que simplemente nos permiten "inferirlo", la multiplicidad de operaciones alternativas "no dará origen operativa-


mente a una multiplicidad desconcertante de significados de un mismo término. El mismo objeto puede ser inferido de diferentes conjuntos de operaciones..." (14).

No hay ninguna razón para estar "desconcertado" cuando un término tiene diferentes significados; en verdad, debemos acostumbrarnos a ello y tener cuidado de distinguirlos. Pero es incontestable que algunas veces diferentes conjuntos de operaciones identifican, en realidad, un objeto, y no una familia de objetos; y en estos casos la regla "otras operaciones - otros conceptos" sería verdaderamente una incomodidad. (Por ejemplo, un cristal de sal identificado por las técnicas cristalográficas, es aun el mismo objeto cuando se lo identifica por técnicas químicas). La dificultad, en mi opinión, proviene de la falta de distinción entre los conceptos métricos —cantidades físicas o estadísticas mensurables— y los conceptos de objetos imaginados o sensoriales. En el caso de cantidades numéricamente determinadas, es perfectamente correcto insistir que diferentes operaciones métricas produzcan o impliquen diferentes conceptos. Pero en todos los otros casos, diferentes operaciones pueden indicar, o identificar, el mismo objeto.

Esta confusión deriva de la extensión ilegítima de un principio, de su propia (muy estrecha) área de aplicación —cantidades medibles— a una amplia área a la cual no es aplicable. No debe sorprendernos que la cuestión de la "multiplicidad de conceptos" se resuelva de la misma forma que la "sinonimia entre conceptos y operaciones".

Relación entre operaciones y existencia real

En su actitud hostil o tolerante hacia los constructos mentales no operativos, Bridgman, como hemos visto, fue guiado por la relación más o menos distante de los constructos con las bases operativas de inferencia. Estuvo dispuesto a admitir la existencia de constructos "buenos" —siempre que se halle unívocamente con operaciones físicas independientes— lle-

CONCEPTOS OPERATIVOS Y CONSTRUCTOS MENTALES

gando hasta “atribuir realidad física” y “existencia” a estos constructos. Aparentemente, hay una estrecha conexión en la mente de los operativistas, entre las operaciones físicas y la “existencia real”.

Sorprende que un autor con una fuerte inclinación positivista estuviera tan seriamente interesado en los problemas ontológicos. Se podría pensar que un físico, tan ansioso de evitar la “especulación” y confiar nada más que en las operaciones físicas, habría de permanecer ajeno a los problemas metafísicos y no se sumergiría en la ontología. (O quizás no es tan sorprendente, después de todo, puesto que muchos autores, después de calificar desafiada y solemnemente la metafísica de inadecuada para los científicos serios, continúan hablando de la realidad y de la existencia real).

Lo realmente extraño en este problema de la “existencia real” de los objetos descriptos en los constructos mentales, es su falta de coherencia lógica con las afirmaciones sobre la sinonimia entre concepto y operaciones. Lo que los operativistas se proponían alcanzar por tales declaraciones, era, evidentemente evitar la hipostasia de la idea, evitar el error de afirmar la existencia independiente de un objeto definido, separada de las operaciones por las que se define. Para Bridgman, “la unión entre el objeto y los medios de observación o medición es indisoluble” (15). Pero si el concepto no es más que el conjunto de operaciones, no puede, de ninguna manera, ser al mismo tiempo un objeto con una existencia independiente de las operaciones.

**El uso exclusivo de conceptos operativos en la elaboración de la teoría**

Aun si el operativista admite que el físico debe todavía hacer uso de constructos no operativos, su esperanza es que, cuando su ciencia esté perfeccionada, usará solamente conceptos operativos. Esta posición es totalmente opuesta a la de muchos filósofos de la ciencia, que subrayan los “aspectos simbólicos”

---

de la ciencia: “Estamos empezando a comprender que las teo-
rias de las ciencias avanzadas están muy lejos de ser una gene-
ralización literal de los caracteres observables de los fenómenos
observables. Cuanto más adelantada está una ciencia, mayor es
el papel jugado en sus teorías por elementos no observables…”
(16).

Los mismos físicos han rechazado el programa operativista
— en términos inequívocos. Quizás no sería justo citar a Edding-
ton (17) o a Jeans (18) como testigos de la oposición, porque
sus concepciones han sido a menudo calificadas de ultrarraciona-
listas. Sin embargo, no se corre el riesgo de ser acusado de par-
cialidad si se presenta el testimonio de Born, que se apartó de su
especialidad para elevarse contra el racionalismo y “ofrecer una
posición equidistante” en el problema de la “relación entre teo-
ría y experimento” (19). Born demuestra que la posición ultra em-
pirista de Heisenberg es insostenible: “Heisenberg sostuvo que
se deben eliminar las cantidades que no tengan ninguna rela-
ción directa con el experimento. Quiso fundar la nueva mecáni-
ca, tan directamente como fuera posible, en la experiencia…
Pero si se lo interpreta (como muchos lo han hecho) como pre-
tendiendo eliminar todo lo no observable de la teoría, esto con-
duce a un disparate” (20). Born ofrece varios ejemplos de can-
tidades no observables que son indispensables para la teoría
física.

En un examen más directo considera las definiciones opera-
tivas como muy útiles para “la física clásica, donde se debe ope-
rar con cantidades susceptibles de mediciones directas… Por
ejemplo, es razonable introducir la temperatura para describir
las operaciones termométricas… Pero la definición operativa
está más bien fuera de lugar cuando se desea extender la idea
da las cuestiones relativas a los núcleos atómicos y electrons, a

(16) Max BLACK, The Definition of Scientific Method, en “Science and Civi-
lization” (Madison: University of Wisconsin Press, 1949) p. 90.
(17) Sir Arthur S. EDDINGTON, The Nature of the Physical World (Nueva
(18) Sir James H. JEANS, The New Background of Science (Nueva York: Mac-
millan, 1933).
(19) Max BORN, Experiment and Theory in Physics (Cambridge University
(20) Ibid., p. 18.
la teoría de los quanta y mecánica ondulatoria". Con respecto a la "función ondulatoria" de Schrödinger, escribe que "no hay, en principio, ningún medio para observarla, ni por lo tanto ninguna definición 'operativa'" (21).

Está claro, por lo tanto, que el uso exclusivo de conceptos operativos en la teoría física es imposible; y que un programa que la quiera restringir a tales conceptos es, y permanecerá, impracticable. Sería posible, sin embargo, defender un programa que diera preferencia a los conceptos operativos siempre y cuando los haya, y admitir conceptos no operativos solamente cuando no pueda encontrarse ningún sustituto operativo.

