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DRAZIN INVERSE OF SINGULAR ADJACENCY MATRICES OF
DIRECTED WEIGHTED CYCLES

ANDRÉS M. ENCINAS, DANIEL A. JAUME, CRISTIAN PANELO,
AND ADRIÁN PASTINE

Abstract. We present a necessary and sufficient condition for the singularity
of circulant matrices associated with directed weighted cycles. This condition
is simple and independent of the order of matrices from a complexity point
of view. We give explicit and simple formulas for the Drazin inverse of these
circulant matrices. We also provide a Bjerhammar-type condition for the
Drazin inverse.

1. Introduction and preliminaries

Circulant matrices appear in many applications, for example to approximate
the finite difference of elliptic equations with periodic boundary (see [8]) and to
approximate periodic functions with splines (see [9]); they also play an important
role in coding theory and in statistics. The standard references are [10] and [13].

Direct computation methods for the inverse of some circulant matrices have
been proposed in many works: see for example [22], [26], [12], [23], [27], [16], [7],
and [19] (we order the papers chronologically). Singular circulant matrices have
received less attention: see [3] and [25].

Graphs whose adjacency matrix is circulant, specially those with integral spec-
trum, have been studied in several articles: see for example [24], [2], [14], [18], and
[21].

In [15] a combinatorial description of the Drazin inverse of the adjacency matrix
of a tree is exhibited. In the present work we study the Drazin inverse of the
singular adjacency matrix of directed weighted cycles, as a first step in order to
give a combinatorial description of the Drazin inverse of other graphs. The standard
reference for generalized inverses is [4]. For all linear algebra-theoretic notions not
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defined here, the reader is referred to [17]; for all graph-theoretic notions not defined
here, the reader is referred to [11].

This work is organized as follows. In Section 2 we give a Bjerhammar-type
condition for the Drazin inverse. In the setting of Moore–Penrose theory, Bjerham-
mar, in [5], was the first to notice that if you have additional information about
the fundamental spaces of the matrix and its candidate to generalized inverse you
do not need to check all the Moore–Penrose conditions. In Section 3 we give some
basic properties of circulant matrices. In Section 4 we characterize which circulant
matrices associated to directed cycles are singular. In Sections 5, 6, and 7 we give
the Drazin inverse of singular circulant matrices associated with cycles.

Throughout the paper, given a ∈ C we denote by a# the number

a# =
{
a−1, if a 6= 0;

0, if a = 0.
Let A = (aij) be a matrix of order n. All the matrices in this work have real

or complex coefficients. We associate with A a digraph D(A) with n vertices. The
vertices of D(A) are denoted by 0, 1, 2, . . . , n − 1. There is an edge from vertex i
to vertex j of weight aij for each i, j = 0, 1, 2, . . . , n − 1. A linear subdigraph of
D(A) is a spanning subdigraph of D(A) in which each vertex has indegree 1 and
outdegree 1. We associate to A a second digraph D∗(A) = D(AT ), where AT is
the transpose of A. This digraph is called the Coates digraph of the matrix A.

Theorem 1.1 ([6, Definition 4.1.1 and Theorem 4.2.11]). Let A = (aij) be a square
matrix of order n. Then

det(A) =
∑

L∈L(D∗(A))

(−1)n−c(L)w(L),

where L (D∗(A)) is the set of all linear subdigraphs of the Coates digraph of A, c (L)
is the number of cycles contained in L, and w (L) is the product of the weights of
the edges of L.

2. Bjerhammar-type condition for the Drazin inverse

Given a matrix A the column space of A is denoted by R(A) and its dimension
by rank(A). The null space of A is denoted by N (A) and its dimension, called
nullity, by null(A).

Definition 2.1 ([4]). The index of a square matrix A, denoted by Ind(A), is the
smallest nonnegative integer k for which R(Ak) = R(Ak+1).

A matrix is nonsingular if and only if it has index 0.

Definition 2.2 ([4]). Let A be a matrix of index k. The Drazin inverse of A,
denoted by AD, is the unique matrix such that

(1) AAD = ADA,
(2) Ak+1AD = Ak,
(3) ADAAD = AD.
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Note that the Drazin inverse of a matrix of index 1 equals its group inverse (that
is denoted, for a matrix A, by A#); see [4].

We prove a Bjerhammar-type condition for the Drazin inverse (see [4]). We do
this because, for some combinatorial problems, Condition 3 in Definition 2.2 is more
difficult to verify (directly) than Conditions 1 and 2. Theorem 2.4 is a generalization
of Theorem 8.3 in [15] and it is usually more suitable for combinatorial problems.

