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p-DUAL FRAMES AND p-RIESZ SEQUENCES IN
QUASINORMED SPACES

JOSÉ ALFONSO LÓPEZ NICOLÁS

Abstract. The present contribution is aimed at obtaining new results in
duality between p-dual frames and p-Riesz sequences in quasinormed spaces
with a normalized Schauder basis. We obtain two results which show the
relationship of duality between these concepts. We split a quasinormed space
into a topological sum of two subspaces and use the Schauder basis to establish
a relationship between the p-dual frames of one of these subspaces and the
p-Riesz sequences of the dual of the other one. In fact, the main results are
stated in a lightly more general context.

1. Introduction

In 1946 Gabor introduced a fundamental approach to signal decomposition in
terms of elementary signals (see [8]). In 1952 Duffin and Schaeffer abstracted the
work of Gabor to define frames for a Hilbert space ([7]). In 1986 the work of
Daubechies, Grossman, and Meyer initiated the theory of wavelets ([6]).

In 1991 Gröchenig defined Banach frames for a Banach space X with respect to
an associated Banach space Xd of scalar valued sequences indexed by N:
Definition 1.1 (Gröchenig, [9]). Let X be a Banach space and let Xd be an
associated Banach space of scalar valued sequences indexed by N. Let (yi)i∈N be a
sequence of elements from X∗ and let S : Xd → X be given. If

(1) (yi(x) := 〈x, yi〉)i∈N ∈ Xd, for each x ∈ X,
(2) the norms ‖x‖X and

∥∥(〈x, yi〉)i∈N
∥∥
Xd

are equivalent,
(3) S is bounded and linear, and S (〈x, yi〉)i∈N = x, for each x ∈ X,

then
(
(yi)i∈N , S

)
is a Banach frame for X with respect to Xd. The mapping S is

the reconstruction operator. If the norm equivalence is given by
A ‖x‖X ≤

∥∥(〈x, yi〉)i∈N
∥∥
Xd
≤ B ‖x‖X ,

then A, B are a choice of frame bounds for
(
(yi)i∈N , S

)
.

In 1999, Casazza, Han, and Larson defined frames and normalized tight frames
for Banach spaces.
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Definition 1.2 ([3, Definition 3.3]). A sequence (xi)i∈N in a Banach space X is a
frame for X if there is a Banach space Z with an unconditional basis (zi, z∗i ) with
X ⊂ Z and a (onto) projection P : Z → X so that Pzi = xi for all i ∈ N. If (zi)
is a 1-unconditional basis for Z and ‖P‖ = 1, we will call (xi) a normalized tight
frame for X.

In 2000 Aldroubi, Sun, and Tang defined the concept of p-frame for a normed
linear space, with 1 ≤ p ≤ ∞ (see [1]).

Definition 1.3 (p-frame, [1]). Let 1 ≤ p ≤ ∞, X be a normed linear space, and
X∗ its dual. We say that an index family {gλ : λ ∈ Λ} ⊂ X∗ is a p-frame for X if
there exists a positive constant C such that

C−1 ‖f‖X ≤
∥∥{(f, gλ)}λ∈Λ

∥∥
p
≤ C ‖f‖X , ∀f ∈ X.

In this paper we will define the concept of p-dual frame for quasinormed linear
spaces, which is dual to their concept of p-frame. They also used in [1] the concept
of p-Riesz basis for Lp, with 1 ≤ p ≤ ∞.

Definition 1.4 (p-Riesz basis, [1]). Let 1 ≤ p ≤ ∞. We say that a countable
collection {gλ : λ ∈ Λ} ⊂ Lp is a p-Riesz basis for Lp if there exists a positive
constant C such that

C−1 ‖c‖p ≤
∥∥∥∥∑
λ∈Λ

cλgλ

∥∥∥∥
p

≤ C ‖c‖c , ∀c = (cλ)λ∈Λ ∈ lp (Λ) .

In addition, they defined in [1] the locally finite shift invariant subspaces Vp(ϕ)
of Lp, and obtained a connection between certain p-frames and p-Riesz bases of
those spaces. The authors continued this study in [2] (2001).

In 2005 Casazza, Christensen, and Stoeva defined in [4] the BK-spaces Xd, which
are Banach sequence spaces whose coordinate functionals are continuous, and also
defined Xd-frames, generalizing p-frames (see Definition 1.3).

Definition 1.5 ([4, Definition 1.2]). Let X be a Banach space and Xd a BK-space.
A countable family {gi}i∈I in the dual X∗ is called an Xd-frame for X if

(1) {gi(f)}i∈I ∈ Xd, ∀f ∈ X;
(2) the norms ‖f‖X and

∥∥{gi (f)}i∈I
∥∥
Xd

are equivalent, i.e., there exist con-
stants A,B > 0 such that A ‖f‖X ≤

∥∥{gi (f)}i∈I
∥∥
Xd
≤ B ‖f‖X .

A and B are called Xd-frame bounds. If at least (1) and the upper condition in
(2) are satisfied, {gi}i∈I is called an Xd-Bessel sequence for X.