**Uso exclusivo de constructos puros en la formación de la teoría**

La idea que el físico teórico debería construir su sistema con una mezcla de conceptos, algunos tomados de la experiencia —"hechos en el laboratorio"— otros libremente inventados —"elaborados en el estudio"—, no es aceptada por todos los físicos. Aun antes de que fuera formulado el programa operativista, Ernst Mach (a menudo tildado de positivista) había afirmado que: "Todos los conceptos y leyes universales de la física... han sido elaborados por idealización" (22). Y muchos otros, igualmente, han sostenido que aun donde se dispone de conceptos empíricos, tales conceptos deberían ser reemplazados por otros depurados e idealizados, para que se los pueda utilizar en un sistema teórico coherente.

Si bien no es posible encontrar contrapartes empíricas (operativas) de todos los constructos mentales de los físicos, no hay ninguna dificultad en construir contrapartes puramente abstractas de todos los conceptos empíricos. Esto, por cierto, es lo que los teóricos han hecho permanentemente, a sabiendas o sin saberlo. Esta transformación de los conceptos empíricos en constructos puros ha sido llamada "método de la definición sucesi-

(21) Ibid., p. 39.
va” (23). Margenau gusta de distinguir “definiciones epistémicas” (empíricas, operativas) y “definiciones constitutivas” (representando “un agrupamiento postulado de constructos”) (24). Sostiene que “sin definiciones epistémicas, la ciencia degenera en especulación; en ausencia de definiciones constitutivas vendría a ser un registro estéril de hechos observados” (25). Pero expresa claramente que sólo las definiciones constitutivas “permiten el establecimiento de sistemas” (26), y que “la explicación encierra una progresión ulterior en el dominio de construcciones. Explicamos yendo más allá del fenómeno” (27).

La necesidad de “definiciones constitutivas en términos de otros constructos” se ejemplifica en relación al concepto de temperatura: “La temperatura, mientras se defina operativamente en términos de lecturas de termómetros, es racionalmente un concepto estéril o más bien un conjunto de conceptos desconectados. Para unificarlos y darles significado, debe agregarse que la temperatura es la medida de la energía cinética de las moléculas. Esta es la definición constitutiva que cierra el círculo y nos permite usar la noción de temperatura en los cálculos tanto como en las mediciones” (28).

Así, mientras sólo los conceptos operacionales permitirán el establecimiento de correlaciones estadísticas y la formación de leyes empíricas (uniformidades o regularidades observadas), sólo los constructos puros permitirán el establecimiento de sistemas teóricos aplicables a un vasto campo de fenómenos que necesitan explicación.

(23) “Hay una abstracción de conceptos de la experiencia, el descubrimiento de leyes expresadas en términos de los conceptos, la definición de los conceptos originales para alcanzar una mayor aproximación para una mayor exactitud en la definición de condiciones, la redefinición de conceptos en términos de leyes, la reinterpretación de conceptos originales en términos de los nuevos”. V. F. LENZEN, The Nature of Physical Theory (Nueva York: Wiley, 1931) pp. 274 y sig.


(26) Ibid., p. 237.

(27) Ibid., p. 169.

(28) MARGENAU, en una carta al autor, 18 de noviembre de 1959.
II. — LEYES EMPIRICAS Y TEORIA PURA

No es descubrimiento reciente que los conceptos usados en la generalización empírica son distintos de los usados en la teoría abstracta, ni se limita este conocimiento a los físicos exclusivamente. Muchos biólogos, economistas y, por supuesto, filósofos, han estado por mucho tiempo plenamente enterados de esto, aunque hayan disentido si esta diferencia es de género o solamente de grado.

¿Diferencia de grado o de género?

Es perfectamente comprensible que algunos autores sostengan que la diferencia, por amplia que sea, es solamente de grado, porque aun los conceptos empíricos "sacados de la experiencia" e incorporados en los datos observados y experimentados, presuponen procesos mentales que incluyen selección, abstracción, reconstrucción, combinación, reflexión, raciocinio y alguna idealización. En otras palabras, la "conceptualización" implica varios procesos mentales cuyo empleo tiende a alejar los objetos de la experiencia de todo lo que supuestamente ha sido observado. En la formación del constructo mental del concepto usado en teoría abstracta, se recurre en mayor grado a la idealización, la invención, la construcción, para alejarlo aún más del dominio de los "fenómenos" y "datos" y trasladarlo al de la "construcción" pura. Si no hubiera ningún límite sobre el camino de la experiencia concreta a la construcción abstracta, se podría rehusar ver más que una simple diferencia de grado entre los conceptos más "reales" y los más "ideales".

Si, en cambio, las diferencias en la formación de los conceptos se consideran conjuntamente con las diferencias en su uso, el contraste llega a ser, obviamente, de categoría. Las proposiciones que enlazan los conceptos empíricos en las generalizaciones inductivas son, sin lugar a dudas, a posteriori, dependen de la experiencia y están sujetas a verificación directa por la experiencia ulterior. Por otra parte, las proposiciones que ligan los constructos mentales en sistemas hipotético-deductivos, pertenecen a la naturaleza de convenciones heurísticas y son, en consecuen-
cia, a priori, a menos que las acompañe una explicación que indique la aplicación del sistema a los datos concretos de la experiencia (29).

Que un sistema teórico (a) cuyos conceptos y proposiciones pueden haber sido sugeridos por la experiencia, (b) cuyo propósito es servir como explicación de la experiencia y (c) cuya utilidad explicativa y de predicción es susceptible de verificación experimental, debiera, sin embargo, ser considerado "a priori", ha sido por mucho tiempo desconcertante, aun para los lógicos. Todavía "lógicamente... una proposición es a priori si debe ser presupuesta y no puede ser probada o rechazada dentro del sistema para el cual es a priori" (30). Las proposiciones teóricas y abstractas de la ciencia que son partes integrantes de un sistema teórico, tienen el carácter de postulados para los cuales no se busca ninguna prueba empírica directa; se verifica solamente el sistema en su conjunto por la correspondencia entre las consecuencias deducidas del sistema y los datos de experiencia para cuya explicación o previsión el sistema ha sido imaginado. Lo que distingue netamente estas proposiciones de las empíricas, que contienen conceptos empíricos (operativos), es el carácter a priori de las proposiciones teóricas formadas por constructos mentales (31).

Leyes "concretas" o "empíricas" versus leyes "abstractas" o "exactas"

Recurriendo de nuevo a la física en búsqueda de ejemplos, el filósofo Morris Cohen contrapone las "leyes concretas" sobre "objetos concretos" a las "leyes universales" o "abstractas" de las "ciencias desarrolladas" que se "refieren a las relaciones entre objetos o elementos posibles o ideales". Naturalmente, "podemos no estar interesados en estas relaciones ideales si no arro-


(30) COHEN, op. cit., p. 138.