Lemma 2.3. Let A and D be square matrices of order n, with Ind(A) = k, such
that N (Ak) = N (D) and AD = DA. Then R(Ak) = R(D).

Proof. Since N (Ak) = N (D), we have that rank(Ak) = rank(D). If we prove that
R(D) ⊂ R(Ak), then R(D) = R(Ak).

The key observation is that R(D) = R(DAk). Which, together with the fact
that AD = DA implies AkD = DAk, gives us R(D) = R(AkD) ⊂ R(Ak).

In order to prove that R(D) = R(DAk), note that

R(D) = D(R(Ak)⊕N (Ak))
= D(R(Ak))
= R(DAk). �

Theorem 2.4. Let A and D be square matrices of order n, with Ind(A) = k, such
that N (Ak) = N (D) and AD = DA. Then Ak+1D = Ak if and only if D2A = D.

Proof. Let A and B be two square matrices of order n. We use the fact that
A = B if and only if A~x = B~x for every vector ~x ∈ Cn. It is well known that
Cn = R(Ak) ⊕ N (Ak), where k is the index of A (see [17]). Therefore, we can
check that A~x = B~x for every vector ~x ∈ Cn by checking that A~z = B~z for all
~z ∈ R(Ak) and A~x = B~x for all ~x ∈ N (Ak).

Assume Ak+1D = Ak. Let ~x ∈ N (Ak). Hence, ~x ∈ N (D). Therefore D2A~x =
AD2~x = ~0 = D~x. Let ~z ∈ R(Ak). Then there exists a vector ~y such that ~z = Ak~y.
Therefore D~z = DAk~y = D2Ak+1~y = D2AAk~y = D2A~z.

Assume now D2A = D. Let ~x ∈ N (Ak). Then Ak+1D~x = DAk+1~x = ~0 = Ak~x.
Let ~z ∈ R(Ak). Then by Lemma 2.3 ~z ∈ R(D). Thus, there exists a vector ~y such
that ~z = D~y. Hence, Ak~z = AkD~y = AkD2A~y = Ak+1D2~y = Ak+1D~z. �

3. Some properties of circulant matrices

Definition 3.1. An n×n matrix A = (aij) is a circulant matrix if it has the form
aij = αj−i for some α0, α1, . . . , αn−1, where the subscript j − i is taken modulo n.
We denote

A = Circ(α0, α1, . . . , αn−1) =


α0 α1 · · · αn−1
αn−1 α0 · · · αn−2

...
... . . . ...

α1 α2 · · · α0

 .
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Note that Circ(α0, α1, . . . , αn−1)T = Circ(α0, αn−1, . . . , α1). Many properties
about circulant matrices are well known. For instance, if we consider

A = Circ(α0, α1, . . . , αn−1),

then A can be expressed in the form

C =
n−1∑
k=0

αkP
k,

where P is the cyclic permutation matrix of order n; that is,

P k =
(
On−k,k In−k

Ik Ok,n−k

)
,

where k ∈ {1, . . . , n− 1}, In is the identity matrix of order n, P 0 = In, and Om,n

is an m× n zero-matrix (see [10]).
In addition, circulant matrices of order n form an n-dimensional vector space and

also a commutative algebra, since for any two given circulant matrices its product
is also a circulant matrix, and moreover any two circulant matrices commute with
each other. Therefore, any circulant matrix is normal, which implies that it has
index 1, and therefore any circulant matrix has group inverse that coincides with
its Moore–Penrose inverse. Although not every generalized inverse of a circulant
matrix must be circulant itself, this property holds for the group inverse.

One of the main problems in the field of circulant matrices is to determine
the Drazin (group) inverse of a circulant matrix, and moreover to know when the
matrix is in fact invertible.

This problem has been widely studied in the literature by using the primitive
n-th root of unity and some polynomial associated with it (see [13] and [23]).
Specifically, let ω = e

2π
n i be the primitive n-th root of unity. In addition, define

for each j = 0, . . . , n − 1, the vector ~tj =
(
1, ωj , . . . , ωj(n−1))T ∈ Rn and for

any ~a = (α0, . . . , αn−1)T ∈ Rn the polynomial P~a(x) =
n−1∑
j=0

αjx
j . Observe that

~t0 = (1, . . . , 1)T . The following lemma provides a necessary and sufficient condition
for the invertibility of Circ(α0, . . . , αn−1) and gives a formula for its group inverse
(see [10]).