If X is a Hilbert space and Xd = l2, (2) means that {gi}i∈I is a frame. If
Xd = lp, with 1 ≤ p ≤ ∞, then Xd-frames for X are exactly the p-frames for X,
by Definition 1.3.

These authors also investigated the existence of Xd-frames and Banach frames
in separable Banach spaces, and revealed the connections between Banach frames
and the reconstruction property (see [4]).
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In 2009 Stoeva studied Xd-frames for Banach spaces and defined the dual and
dual∗ of an Xd-Bessel sequence. She obtained a connection between both concepts
and conditions for their existence (see [13]).

In 2015 Olevskii and Ulanovskii established a duality relationship between frames
and Riesz sequences in Hilbert spaces in their research on stable sampling and in-
terpolation theory.

Theorem 1.6 ([11]; [12, p. 10]). Assume that a set U is an orthonormal basis in
a Hilbert space H. Assume that H is a direct sum of two orthogonal subspaces H1
and H2, and denote by Pj the orthogonal projection on Hj. Assume further that
U is a union of two disjoint subsets V and W . Then the following statements are
equivalent:

(1) P1(V ) is a frame in H1.
(2) P2(W ) is a Riesz sequence in H2.

The objective of this paper is to generalize this last theorem to quasinormed
spaces. In this general context we have no inner product, so we will need additional
hypotheses for replacing the orthogonality conditions.

1.1. Our definitions. In this paper we work with the concepts of p-dual frame,
in a dual sense to Definition 1.3, and p-Riesz sequence for quasinormed spaces and
p ∈ (0,+∞]. We also work with the concept of a Schauder basis of a quasinormed
space. Next we establish the definitions of all these concepts. Given a set I, we
denote by P0(I) the set of all finite subsets of I.

Definition 1.7. Let (E, ‖ ‖) be a quasinormed space. Let B := (ui)i∈N be a
sequence in E.

(1) B is called a generator set for (E, ‖ ‖) if for every x ∈ E there exists a
sequence cx = (ci)i∈N of complex numbers such that the series

∑
i∈N ci ui

converges to x.
(2) B is a Schauder basis for (E, ‖ ‖) if for every x ∈ E there exists a unique

sequence cx = (ci)i∈N of complex numbers such that the series
∑
i∈N ci ui

converges to x.
(3) B is said to be normalized if ‖ui‖ = 1 for each i ∈ N.

Definition 1.8 (p-Riesz sequence). Let (E, ‖ ‖) be a quasinormed space and p ∈
(0,+∞]. Let (ui)i∈N be a sequence in E.

(1) (ui)i∈N is an upper p-Riesz sequence for (E, ‖ ‖) if there exists a constant
A > 0 such that for every I0 ∈ P0(N) and every (ci)i∈I0 ∈ CI0 we have that

A‖(ci)i∈I0‖p ≤
∥∥∥∑
i∈I0

ciui

∥∥∥.
In that case the constant A is called a constant of upper p-Riesz sequence of
(ui)i∈N for (E, ‖ ‖).
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(2) (ui)i∈N is a lower p-Riesz sequence for (E, ‖ ‖) if there exists a constant B > 0
such that for every I0 ∈ P0(N) and every (ci)i∈I0 ∈ CI0 we have that∥∥∥∑

i∈I0

ciui

∥∥∥ ≤ B‖(ci)i∈I0‖p.

In that case the constant B is called a constant of lower p-Riesz sequence of
(ui)i∈N for (E, ‖ ‖).

(3) (ui)i∈N is a p-Riesz sequence for (E, ‖ ‖) if it is both upper and lower p-Riesz
sequence for (E, ‖ ‖).

Definition 1.9 (p-Dual frame). Let (E, ‖ ‖) be a quasinormed space and p ∈
(0,+∞]. Let (ui)i∈N be a sequence in E.

(1) (ui)i∈N is a lower p-dual frame (briefly, lower p-frame∗) for (E, ‖ ‖) if there
exists a constant A > 0 such that for each f ∈ E∗ we have that

A‖f‖∗ ≤ ‖(f(ui))i∈N‖p <∞.

In that case the constant A is called a constant of lower p-dual frame of
(ui)i∈N for (E, ‖ ‖).

(2) (ui)i∈N is an upper p-dual frame (briefly, upper p-frame∗) for (E, ‖ ‖) if there
exists a constant B > 0 such that for each f ∈ E∗ we have that

‖(f(ui))i∈N‖p ≤ B‖f‖∗.

In that case the constant B is called a constant of upper p-dual frame of
(ui)i∈N for (E, ‖ ‖). An upper p-dual frame is also called a p-dual Bessel
sequence.

(3) (ui)i∈N is a p-dual frame (briefly, p-frame∗) for (E, ‖ ‖) if it is both upper
p-dual frame and lower p-dual frame for (E, ‖ ‖). In other words, the dual
norm ‖ ‖∗ is equivalent to the one defined by ‖f‖∗,p := ‖(f(ui))i∈N‖p for
each f ∈ E∗.