CONCEPTOS OPERATIVOS Y CONSTRUCTOS MENTALES

jan luz... sobre el mundo real"; pero "no puede haber ninguna
duda que, cuanto más desarrollada está una ciencia, más se
formulan sus leyes en términos de elementos ideales o abstrac-
tos" (32). "Sacrificando deliberadamente la plenitud concreta de
descripciones ordinarias o 'experimentales' a la causa de la uni-
versalidad abstracta, la ciencia se expone a ser tachada de artifi-
cial". Pero "el orden conceptual que pretende alcanzar" es supe-
rior en valor heurístico al "llamado orden perceptivo de la expe-
riencia de sentido común"; de hecho, el "órgano más poderoso
descubierto hasta ahora, para la aprehensión y el dominio de la
naturaleza, es la descripción en términos de entidades ideales
tales como palancas perfectas, gases ideales, cuerpos perfecta-
mente contínuos, la velocidad de la luz en un inalcanzable vacío
perfecto, etc." (33).

Hay dificultades, obviamente, en aplicar las leyes abstractas
y los conceptos ideales a la realidad incontrolada puesto que,
de acuerdo con Cohen, "cada ley universal o abstracta afirma
lo que ocurriría si ciertas condiciones prevalecieran y todas las
demás permanecieron sin variar. La predicción es posible en la
medida en que la naturaleza efectivamente nos ofrezca casos
donde la acción de los cuerpos pueda ser explicada por un limi-
tado número de factores, y donde los efectos de las demás in-
fluencias o bien se compensen los unos a los otros o bien sean
tan pequeños que se pueda legítimamente despreciarlos o des-
conocerlos. Pero teóricamente es cierto que ningún fenómeno
real puede obedecer exclusivamente a una sola ley universal,
dado que, en general, cada fenómeno real es el punto de inter-
sección o aplicación conjunta de muchas leyes. No obstante, ca-
da ley verdadera se manifiesta realmente en todos sus fenóme-
nos, y esto es lo que nos capacita para analizar los fenómenos
y clasificarlos en orden significativo. Pero mientras las leyes abs-
tractas son siempre necesarias para la comprensión de los fenó-
menos, su grado de suficiencia varía en los diferentes campos"
(34).

(33) Ibid., pp. 104-105.
(34) Ibid., pp. 105-106.

231
Podríamos citar o mencionar a otros filósofos que presentan las mismas ideas en lenguaje levemente diferente, pero la formulación más interesante para los economistas es probablemente la de Carl Menger. Los "tipos" y las "relaciones típicas", elementos del proceso científico, presentan, como lo muestra Menger, diferentes grados de "exactitud" (35). La investigación empírico-realista, que trabaja con "tipos reales"—los cuales nunca pueden ser exactos— intenta formular "leyes empíricas", enunciar "regularidades"—no necesidades—en la sucesión y conjunción de los fenómenos" (36). El análisis teórico exacto, por otra parte, que opera con tipos ideales ("strenge Typen")—que no se dan en la realidad— intenta formular "leyes exactas" expresando las relaciones necesarias lógicamente entre los tipos exactos.

Los tipos reales, las "formas básicas de los fenómenos reales" son, por supuesto, también el resultado de la abstracción, dado que se prescinde de varios aspectos de los fenómenos observados (37). Pero la abstracción no alcanza a una idealización completa, y el tipo real permite de este modo "desviarse en mayor o menor grado de las peculiaridades". Por ejemplo, "el oro real, el oxígeno o hidrógeno reales, el agua real" no pueden ser sometidos a "leyes exactas"; para llegar a "leyes exactas" se deben construir "tipos exactos", tales como "oro absolutamente puro, oxígeno puro", etc., "sin preocuparse si éstos existen en la realidad como fenómenos separados ni si pueden ser producidos en su pureza como fenómenos independientes". Los tipos exactos, que "existen solamente en nuestra imaginación", son "prerrequisitos para la obtención de leyes exactas" (38).

Menger admite que los descubrimientos de la teoría pura "aparecen inadecuados e irreales, tanto en Economía como en


(36) Ibid., p. 36.

(37) Ibid., p. 67.

(38) Ibid., p. 41.
cualquier otra disciplina, pero esto debería ser patente ya que los resultados de teorías exactas... son verdaderos solamente bajo determinados presupuestos", generalmente bajo condiciones no satisfechas en el mundo real (39). No obstante, sin las "leyes exactas" de la teoría pura no podríamos esperar comprender la interdependencia y las relaciones complicadas que enlazan los fenómenos del mundo real.

Ejemplos de sinónimos y antónimos

La terminología ha cambiado con los años, en la filosofía de la ciencia no menos que en muchos otros campos de investigación y controversia. Las mismas ideas han sido expresadas en muy diferentes palabras (y a veces, las mismas palabras han sido usadas para expresar diferentes ideas). Quizás, para facilitar comparaciones entre las expresiones usadas en diferentes campos, con diferentes enfoques, por diferentes autores, puede ser útil presentar una tabulación de las "frases" equivalentes o análogas referidas a la dicotomía entre lo concreto empírico y lo abstracto-teórico. En gran parte de la literatura, estas palabras se usan para modificar el nombre de "leyes"; algunos autores, sin embargo, tienen preferencias especiales sobre el significado de "ley" y reservan este rótulo solamente para la una o la otra clase de proposición. Si ellos se hallan muy disgustados por tal confusión, pueden sustituir el término que consideren equivocado por su palabra favorita.

No se pretende que las frases recogidas en ambos lados de la tabla sean sinónimos o antónimos perfectos, sino solamente que reflejen la misma dicotomía en la formación de concepto y teoría (40).

---

(39) Ibid., p. 54.