Lemma 3.2. For any (α0, . . . , αn−1)T ∈ Rn, the following properties hold:
(i) Circ(α0, . . . , αn−1)~tj = P~a(ωj)~tj, for any j = 0, . . . , n − 1. In particu-

lar, det Circ(α0, . . . , αn−1) =
n−1∏
k=0

P~a(ωk) and hence, Circ(α0, . . . , αn−1) is

invertible if and only if P~a(ωj) 6= 0, j = 0, . . . , n− 1.
(ii) Circ(α0, . . . , αn−1)# = Circ(β0, . . . , βn−1), where, for j = 0, . . . , n− 1,

βj = 1
n

n−1∑
k=0

ω−kjP~a(ωk)#.
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On one hand, let us notice that property (i) of the previous lemma implies that all
circulant matrices of order n have the same eigenvectors but different eigenvalues.
On the other hand, part (ii) in the above lemma establishes that the problem
of finding the Drazin (group) inverse of a circulant matrix is completely solved.
However, the computational complexity of formula (ii) for the determination of its
group inverse grows with the order of the matrix, so it is not useful at all from the
computational point of view. So, it is interesting to look for alternative expressions
for the group inverse of specific classes of circulant matrices. Over the years, many
papers have considered this topic specially for circulant matrices with few nonzero
entries. In many of these cases, the special structure of the matrix is highly used
and leads to the employment of alternative methods, for example solving linear
difference equations (see for instance [7], [20], and [22]). The aim of this work is
to provide formulas for the Drazin (group) inverse of a circulant matrix associated
with directed weighted cycles.

4. Circulant matrices with two parameters

Circulant matrices of the form Circ(0, a, 0, . . . , 0, b) of order n are denoted by
Cn(a, b). The next theorem gives a simple and independent of the order, necessary
and sufficient condition for the singularity of Cn(a, b). We usually call the Coates
digraph of Cn(a, b) “cycle” or “directed cycle”.
Theorem 4.1. Cn(a, b) is singular if and only if either b = −a for all n or b = a
and n = 0 mod 4.
Proof. We break the proof in three parts.

If n = 0 mod 4, then the Coates digraph D∗(C4k(a, b)), where k is some positive
integer, looks like the digraph in Figure 1 and has four linear subdigraphs (see
Figure 2). Hence, by Theorem 1.1,

det(C4k(a, b)) = −
(
a2k − b2k

)2
.

Therefore, det(C4k(a, b)) = 0 if and only if |a| = |b|.
If n = 2k+ 1 with k ∈ N, then the Coates digraph D∗(C2k+1(a, b)) looks like in

Figure 3. Therefore, the cycles of length 2k + 1 have two linear subdigraphs (see
Figure 4). Hence, by Theorem 1.1,

det(C2k+1(a, b)) = a2k+1 + b2k+1.

Therefore, det(C2k+1(a, b)) = 0 if and only if a = −b.
If n = 4k + 2 with k ∈ N, then the Coates digraph D∗(C4k+2(a, b)) has four

linear subdigraphs; they look similar to the ones in Figure 2. Hence,

det(C4k+2(a, b)) = −
(
a2k+1 + b2k+1)2 .

Therefore, det(C4k+2(a, b)) = 0 if and only if a = −b. �

Our objective is to give formulas for the Drazin inverse of singular adjacency
matrices of cycles. By Theorem 4.1, we need to study three cases: Case 1, when
n = 0 mod 4; Case 2, when n = 2 mod 4; and Case 3, when n = 1 mod 2. This
will be done in the next three sections, one for each case.
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Figure 1. A directed cycle of length 4k

5. Case 1: n = 0 mod 4

As shown in Theorem 4.1, C4k(a, b) is singular only if a = b or a = −b. In
this section we provide formulas for the Drazin inverse in each case. Our proof
strategy is the following: We show that a given candidate satisfies the conditions
in Definition 2.2. Note that, since we are working with circulant matrices, the
commutative property always holds. Thus, we just need to prove Conditions 2
and 3. We prove Condition 2 directly, but Condition 3 is proved via Theorem 2.4.
This is the main section of this work. Ideas developed here will be used in the next
sections.

Definition 5.1. Let n = 0 mod 4 and a ∈ R. With CD1
n (a, a) we denote the

circulant matrix
a#

n
Circ(δ0, δ1, . . . , δn−1),

where δj is the lowest nonnegative integer such that

δj =
(

(−1)b
j
2c
⌊
n− j

2

⌋
+ (−1)b

n−j
2 c

⌊
j

2

⌋)
mod

(
n

2

)
,

for 0 ≤ j ≤ n− 1.

In order to prove that CD1
n (a, a) is the Drazin inverse of Cn(a, a) we need the

following results.

Lemma 5.2. Let δj be as in Definition 5.1. If j = 0 mod 2, then δj = 0.

Proof. Let t ∈ N ∪ {0}. Then

δ2t =
(

(−1)btc b(2k − t)c+ (−1)b(2k−t)c btc
)

mod 2k

= (−1)t2k mod 2k
= 0. �
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Figure 2. The different linear subdigraphs of a cycle of length 4k

The next lemma follows directly from Definition 5.1.

Lemma 5.3. Let n = 4k and δj be as in Definition 5.1. If j ∈ N ∪ {0}, then
δj = δ4k−j.

The next theorem allows us to prove Condition 3 of the definition of Drazin
inverse via Theorem 2.4. Note that both D(C4k(a, a)) and D(CD1

4k (a, a)) are bi-
partite, with partition into even and odd vertices. This means that there are no
directed edges between odd vertices, nor between even vertices.

Theorem 5.4. N (C4k(a, a)) = N (CD1
4k (a, a)).
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Figure 3. A directed cycle of length 2k + 1
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Figure 4. The different linear subdigraphs of a cycle of length 2k + 1

Proof. Assume a 6= 0. By the preceding discussion, writing C4k(a, a) in circulant
notation:

C4k(a, a) = Circ(c0, c1, . . . , c4k−1).

Note that cj = c4k−j ; this fact is used in Equation (5.1).
In D

(
CD1

4k (a, a)
)
, if i = 1 mod 2, then the vertex i has directed edges to some

even vertices, and if i = 0 mod 2, then the vertex i has directed edges to some odd
vertices. See Figure 5.
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We take the vectors ~x = (x0, x1, . . . , x4k−1)T and ~y = (y0, y1, . . . , y4k−1)T , where

xi =


1, if i = 0 mod 4;
−1, if i = 2 mod 4;

0, otherwise,
and yi =


1, if i = 1 mod 4;
−1, if i = 3 mod 4;

0, otherwise.

We prove that both vectors, ~x and ~y, are in the null space of both matrices,
C4k(a, a) and CD1

4k (a, a). We do this componentwise.
On one hand, if i = 0 mod 2, then by Lemma 5.3, (C4k(a, a)~x)i = 0, and if i = 1

mod 2, then

(C4k(a, a)~x)i =
4k−1∑
j=0

(±cj ∓ c4k−j) = 0, (5.1)

where c4k := c0. This proves that ~x ∈ N (C4k(a, a)). Mutatis mutandis, ~y ∈
N (C4k(a, a)). On the other hand, if i = 0 mod 2, then the i-th coordinate of the
vector CD1

4k (a, a)~x is zero, i.e.
(

CD1
4k (a, a)~x

)
i

= 0, and if i = 1 mod 2, then

(
CD1

4k (a, a)~x
)

i
=

4k−1∑
j=0

(±δj ∓ δ4k−j) = 0,

where δ4k := δ0 and by Lemma 5.3 δj := δ4k−j for j ∈ {1, . . . , 4k − 1}. This
proves that ~x ∈ N (CD1

4k (a, a)). Mutatis mutandis, ~y ∈ N (CD1
4k (a, a)). There-

fore, null(C4k(a, a)) ≥ 2 and null(CD1
4k (a, a)) ≥ 2. Note that C4k(a, a)({4k −

1, 4k}|{1, 4k}), the submatrix of C4k(a, a) obtained by deleting the last two rows
and the first and last columns, and CD1

4k (a, a)({4k− 1, 4k}|{1, 4k}) are nonsingular
(we follow the notation given in [1] for submatrices). Hence, rank(C4k(a, a)) ≥
4k − 2 and rank(CD1

4k (a, a)) ≥ 4k − 2. Therefore,

null(C4k(a, a)) = null(CD1
4k (a, a)) = 2.

Since ~x and ~y are linearly independent, {~x, ~y} is a basis for N (C4k(a, a)) and
N (CD1

4k (a, a)). �

Theorem 5.5. If n = 0 mod 4 and a ∈ R, then CD1
n (a, a) is the Drazin inverse

of Cn(a, a).

Proof. Assume a 6= 0. Let n = 4k with k ∈ N. We first prove Condition 2 of
Definition 2.2, i.e.,

(Cn(a, a))2 CD1
4k (a, a) = C4k(a, a).