(40) La dicotomía puesta de relieve por Herbert DINGLE, Science and Human Experience (Nueva York: Macmillan, 1932), entre "abstracciones de la observación" y "elaboraciones de hipótesis", (p. 51), no es equivalente a las dicotomías expuestas en la lista, pero debe ser considerada como una subdivisión de leyes teóricas.
## Leyes empíricas y leyes teóricas

<table>
<thead>
<tr>
<th>Leyes empíricas que implican conceptos operativos</th>
<th>Leyes teóricas que implican constructos mentales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leyes empíricas (1)</td>
<td>Leyes exactas (1)</td>
</tr>
<tr>
<td>Generalizaciones inductivas</td>
<td>Principios deductivos</td>
</tr>
<tr>
<td>Descubrimientos a posteriori (en teoría aplicada)</td>
<td>Postulados a priori (en teoría pura)</td>
</tr>
<tr>
<td>Proposiciones materiales, de experiencia</td>
<td>Proposiciones sistemáticas, formales</td>
</tr>
<tr>
<td>Generalizaciones a partir de la observación de hechos</td>
<td>Sistemas hipotético-deductivos</td>
</tr>
<tr>
<td>Enunciación de regularidades en los datos de observación (2)</td>
<td>Resolución de seguir estipulaciones analíticas (2)</td>
</tr>
<tr>
<td>Proposiciones genéricas (3)</td>
<td>Proposiciones universales (3)</td>
</tr>
<tr>
<td>Leyes concretas (4)</td>
<td>Leyes abstractas (4)</td>
</tr>
<tr>
<td>Leyes empíricas (4)</td>
<td>Leyes universales (4)</td>
</tr>
<tr>
<td>Leyes empíricas (5)</td>
<td>Leyes analíticas (5)</td>
</tr>
<tr>
<td>Leyes empíricas (6)</td>
<td>Leyes teóricas (6)</td>
</tr>
<tr>
<td>Proposiciones universales sintéticas (6)</td>
<td>Reglas de procedimiento científico (6)</td>
</tr>
<tr>
<td>Leyes estrictas (6)</td>
<td>Leyes rígidas (6)</td>
</tr>
<tr>
<td>Proposiciones de correlación (7)</td>
<td>Explicaciones teóricas (7)</td>
</tr>
<tr>
<td>Generalizaciones de bajo nivel (8)</td>
<td>Hipótesis de alto nivel (8)</td>
</tr>
<tr>
<td>Generalizaciones inductivas (9)</td>
<td>Leyes científicas (9)</td>
</tr>
</tbody>
</table>

CONCEPTOS OPERATIVOS Y CONSTRUCTOS MENTALES

III. — CONSTRUCTO Y MODELO

En las páginas precedentes se ha recurrido escasamente a la palabra "modelo". Dado que se emplea en la actualidad especialmente por los economistas, con mayor frecuencia que ningún otro término metodológico, tenemos que examinar el lugar que ocupa en el contexto de nuestro examen. Es menester aclarar, en forma especial, su relación con el "constructo", por un lado, y la "teoría" por el otro, —aunque se debe hacer notar desde ahora, que muchos la usan como sinónimo de constructo y otros, como sinónimo de teoría.

De hecho "modelo" es una palabra muy cómoda; se puede emplear como sustituto de una buena docena de otras palabras y su conveniente vaguedad permite a sus usuarios eludir el compromiso de atarse a cualquier idea precisa. En diferentes contextos, "modelo" ha sido usado en lugar de concepto, constructo mental, plan conceptual, esquema, tipo ideal, abstracción, idealización, ficción útil, construcción ficticia, representación esquemática, analogía, hipótesis de analogías, postulado, supuesto, sistema de supuestos fundamentales, sistema axiomático, hipótesis, teoría, ley, sistema de variables relacionadas, sistema de ecuaciones, y probablemente en lugar de otras expresiones. La existencia de palabras como "modelo" es una bendición, no solamente para pensadores y autores superficiales, sino también para los más reflexivos, cuando tienen una buena razón para postergar el compromiso con una idea precisa. Muchos autores, sin embargo, no intentan ser vagos; desean comunicar una idea más bien precisa cuando usan la palabra "modelo"; así puede ser útil bosquejar un significado más limitado que la coloquial entre "constructo" y "teoría", relacionada a ambos, pero sin ser sinónimo de uno ni de otra.

Esto no significa que es incorrecto usar "modelo" como sinónimo de "constructo" o de "teoría" —como ocurre a menudo— pero lo que sí es objetable es usarla como sinónimo de ambas. Schumpeter emplea modelo y teoría como términos equivalentes cuando afirma: "El conjunto o 'sistema' de nuestros conceptos y de las relaciones establecidas entre ellos, es lo que llamamos
una teoría o un modelo” (41). Otros han usado la palabra modelo para designar constructos particulares —tal como el hombre económico o el maximizador de beneficios. Pero como hace falta una palabra que connote más que un constructo y menos que una teoría completa, “modelo” se presta bien para tal caso.

Forma y composición de los modelos

Los modelos pueden tomar varias formas. Pueden ser gráficos o plásticos (“modelos inmóviles”), mecánicos, hidráulicos o electro-magnéticos (“modelos móviles”), verbales, geométricos, algebraicos (“modelos simbólicos”). Nos ocuparemos aquí solamente de los tres últimos. Pero en todas sus formas, la función del modelo es mostrar conexiones, relaciones, interdependencias. La única razón para la construcción de un modelo es demostrar cómo algunas cosas “son solidarias” o de qué “elementos” están compuestas o cómo “trabajan” o se “ajustan”.

Los elementos comprendidos en los modelos matemáticos o verbales destinados a demostrar sus interrelaciones, son constructos mentales (considerados como “variables” si se los muestra en relaciones funcionales con otras “magnitudes”). La relación lógica entre los constructos mentales y los modelos mentales es muy sencilla: los modelos están compuestos de constructos interrelacionados. Pero a fin de ser aplicable a situaciones concretas, ¿no debería elaborarse el modelo con conceptos operativos?

Para que una respuesta negativa no sorprenda a quienes entienden que la “aplicación” debe significar referencia a los datos empíricos y de ahí, a los conceptos operativos, es preciso repetir que la pregunta formulada se refiere a la clase de conceptos que componen los modelos. La respuesta es que los modelos teóricos no están compuestos de otra cosa que de constructos mentales, algunos de los cuales, sin embargo, pueden tener contrapartes operativas —y esto es todo lo que se necesita para asegurar la aplicabilidad del modelo. En numerosos modelos teóricos, algunos de los conceptos indispensables no pueden ser

CONCEPTOS OPERATIVOS Y CONSTRUCTOS MENTALES

operativos, y aun algunos de aquellos que lo pueden, son demasiado inexactos para usarse en un sistema lógicamente coherente (42).

Quizás una ilustración de la construcción de los modelos en Economía aclarará esta afirmación. Piénsese en el modelo de la industria competitiva, destinado a demostrar los efectos de los cambios en los costos o en la demanda sobre el precio y la producción. Los conceptos operativos que tenemos de la industria, empresa, costo, demanda, precio y producción, no son, obviamente, suficientes para este propósito. Por ejemplo, los conceptos del Servicio Estadístico de los EE. UU. sobre "Industria", los conceptos legales u organizativos de "firma", los conceptos contables de "costo", son conceptos operativos que no pueden substituir los conceptos idealizados del modelo; para "demanda" no hay ningún concepto operativo en absoluto; y no existe ninguna operación que nos permita en la práctica identificar únicamente el "precio" y la "producción" de un bien en todas sus variedades de calidades, formas, tamaños, colores, terminaciones, plazos de envío, términos de entrega, condiciones de crédito, etc. El "precio" y la "producción" en el modelo teórico son constructos mentales y las consecuencias deducidas del modelo son "exactas" en el sentido de que hacen abstracción de todas las complicaciones que circundan las observaciones del precio y la producción en los negocios reales. Los cambios "inexactos" (observados) de magnitudes realmente medidas (por operaciones estadísticas necesariamente inexactas) son solamente contrapar-

(42) Esta posición, que comparten muchos filósofos de la ciencia, ha sido expuesta con notable vigor por F. S. C. Northrop. Distingue dos principales clases de concepto: "conceptos por intuición", los cuales incluyen "conceptos por inspección", y "conceptos por postulación", que incluyen "conceptos por imaginación", "conceptos por intelección". y "conceptos lógicos por intuición". Afirm a que "Una operación en el sentido del término dado denotativamente es un concepto por intuición"; y concluye que "en una teoría científica debidamente construida y formulada deductivamente, cada concepto, formulado deductivamente, debe ser un concepto por postulación. Confusión extrema y falta de sentido penetran en el proceso científico cuando conceptos intuitivos se ponen en una misma proposición con conceptos postulativos... Cuando conceptos pertenecientes a dos diferentes mundos de proceso se tratan como si pertenecieran al mismo, la falta de sentido es el resultado". Filmer S. C. NORTHRUP, The Logic of the Sciences and the Humanities (Nueva York: Macmillan, 1947) pp. 128-129.
tes insatisfactorias de las consecuencias "exactas" deducidas (imaginadas) y la correlación entre ambos no puede ser sino aproximativa.

Suministrarremos más adelante ilustraciones adicionales de las discrepancias entre los constructos abstractos empleados en los modelos económicos y las contrapartes operativas alcanza-
bles para los investigadores empíricos. Pero ante todo debemos proseguir con nuestro examen de la relación entre constructo, modelo y teoría.

El modelo y la teoría

Hemos definido el modelo como un sistema de constructos interrelacionados; y hemos indicado que la teoría puede ser más que el modelo. Una teoría puede ser considerada como un mode-
lo, al que se ha agregado la especificación de las observaciones empíricas a las cuales se aplica (43). La misma distinción se ex-
presa algunas veces por los términos teoría “pura” y “aplicada” (que se usan, sin embargo, también con otros significados). “Modelo” puede significar “teoría pura”, elaborada solamente con constructos mentales; cuando se especifican los datos empí-
ricos para los cuales se entiende que el modelo es aplicable, se puede hablar de teoría aplicada.

Esto no significa que una teoría puede reemplazar con con-
ceptos empíricos (operativos), los constructos puros del modelo o modelos que la componen. Pero significa que para algunos de los constructos, habrá que sugerir contrapartes empíricas, prin-
cipalmente para aquellas variables cuyos cambios se interpre-
tan como supuestas “causas” y como “efectos” deducidos, de los eventos simulados por el modelo (44). Repitamos pues que

---


la teoría aplicada o aplicable consiste de dos partes: 1) Un modelo puro, y 2) una especificación de los hechos empíricos (descriptos, ordinariamente, en términos de tipos reales o conceptos operativos) cuyos cambios este modelo explicará o predirá.

Desafortunadamente, esta explicación es todavía demasiado simple, porque las tareas explicativas y predictivas de la teoría aplicada no pueden, por regla general, emprenderse con un modelo solo. Usualmente se necesitará una combinación de modelos (más las especificaciones de aplicaciones empíricas) si es menester analizar los problemas que surgen en situaciones y desarrollos complejos. Así, generalmente, la teoría aplicada requiere varios modelos —y algunos de ellos pueden aun pertenecer a disciplinas diferentes, como la ciencia política o la sociología, puesto que los modelos puramente económicos pueden dejar al analista desamparado y necesitar la ayuda de modelos apropiados tomados a otros campos de investigación. De este modo, mientras el modelo es una combinación de constructos, la teoría aplicada puede constituir una combinación de modelos. Esto debe reconocerse explícitamente.

Agregaremos unas pocas palabras con respecto a los modelos econométricos. Estos se aplican a datos empíricos del pasado —a fin de obtener la llamada estructura del modelo por medio de estimaciones estadísticas de los valores numéricos de las variables y parámetros— y se usan después para predicción de algunos datos empíricos del futuro. El hecho que los valores numéricos de las variables y parámetros sean derivados por medio de operaciones estadísticas, podría hacernos pensar que los términos de las ecuaciones no son constructos puros, sino conceptos operativos. Esto sería un error, como puede juzgarse por el hecho que el económetro, en la búsqueda de sus estimaciones, a menudo examina varias operaciones alternativas, y selecciona las que le parecen las mejores aproximaciones a las variables incluidas en el modelo. En otras palabras, sabe que no puede obtener exactamente lo que necesita; los constructos del modelo para los cuales existen contrapartes operativas, usualmente tienen diversas contrapartes, cada una con alguna deficiencia, divergente del constructo exacto (ideal) del cual no constituyen sino pobres analogías. En consecuencia, debería ser claro que
el modelo econométrico, antes que se hayan estimado los valores numéricos, está constituido por constructos puros, a pesar de que su creador trate firmemente de recurrir únicamente a elementos para los cuales pueda esperar encontrar contrapartes estadísticamente operativas. Más aun, puesto que lo aplica inmediatamente a datos de la observación, su modelo presenta siempre una naturaleza teórica: especifica los conceptos empíricos (operativos) cuyas magnitudes espera poder "explicar".