Note that C4k(a, a) = a(P + P 4k−1). By Lemma 5.2, we conclude that

CD1
4k (a, a) = 1

4ka

2k∑
t=1

δ2t−1P
2t−1.
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Since (C4k(a, a))2 = a2 (2I + P 2 + P 4k−2), clearly

(C4k(a, a))2 CD1
4k (a, a)

= a

4k

(
αP +

2k−1∑
t=2

(δ2t−3 + 2δ2t−1 + δ2t+1)P 2t−1 + βP 4k−1
)
,

where α = δ4k−1 + 2δ1 + δ3 = 3δ1 + δ3 and β = δ4k−3 + 2δ4k−1 + δ1 = 3δ1 + δ3.
Note that

δ1 =
(

(−1)b1/2c b(4k − 1) /2c+ (−1)b(4k−1)/2c b1/2c
)

mod 2k
= 2k − 1

and
δ3 =

(
(−1)b3/2c b(4k − 3) /2c+ (−1)b(4k−3)/2c b3/2c

)
mod 2k

= 3− 2k.
Hence, α = β = 4k.

We turn our attention to the sums δ2t−3 + 2δ2t−1 + δ2t+1, for 2 ≤ t ≤ 2k − 1.
Note that

(1)
⌊ 2t−3

2
⌋

=
⌊ 2t−1−2

2
⌋

=
⌊ 2t−1

2
⌋
− 1,

(2)
⌊ 2t+1

2
⌋

=
⌊ 2t−1+2

2
⌋

=
⌊ 2t−1

2
⌋

+ 1,

(3)
⌊

4k−(2t−3)
2

⌋
=
⌊

4k−(2t−1)+2
2

⌋
=
⌊

4k−(2t−1)
2

⌋
+ 1, and

(4)
⌊

4k−(2t+1)
2

⌋
=
⌊

4k−(2t−1)−2
2

⌋
=
⌊

4k−(2t−1)
2

⌋
− 1.

Hence, we can conclude that −δ2t−1 = δ2t−3 = δ2t+1. Therefore, for 2 ≤ t ≤ 2k−1
we have that δ2t−3 + 2δ2t−1 + δ2t+1 = 0. Thus, (C4k(a, a))2 CD1

4k (a, a) = C4k(a, a).
Now, by Theorems 2.4 and 5.4, Condition 3 of Definition 2.2 holds:

CD1
4k (a, a) C4k(a, a) CD1

4k (a, a) = CD1
4k (a, a).

Hence, CD1
4k (a, a) is the Drazin inverse of the circulant matrix C4k(a, a). �

Example 5.6. The Drazin inverse of C8(a, a) is

CD
8 (a, a) = a#

8 Circ(0, 3, 0,−1, 0,−1, 0, 3).

See Figure 5, where for CD
8 (a, a) we just draw the directed edges getting out of

zero.

Definition 5.7. Let n = 0 mod 4 and a ∈ R. With CD1∗
n (a,−a) we denote the

circulant matrix
a#

n
Circ(δ′0, δ′1, 0, . . . , δ′n−1),

where, for 1 ≤ j ≤ n− 1,
δ′j = sgn(2j − n)|δj |,

with δj as in Definition 5.1.
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Figure 5. The digraphs of a cycle of length 8

In order to prove that CD1∗
n (a,−a) is the Drazin inverse of Cn(a,−a) we need

the following lemma.

Lemma 5.8. Let n = 0 mod 4 and δ′j be as in Definition 5.7. Then δ′j = −δ′n−j

for j ∈ {0, . . . , n− 1}.

Proof. Let j ∈ N ∪ {0}. Then

δ′n−j = sgn(2(n− j)− n)|δn−j |
= − sgn (2j − n) |δj |
= −δ′j . �

Theorem 5.9. N (C4k(a,−a)) = N (CD1∗
4k (a,−a)).

Proof. Assume a 6= 0. The proof is similar to the proof of Theorem 5.4, but using
the following vectors ~x and ~y:

xi =


1, if i = 0 mod 4;
1, if i = 2 mod 4;
0, otherwise,

and yi =


1, if i = 1 mod 4;
1, if i = 3 mod 4;
0, otherwise.

�

Theorem 5.10. If n = 0 mod 4 and a ∈ R, then CD1∗
n (a,−a) is the Drazin

inverse of Cn(a,−a).

Proof. Assume a 6= 0. Let n = 4k with k ∈ N. We first prove Condition 2 of
Definition 2.2, i.e.,

(C4k(a,−a))2 CD1∗
4k (a,−a) = C4k(a,−a).
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Note that C4k(a,−a) = a
(
P − P 4k−1). By Lemma 5.2, we conclude that

CD1∗
4k (a,−a) = 1

4ka

2k∑
t=1

δ′2t−1P
2t−1.