Otros ejemplos de contrapartes operativas

Puede ser útil brindar algunos ejemplos que ilustren con mayor exactitud la diferencia entre puros constructos y conceptos operativos, en Economía. Consideremos con más detención el modelo del "mercado competitivo", al que nos hemos referido ya. Como cualquier modelo cuantitativo, comprende dos clases de constructos: variables y relaciones funcionales entre variables. El modelo más simple de mercado contiene solamente dos variables —precio y cantidad— y dos relaciones funcionales que las enlazan —oferta y demanda—. La "simplicidad" se debe a los supuestos implícitos o explícitos de ceteris paribus o mutatis mutandis; es decir, se supone que las cosas, no incluidas en el modelo, que pueden tener influencia sobre las cantidades ofrecidas o demandadas, permanecen invariables o cambian como deben hacerlo en conexión lógica con las variables oficialmente admitidas. (Por ejemplo, el monto de dinero o ingreso que queda a los compradores después de hacer una compra, no puede suponerse invariable, si la función de la demanda no es de elasticidad unitaria). La referencia a "otras cosas" susceptibles de ejercer una influencia, implica en efecto admitir que estas cosas forman parte del modelo, aunque jueguen un papel mudo y no figuren en el reparto. Sería preferible, desde varios puntos de vista, enumerar todas las variables posiblemente pertinentes y estipular los roles mudos que han de jugar en el modelo —tal como permanecer invariables. (Estipulaciones respecto de ingresos reales, activo líquido, reservas de liquidez, por ejemplo, serían útiles en muchos modelos de mercado).
CADA ESTUDIANTE QUE SE INICIA EN ECONOMÍA ES (O DEBERÍA SER) PREVENIDO REPETIDAMENTE DE LA NATURALEZA HIPOTÉTICA DE LAS RELACIONES FUNCIONALES ENTRE LAS VARIABLES. NO HAY NINGUNA Función de oferta o de demanda “observable”, como no sean meramente los símbolos escritos por el profesor en el encerrado para que los observen los estudiantes. Todos los valores de las funciones son imaginados; la función de oferta asigna cantidades hipotéticas ofrecidas en el mercado, a hipotéticos precios pagados, y la función de demanda atribuye cantidades hipotéticas demandadas a estos precios; pero ya que los precios y cantidades son solamente hipotéticos, no pueden ser observados por nadie. (Puede decirse para el sosiego de los lectores que se ven confortados por la idea de la “operatividad concebible” que, con mucha fantasía, se puede proyectar un gran “experimento”, con controles hercúlicos de todos los factores pertinentes, para averiguar todos los valores de las funciones. Pero se debe agregar con toda honestidad que las “operaciones” requeridas para establecer las funciones como observaciones empíricas no sean posibles en la práctica). Las llamadas curvas estadísticas de oferta y demanda, no han sido realmente “observadas”; son el resultado de cómputos altamente imaginativos, con datos registrados en diferentes momentos, bajo condiciones diferentes y elaborados sobre la base de supuestos no verificables, los cuales se extienden desde lo “plausible” hasta lo “contrario a la realidad”.

Pero no solamente las relaciones entre variables en el modelo son construcciones de nuestras mentes; las mismas variables son constructos puros, aun cuando puedan encontrarse para ellas varias contrapartes operativas perfectamente aceptables. Pensemos en una empresa excepcional, que fabrica únicamente un producto homogéneo: cartón, solamente de primera calidad, pero de diferente espesor, por ejemplo; la empresa mide su producción por peso. Los compradores del cartón lousan parafines en que solamente la superficie es significativa. Quizás un mayorista lo compre por toneladas y lo venda por metro cuadrado. La cantidad registrada de cartón vendido y comprado puede, al mismo tiempo, aumentar en términos de toneladas y disminuir en términos de metros cuadrados. Nuestras investigaciones estadísticas nos darían, así, dos cantidades diferentes. Si se piensa aho-
ra en las combinaciones posibles entre diferentes tamaños, diferentes formas, diferentes cualidades y diferentes productos hechos por una misma empresa, es fácil comprender que la "cantidad producida" o "cantidad vendida" dentro de un período dado, puede ser medida por una variedad de operaciones; así se debe elegir entre distintos conceptos operativos de producción, ninguno de los cuales, tal vez, sea precisamente el que se ajusta plenamente al constructo del modelo.

Mucho más complicado es el caso de la otra variable, el precio. ¿En qué consisten las operaciones usuales que nos suministran datos de los precios para la investigación de problemas económicos o econométricos? Podemos compilar cotizaciones diarias de los periódicos, o cotizaciones semanales o mensuales de las revistas comerciales; podemos enviar cuestionarios a algunos o todos los productores, a algunos o todos los usuarios; podemos usar los cambios en los costos de fábrica i. o. b. y precios de entrega (o por cambios en la "interpenetración" de mercados distantes por productores distantes, que pueden alterar en direcciones opuestas los precios pagados y los precios netos recibidos); podemos manipular los datos a fin de dar cuenta de algunos cambios en la composición de la producción o podemos optar por descuidar otros cambios si no estamos en condiciones de imaginar un "buen" método para ajustar los datos primarios; es posible que lleguemos a conocer los descuentos secretos y los tomemos en cuenta; pero también podemos ignorar tales prácticas. El investigador diligente puede elaborar docenas de series de precios diferentes para el mismo bien; y no podrá menos de comprender que todas ellas contienen tantas "impurezas" que ninguna puede considerarse un análogo satisfactorio del constructo puro.

Nuestras dificultades operativas no se refieren solamente a los bienes manufacturados o a los servicios personales, donde el supuesto de homogeneidad está tan lejos de verificarse. Tómese un bien relativamente homogéneo: el cambio extranjero en la forma de fondos bancarios, pagaderos a pedido por orden telegráfica. El investigador que busca datos —para los tipos diarios (ofrecidos y demandados) en los centros financieros importan-
CONCEPTOS OPERATIVOS Y CONSTRUCTOS MENTALES

tes— hallará su tarea agravada por dificultades de elección. Puede primeramente dirigirse a uno de los diarios más serios, The New York Times, y copiar los informes diarios de los mercados de cambio. Si entonces compara sus datos (digamos, para 1947 a 1957) con los datos análogos del Zürcher Zeitung o del Journal de Genève, descubrirá diferencias. Antes de que se desilusione demasiado, alguien puede explicarle que el diario americano ha tropezado con inhibiciones (morales) para informar sobre tipos ilegales bajo las leyes de las naciones amigas, y se ha limitado a los informes de transacciones legales y autorizadas por las autoridades en todos los países sobre los que informa —lo que, bajo las restricciones de cambio, puede ser sólo una pequeña parte de las transacciones reales. A fin de obtener información completa sobre los tipos practicados en las transacciones ilegales de moneda extranjera, el investigador tendrá que recurrir al Pick’s Currency Reports, publicado en Nueva York por un experto que recibe informes dignos de confianza, de comerciantes del mundo entero. Ahora, ¿cuáles de estas cifras son los tipos del cambio extranjero que debe explicar o aun pronosticar nuestra teoría? La elección entre estos diferentes conceptos operativos de tipos de cambio, puede depender de la clase de problema que se pretenda resolver. Pero, ciertamente, uno no puede decir que existe un concepto operativo inequívoco del precio del cambio extranjero, que corresponda al constructo puro usado en nuestro modelo abstracto de dicho cambio.