Since
(C4k(a,−a))2 = a2(− 2I + P 2 + P 4k−2),

clearly

(C4k(a,−a))2 CD1∗
4k (a,−a)

= a

4k

(
α′P +

2k−1∑
t=2

(
δ′2t−3 − 2δ′2t−1 + δ′2t+1

)
P 2t−1 + β′P 4k−1

)
,

where α′ = δ′4k−1−2δ′1 + δ′3 = −3δ′1 + δ′3 and β′ = δ′4k−3−2δ′4k−1 + δ′1 = −3δ′4k−1 +
δ4k−3 = 3δ′1 − δ′3.

Note that δ′1 = sgn (2− 4k) |2k − 1| and δ′3 = sgn (6− 4k) |3− 2k|. Therefore, if
k = 1, then α′ = 4 and β′ = −4. If k > 1, then α′ = 4k and β′ = −4k. Therefore,
all we need to prove is that

2k−1∑
t=2

(
δ′2t−3 − 2δ′2t−1 + δ′2t+1

)
P 2t−1 = 0.

This is accomplished by showing that δ′2t−3 − 2δ′2t−1 + δ′2t+1 = 0, for all t ∈
{2, . . . , 2k − 1}.

If 2 ≤ t ≤ 2k − 1, since δ2t−1 = −δ2t−3 = −δ2t+1, we have
δ′2t−1 = sgn (2 (2t− 1)− 4k) |δ2t−1|

= sgn (4t− (4k + 2)) |δ2t−1|,
δ′2t−3 = sgn (2 (2t− 3)− 4k) |δ2t−3|

= sgn (4t− (4k + 6)) |δ2t−1|,
δ′2t+1 = sgn (2 (2t+ 1)− 4k) |δ2t+1|

= sgn (4t− (4k − 2)) |δ2t−1|.
If 2 ≤ t ≤ k − 1, then

sgn (4t− (4k + 2)) = −1,
sgn (4t− (4k + 6)) = −1,
sgn (4t− (4k − 2)) = −1.

Hence, δ′2t−3 = δ′2t−1 = δ′2t+1. Therefore, δ′2t−3 − 2δ′2t−1 + δ′2t+1 = 0.
If k + 2 ≤ t ≤ 2k − 1, then

sgn (4t− (4k + 2)) = 1,
sgn (4t− (4k + 6)) = 1,
sgn (4t− (4k − 2)) = 1.

Hence, δ′2t−3 = δ′2t−1 = δ′2t+1. Therefore, δ′2t−3 − 2δ′2t−1 + δ′2t+1 = 0.

Rev. Un. Mat. Argentina, Vol. 61, No. 2 (2020)



DRAZIN INVERSE OF SINGULAR DIRECTED WEIGHTED CYCLES 221

If t = k, then

|δ2k−1| =
∣∣∣∣((−1)b 2k−1

2 c
⌊

4k − (2k − 1)
2

⌋
+ (−1)

⌊
4k−(2k−1)

2

⌋ ⌊2k − 1
2

⌋)
mod 2k

∣∣∣∣
=
∣∣∣(−1)(k−1)k + (−1)k(k − 1)

∣∣∣ ,
|δ2k−3| =

∣∣∣∣((−1)b 2k−3
2 c

⌊
4k − (2k − 3)

2

⌋
+ (−1)

⌊
4k−(2k−3)

2

⌋ ⌊2k − 3
2

⌋)
mod 2k

∣∣∣∣
=
∣∣∣(−1)(k−2)(k + 1) + (−1)(k+1)(k − 2)

∣∣∣ ,
|δ2k+1| =

∣∣∣∣((−1)b
2k+1

2 c
⌊

4k − (2k + 1)
2

⌋
+ (−1)

⌊
4k−(2k+1)

2

⌋ ⌊2k + 1
2

⌋)
mod 2k

∣∣∣∣
=
∣∣∣(−1)k (k − 1) + (−1)(k−1)

k
∣∣∣ .

If k is an even number, then
δ′2k−3 − 2δ′2k−1 + δ′2k+1 = − |k + 1− k + 2|+ 2 |−k + k − 1|+ |k − 1− k| = 0.
If k is an odd number, then
δ′2k−3 − 2δ′2k−1 + δ′2k+1 = − |−k − 1 + k − 2|+ 2 |k − k + 1|+ |−k + 1 + k| = 0.

This proves that when t = k, we have δ′2t−3−2δ′2t−1+δ′2t+1 = 0. A similar argument
shows that if t = k + 1, then δ′2t−3 − 2δ′2t−1 + δ′2t+1 = 0.

Therefore,

(C4k(a,−a))2 CD1∗
4k (a,−a) = a

4k
(
4kP − 4kP 4k−1) = C4k(a,−a).

By Theorems 2.4 and 5.9,
CD1∗

4k (a,−a) C4k(a,−a) CD1∗
4k (a,−a) = CD1∗

4k (a,−a).
Hence, CD1∗

4k (a,−a) is the Drazin inverse of C4k(a,−a). �

Example 5.11. For C8(a,−a), its Drazin inverse is

CD1∗
8 (a,−a) = a#

8 Circ(0,−3, 0,−1, 0, 1, 0, 3).

See Figure 6, where for CD1∗
8 (a,−a) we just draw the directed edges getting out of

zero.

6. Case 2: n = 2 mod 4

Definition 6.1. Let n = 2 mod 4 and a ∈ R. With CD2
n (a,−a) we denote the

circulant matrix
2a#

n
Circ(δ0, δ1, . . . , δn−1),

where, for 0 ≤ j ≤ n− 1,

δj =


2j − n

4 , if j = 1 mod 2;
0, otherwise.
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Figure 6. The digraphs of a cycle of length 8

In order to prove that CD2
n (a,−a) is the Drazin inverse of Cn(a,−a) we need

the following lemma.

Lemma 6.2. Let n = 2 mod 4 and δj be as in Definition 6.1. Then δj = −δn−j

for every j ∈ {1, . . . , n− 1}.
Proof. If (n− j) = 1 mod 2, then j = 1 mod 2. Therefore,

δn−j = 2 (n− j)− n
4 = n− 2j

4 = −δj .

If (n− j) = 0 mod 2, then j = 0 mod 2. Thus, δn−j = 0 = −δj . �

Theorem 6.3. N (C4k+2(a,−a)) = N (CD2
4k+2(a,−a)).

Proof. Assume a 6= 0. The proof is similar to the proof of Theorem 5.4, but using
the vectors ~x and ~y of the proof of Theorem 5.9. �

Theorem 6.4. If n = 2 mod 4 and a ∈ R, then CD2
n (a,−a) is the Drazin inverse

of Cn(a,−a).

Proof. Assume a 6= 0. Let n = 4k + 2 with k ∈ N. We first prove Condition 2 of
Definition 2.2, i.e.,

(C4k+2(a,−a))2 CD2
4k+2(a,−a) = C4k+2(a,−a).

Note that C4k+2(a,−a) = a
(
P − P 4k+1). We have that

CD2
4k+2(a,−a) = 1

(2k + 1)a

2k+1∑
t=1

δ2t−1P
2t−1.

Since
(C4k+2(a,−a))2 = a2(− 2I + P 2 + P 4k

)
,
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clearly

(C4k+2(a,−a))2 CD2
4k+2(a,−a)

= a

2k + 1

(
α∗P +

2k∑
t=2

(δ2t−3 − 2δ2t−1 + δ2t+1)P 2t−1 + β∗P 4k+1
)
,

where α∗ = −δ1 − 2δ1 + δ3 = −3δ1 + δ3 and β∗ = δ4k−1 − 2δ4k+1 + δ1 = 3δ1 − δ3.
Since

δ1 = 2− (4k + 2)
4 = −k and δ3 = 6− (4k + 2)

4 = 1− k,

we have that α∗ = 2k+ 1 and β∗ = − (2k + 1). We turn our attention to the sums
δ2t−3 − 2δ2t−1 + δ2t+1, for 2 ≤ t ≤ 2k.

We have that 2t− 1, 2t− 3, and 2t+ 1 are odd numbers, and thus

δ2t−1 = 2 (2t− 1)− (4k + 2)
4 ,

δ2t−3 = 2 (2t− 3)− (4k + 2)
4 = δ2t−1 − 1,

δ2t+1 = 2 (2t+ 1)− (4k + 2)
4 = δ2t−1 + 1.

Therefore δ2t−3 − 2δ2t−1 + δ2t+1 = 0. Thus (C4k+2(a,−a))2 CD2
4k+2(a,−a) =

C4k+2(a,−a).
Now, by Theorems 2.4 and 6.3,

CD2
4k+2(a,−a) C4k+2(a,−a) CD2

4k+2(a,−a) = CD2
4k+2(a,−a).

Hence, CD2
4k+2(a,−a) is the Drazin inverse of C4k+2(a,−a). �

Example 6.5. For C6(a,−a), its Drazin inverse is

CD2
6 (a,−a) = a#

3 Circ(0,−1, 0, 0, 0, 1).

See Figure 7, where for CD2
6 (a,−a) we just draw the directed edges getting out of

zero.