Veamos otra ilustración, también de las finanzas internacionales. Cuando la balanza comercial de los EE. UU. pasó de muy positiva a muy negativa en los años 1957 a 1959, mientras los movimientos de capital a largo plazo y la ayuda financiera no habían cambiado apreciablemente, la teoría aceptada sugería que los precios en los EE. UU. debían haber aumentado con relación a los precios de otras naciones industriales. Las estadísticas de precios, sin embargo, no confirmaron esta inferencia. Pero ¿qué miden realmente estos conceptos operativos de precios? ¿Permiten comparar precios de cualidades comparables, de productos comparables, con términos de entrega comparables? La reconstrucción y crecimiento de la industria europea probablemente trajeron consigo drásticos mejoramientos en la calidad de
las máquinas industriales y en los plazos de entrega. Suponga-
mos que a principios de 1950 una máquina, o máquina herra-
mienta, se ofrecía a precios similares en Inglaterra y en Améri-
ca, pero que los plazos de entrega eran 24 meses en Inglaterra y
solamente 6 meses en América; supongamos que a fines de 1950
los precios en ambos países eran 10 % más altos, pero los pro-
ductores ingleses podían entregarla inmediatamente. Esto expi-
licaría fácilmente una desviación de la demanda de productos
americanos hacia los ingleses, aunque los precios relativos re-
gistrados no hayan cambiado. En otras palabras, la operación por
la cual los estadísticos establecen los precios y el cambio de pre-
cios, no puede captar los cambios significativos en las cosas que
se pagan; y como una cuantificación de estos cambios no pa-
rece practicable, no podemos esperar inventar operaciones más
afinadas que puedan dar conceptos operativos, los cuales co-
respondieren mejor a los constructos puros usados en el modelo.

Estos ejemplos pueden haber llamado la atención sobre un
aspecto metodológico a menudo descuidado por los economis-
tas inclinados al positivismo, que se quejan de la escasez de ve-
rificaciones de la teoría. En realidad la dificultad de verificación
se debe menos a la pureza "excesiva" de los constructos y mo-
delos abstractos, que en las graves impurezas de los conceptos
operativos de que disponemos. No se puede acordar mucho pe-
so a las verificaciones empíricas que emplean conceptos opera-
tivos inadecuados, y se comprende que las teorías así probadas
sobrevivan a sus "experiencias" aparentemente contradictorias.

Definición de "constructo"

Pocos son los autores que han intentado definir el "construc-
to", y los que lo han hecho, parecen haber tenido propósitos li-
mitados; así han llegado a definiciones estrechas. Trataré de dar
una definición que pueda convenir a las ciencias formales tan-
to como a las ciencias empíricas, a las ciencias naturales tanto
como a las ciencias sociales. Someto esta definición como base
de discusión, en la esperanza de que atraerá en adelante suges-
tencias para mejorarla.

Un constructo mental es un concepto formado para propó-
sitos de razonamiento analítico, que no puede ser definido o cir-
cunscripto adecuadamente en términos de fenómenos observables o en términos de operaciones con datos registrados derivados de la observación. Es el resultado de una construcción mental, sea (1) sin referencia a datos empíricos, como en el caso de los constructos de matemática pura, o (2) con alguna referencia indirecta a los hechos de la experiencia, pero derivados por medio de la idealización, abstracción herólica o invención, como en el caso de los constructos de las ciencias empíricas. Estos pueden ser divididos en: (a) constructos usados como lazos explicativos entre fenómenos observables, donde la cuestión de la existencia de una "contraparte" directa en el mundo real, es problemática, como en el caso de la llamada "partícula" nuclear; (b) constructos usados para propósitos de razonamiento hipotético, donde la existencia de una "contraparte" en el mundo real se considera como altamente improbable, si no imposible, como en el caso de la "perfección" imaginaria, tal como los conceptos físicos de gas perfecto, de balanza totalmente rígida, de oscuridad absoluta, o los conceptos económicos del hombre económico, previsión perfecta, competencia perfecta, y (c) constructos que, aunque tienen "contrapartes" directas en el mundo real, para fines de razonamiento deben estar librados de características, desviaciones o asociaciones inciertas que adhieren comúnmente a los conceptos empíricos, y empañan y vician las conexiones analíticas (implicativas) con otros constructos del sistema teórico. Los constructos de las ciencias sociales participan a menudo de la naturaleza de los "tipos ideales" formados con una fuerte dosis de ingredientes de experiencia interior y "comprensión" de los significados subjetivos.

La referencia empírica de los tipos ideales y otros constructos

Antes de examinar la clase especial de referencia empírica que es inherente a los tipos ideales empleados en las ciencias sociales —la referencia a la experiencia interior— debemos detenernos sobre la clase general de referencia empírica que se incluye en la formación de, virtualmente, todos los constructos mentales. Esto parece aconsejable, porque algunos autores han dado gran importancia a la aparente diferencia entre los conceptos "construídos arbitrariamente" y los conceptos "derivados
de la experiencia”. Esta distinción es engañosa, dado que la experiencia afecta necesariamente la construcción de cualquier clase de concepto y que existe una dosis de arbitrariedad en la formación de cualquier concepto, por muy realista que sea (45).

Señalamos el papel de la experiencia en la formación de los constructos mentales considerando la física y la Economía: Uno de los constructos relativamente nuevos de la física es el “neutrino”, concebido cuando los datos experimentales dejaron de concordar con las consecuencias deducidas del sistema teórico aceptado (incluyendo la ley postulada de la conservación de la energía). La inclusión de un nuevo constructo en el sistema pareció ser el medio más eficaz para que el sistema pueda arrojar consecuencias deducidas que concordaran con la experiencia. Se llamó al nuevo constructo —el neutrino— “partícula” por analogía con las experiencias de otras cosas. Fue designado para dar (conjointamente con todas las otras variables y relaciones construidas por el sistema) los resultados que correspondieran a los resultados experimentales; sin embargo, no fue un objeto de observación ni de otra clase de experiencia directa. En otras palabras, la referencia a los fenómenos observados es solamente indirecta.

Consideremos ahora un constructo relativamente nuevo de la Economía, el de la “ilusión monetaria”. Probablemente, se comenzó a usar este constructo en el momento en que las observaciones de los precios al consumidor (que aumentaban) y las cantidades (invariables) de mano de obra disponible, parecían

CONCEPTOS OPERATIVOS Y CONSTRUCTOS MENTALES

contradecir las deducciones de un modelo que incluyera la oferta de trabajo como una función creciente de las tasas de salarios reales. La inclusión de un constructo nuevo parecía el mejor expediente para eliminar del modelo el efecto que tendría la reducción de las tasas de salarios reales (implicita en el aumento de los precios al consumidor) sobre la cantidad de trabajo ofrecida, y ajustar mejor las consecuencias deducidas de un aumento en la demanda efectiva a las observaciones supuesta- mento reales (o esperadas). El nuevo constructo —la ilusión monetaria— dado que tenía que compensar los efectos del otro constructo "racionalidad perfecta", fue llamado una "ilusión" por analogía con un tipo de experiencia interior compartida por muchos (quienes, aunque normalmente son razonables del todo, a veces dejan de darse cuenta de ciertas realidades). Las consecuencia deducidas del sistema ampliado prometían, con la ayuda del constructo nuevo, corresponder a lo que según se pensaba, era el resultado de los hechos observados; pero el constructo no tiene referencia directa a los fenómenos observables y nadie podría razonablemente pretender gozar de una experiencia directa de las ilusiones sufridas por otros. La referencia a los fenómenos observados es completamente indirecta.

En muchos aspectos, la referencia empírica de los constructos es la misma para las ciencias naturales que para las sociales: (1) La correspondencia inadecuada entre la deducción de un modelo aceptado y las observaciones empíricas constituye el punto de partida para la búsqueda de nuevos constructos. (2) La inclusión de los nuevos constructos en el modelo tiene por fin lograr una correspondencia más ajustada entre deducciones y observaciones. (3) En la invención y el diseño de los nuevos constructos, desempeña un papel importante el razonamiento por analogía basado sobre varias clases de experiencia, aunque no necesariamente referidas al problema de que se trate. (4) El modelo modificado se somete a prueba confrontando las deducciones modificadas con las observaciones. Hay, sin embargo, una diferencia significativa en el punto (3), debido al tipo muy especial de experiencia que afecta la invención y diseño de constructos nuevos en las ciencias sociales: cada constructo debe pasar la prueba de la comprensión por la proyección de la per-
sonalidad o de la introspección imaginada, es decir, debe satisfacer los postulados de "interpretación subjetiva" y de compatibilidad con los constructos de la experiencia de sentido común" (46).

Esto no significa que estos tipos ideales sean "realistas". No lo son, pues la selección de los supuestamente relevantes rasgos, motivos, actitudes, o modos de pensar que están idealizados en el constructo, implica la exclusión de muchos otros rasgos, motivos, actitudes o modos de pensar que se sabe que tenemos en la vida diaria y que suponemos que otros igualmente tienen; y esta aislación no natural de un elemento, de todos los demás, hace al constructo evidentemente irrealista. Pero la experiencia humana está, indudablemente, escondida detrás de la creación del constructo, y éste, por muy "libre de influencia humana" que sea en su limitación artificial dictada por el propósito del modelo, debe ser concebido de tal modo que un acto ejecutado "de la manera indicada por el constructo típico sea inteligible" (47) por la gente que posee experiencia de la clase considerada. (Quizá se necesite agregar que un acto puede ser "inteligible" para mí, aún si yo mismo no estoy dispuesto a obrar del mismo modo en semejantes circunstancias).

Experiencia, realismo, pertinencia y verdad

La circunstancia que los constructos (tipos ideales) de las ciencias sociales estén derivados de la experiencia y sean coherentes con los constructos de la experiencia de sentido común, no los hace "empíricos". Ni los hace "realistas" a ellos ni a los modelos para los cuales se usan; ni los hace "pertinentes"; ni vuelve "verdaderas" las teorías en que fueron usados. Unas pocas palabras sobre la confusión tan común entre experiencia, realismo, pertinencia, y verdad pueden servir de adecuada conclusión a este ensayo.

El origen de la derivación de un concepto no tiene nada que ver con su naturaleza lógica. Puede ser "derivado" de, o "inspirado" por la experiencia y no obtante, constituir un "cons-

(47) SCHUETZ, loc. cit., p. 34.
tructo puro" ("tipo ideal"). Es empírico solo en la medida en que engloba el resultado de la observación (incluyendo la experimentación), usualmente en la forma de registros de lecturas de instrumentos, y/o testimonios y otras comunicaciones. Que los informes en las ciencias sociales se remontan siempre a alguna interpretación personal de significados subjetivos —tal como "costos", "precios", "depreciación", "beneficios", "compra", "préstamo", "donación", "hurto", "matrimonio", "hijo legítimo"— es característico de las ciencias de la sociedad (48). (Esta interpretación subjetiva es inherente en los constructos abstractos tanto como en los conceptos empíricos de las ciencias sociales). Cuantas más manipulaciones (computaciones, correcciones, ajustes) se hacen con los datos brutos contenidos en el informe, cuanto más afinadas son las decisiones tomadas sobre la base de la teoría preconcebida y del discernimiento inteligente, tanto más alejadas de los resultados directos de la observación y menos empíricas serán las cifras resultantes.

La confusión entre realismo y pertinencia puede ser aclarada mejor, subrayando que usualmente son términos opuestos. Trazar un cuadro en todos los detalles "realistas" significa incluir todo lo que captá la vista, no obstante su incongruencia eventual para un determinado propósito; construir un modelo solamente con los rasgos "pertinentes" significa dejar fuera las apariencias realistas. Si Juanito quiere saber el aspecto de una locomotora de vapor, le mostraremos una fotografía en la que verá todo lo que está en la superficie. Si quiere saber su funcionamiento le enseñaremos un modelo que incluya muy poco de la fotografía, pero en su lugar habrá unas cosas invisibles en ella: el esquema de un cilindro, un pistón, una válvula, etc. El modelo explicativo no debe ser realista; debe mostrar lo que se considere que son las variables pertinentes y sus relaciones.

(48) Los "hechos" de las ciencias sociales no pueden ser "observados" con los cinco sentidos. Si se observa a A llevando un objeto del almacén de B, los observadores no pueden saber si él lo ha comprado, lo pidió prestado, lo robó, o lo recibió en obsequio. Quizás A y B no están de acuerdo, uno considerando la transacción como un regalo y el otro como un robo. Son esenciales los significados subjetivos de los actores y las interpretaciones de los observadores y de los analistas de las observaciones.
La lógica formal nos enseña que una proposición es "verdadera" o "falsa". Una teoría científica, quizás, puede ser verdadera o falsa, pero el científico reservará su juicio. El puede estar firmemente convencido que su teoría es "verdadera" pero estará atento al hecho de que miles de teorías, alguna vez sostenidas como certeras, han tenido que ser rechazadas, modificadas o reformuladas; de aquí que todo lo que dirá es que su teoría es la mejor que se haya elaborado y que "todavía" no ha sido rechazada.

Este problema de la puesta en tela de juicio, se vincula, por supuesto, con la experiencia y con la pertinencia. De hecho, es por medio de las pruebas empíricas, a través de la confrontación de las consecuencias deducidas de la teoría con los datos empíricos reconocidos como sus contrapartes adecuadas, que la teoría puede finalmente ser rechazada, en favor de otra mejor. Y esto ocurrirá si el modelo incluido en la teoría no contiene las variables pertinentes, o no todas ellas, para el problema que se trata. Así hay, después de todo, una conexión entre la experiencia, la pertinencia y la verdad; pero ello no significa, ciertamente, que los conceptos relevantes de una buena teoría deban ser "empíricos".

Universidad de Princeton, EE. UU. 

Fritz Machlup