7. Case 3: n = 1 mod 2

Definition 7.1. Let n = 1 mod 2 and a ∈ R. With CD3
n (a,−a) we denote the

circulant matrix
a#

n
Circ(δ0, δ1, . . . , δn−1),

where, for 0 ≤ j ≤ n− 1,

δj =


j

2 , if j = 0 mod 2,
j − n

2 , otherwise.
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Figure 7. The digraphs of a cycle of length 6

In order to prove that CD3
n (a,−a) is the Drazin inverse of Cn(a,−a) we need

the following lemma.
Lemma 7.2. Let δj be as in Definition 7.1. Then δj = −δn−j for every j ∈
{0, . . . , n− 1}.
Proof. If (n− j) = 0 mod 2, then j = 1 mod 2. Therefore

δn−j = n− j
2 = −δj ,

and if (n− j) = 1 mod 2, then j = 0 mod 2. Thus

δn−j = (n− j)− n
2 = −δj . �

Theorem 7.3. N (C2k+1(a,−a)) = N (CD3
2k+1(a,−a)).

Proof. Assume a 6= 0. The proof is similar to the proof of Theorem 5.4, but in
this case the null space has dimension 1. Now, the submatrices of C2k+1(a,−a)
and CD3

2k+1(a,−a), obtained by deleting the first column and the last row, have full
rank. The vector ~x = (1, . . . , 1)T spans both null spaces. �

Theorem 7.4. If n = 1 mod 2 and a ∈ R, then CD3
n (a,−a) is the Drazin inverse

of Cn(a,−a).

Proof. Assume a 6= 0. Let n = 2k + 1 with k ∈ N. We first prove Condition 2 of
Definition 2.2, i.e.,

(C2k+1(a,−a))2 CD3
2k+1(a,−a) = C2k+1(a,−a).

Note that C2k+1(a,−a) = a
(
P − P 2k

)
. We have that

CD3
2k+1(a,−a) = 1

(2k + 1) a

2k∑
t=1

δtP
t.

Since
(C2k+1(a,−a))2 = a2 (−2I + P 2 + P 2k−1) ,
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clearly

(C2k+1(a,−a))2 CD3
2k+1(a,−a)

= a

2k + 1

(
α′′P +

2k−1∑
t=2

(δt−2 − 2δt + δt+2)P t + β′′P 2k

)
,

where α′′ = δ2k − 2δ1 + δ3 = −3δ1 + δ3 and β′′ = δ2k−2 − 2δ2k + δ1 = 3δ1 − δ3.
Note that δ1 = 1− (2k + 1)

2 = −k and δ3 = 3− (2k + 1)
2 = 1 − k. Hence,

α′′ = 2k + 1 and β′′ = −(2k + 1).
We turn our attention to the sums δt−2 − 2δt + δt+2, for 2 ≤ t ≤ 2k + 1.
If t = 0 mod 2 then t, t− 2, and t+ 2 are either all odd or all even, and thus

δt = t

2 ,

δt−2 = t− 2
2 = δt − 1,

δt+2 = t+ 2
2 = δt + 1.

Hence, δt−2 − 2δt + δt+2 = 0.
Now, if t = 1 mod 2 then t, t − 2, and t + 2 are either all odd or all even, and

thus

δt = t− (2k + 1)
2 ,

δt−2 = t− 2− (2k + 1)
2 = δt − 1,

δt+2 = t+ 2− (2k + 1)
2 = δt + 1.

Therefore, δt−2 − 2δt + δt+2 = 0.
Thus (C2k+1(a,−a))2 CD3

2k+1(a,−a) = C2k+1(a,−a). Now, by Theorems 2.4 and
7.3,

CD3
2k+1(a,−a) C2k+1(a,−a) CD3

2k+1(a,−a) = CD3
2k+1(a,−a).

Hence, CD3
2k+1(a,−a) is the Drazin inverse of C2k+1(a,−a). �

Example 7.5. For C7(a,−a), its Drazin inverse is

CD3
7 (a,−a) = a#

7 Circ(0,−3, 1,−2, 2,−1, 3).

See Figure 8, where for CD3
7 (a,−a) we just draw the directed edges getting out of

zero.
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Mathematics/Ouvrages de Mathématiques de la SMC, 15, Springer-Verlag, New York, 2003.
MR 1987382.

[5] A. Bjerhammar, A generalized matrix algebra, Kungl. Tekn. Högsk. Handl. no. 124, Stock-
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Departamento de Matemáticas. Facultad de Ciencias F́ısico-Matemáticas y Naturales.
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