Observe that for normed spaces the concept of p-frame∗ is dual to that of p-frame
(see Definition 1.3). For Hilbert spaces both concepts are equivalent.

1.2. Our results. In this paper we work with quasinormed spaces with a normal-
ized Schauder basis (in fact, in a more general setting). We split these spaces into a
topological direct sum of two subspaces and we investigate conditions to determine
the relationship between the p-dual frames of one of these subspaces and the Riesz
p-sequences of the dual space of the other one, with p ∈ (0,+∞]. We obtain two
results which show this relationship of duality between both concepts.

We establish the following notation. Given a quasinormed space (E, ‖ ‖) and
two subspaces E1, E2 ⊆ E such that E = E1 ⊕ E2 is an algebraic direct sum, we
denote the respective canonical projections by

pk : (E = E1 ⊕ E2, ‖ ‖)→ (Ek, ‖ ‖),

which is defined by x = x1 + x2 7→ xk, for each k ∈ {1, 2}. If E = E1 ⊕ E2 is a
topological direct sum, then the (topological) dual spaces also satisfy E∗ = E∗1⊕E∗2 .
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In this case we denote the respective continuous canonical projections by

pk∗ : (E∗ = E∗1 ⊕ E∗2 , ‖ ‖∗)→ (E∗k , ‖ ‖∗),

defined by f = f1 + f2 7→ fk = f |Ek
for every k ∈ {1, 2}.

We also denote by δij the Kronecker delta.

Our results are the following two theorems, which generalize Theorem 1.6 by
Olevskii and Ulanovskii from the context of Hilbert spaces and p = 2 to quasi-
normed spaces and 0 < p ≤ +∞.

Theorem 1.10. Let (E, ‖ ‖) be a quasinormed space. Let S = (ei)i∈N ⊆ E and
S∗ = (λi)i∈N ⊆ E∗ be sequences such that λi (ej) = δij for each i, j ∈ N. Let p ∈
(0,+∞], and let J, L ⊆ N be a partition of N. Define V := (ej)j∈J , W := (el)l∈L,
V ∗ := (λj)j∈J , W ∗ := (λl)l∈L. Let E1, E2 be vector subspaces of E such that
E = E1 ⊕ E2 is an algebraic direct sum. Assume that W is an upper p-frame∗ for
E and p2(V ) is an upper p-frame∗ for E2. Suppose that p1(V ) is a lower p-frame∗
for E1. Then:

(i) p2∗(W ∗) is an upper p-Riesz sequence for E∗2 .
(ii) Suppose, in addition, that

(a) W ∗ is a lower p-Riesz sequence for E∗.
(b) E = E1 ⊕ E2 is a topological direct sum.

Then p2∗(W ∗) is a p-Riesz sequence for E∗2 .

We have a particular case of Theorem 1.10 when the sequence S = (ei)i∈N
is a normalized Schauder basis for E and S∗ = (λi)i∈N is the set of coordinate
functionals associated to S.

A reciprocal result of this theorem is the following one.

Theorem 1.11. Let (E, ‖ ‖) be a quasinormed space. Let B = (ei)i∈N ⊆ E and
B∗ = (λi)i∈N ⊆ E∗ be sequences such that λi (ej) = δij for each i, j ∈ N. Suppose
that B∗ is a generator set of E∗. Let p ∈ (0,+∞] and let J, L ⊆ N be a partition
of N. Define V := (ej)j∈J , W := (el)l∈L, V ∗ := (λj)j∈J , and W ∗ := (λl)l∈L. Let
E1, E2 be vector subspaces of E such that E = E1⊕E2 is a topological direct sum.
Suppose that

(i) B∗ is a lower p-Riesz sequence for E∗;
(ii) p1(V ) = (p1(ej))j∈J is an upper p-frame∗ for E1;

(iii) p1∗ (B∗) is a Schauder basis for E∗1 .
If p2∗(W ∗) = (p2∗(λl))l∈L is an upper p-Riesz sequence for E∗2 , then p1(V ) =
(p1(ej))j∈J is a lower p-frame∗ for E1, and therefore p1(V ) is a p-frame∗ for E1.

Observe that if (E, ‖ ‖) is a Banach space, B is a normalized Schauder basis
of E, and B∗ is the set of coordinate functionals associated to B, then B∗ is a
Schauder basis of E∗ if and only if B is shrinking (see [10, p. 8]); in particular, if
E is reflexive, then B∗ is a Schauder basis of E∗, and therefore it is a generator set
for E∗.
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2. Proofs of Theorems 1.10 and 1.11

In this section we will prove the duality theorems 1.10 and 1.11.

2.1. Proof of Theorem 1.10.

Proof. Let us consider the sampling operators
S1 : (E∗, ‖ ‖∗)→ (lp(L), ‖ ‖p),

defined by f → (f(el))l∈L, and
S2 : (E∗2 , ‖ ‖∗)→ (lp(J), ‖ ‖p),

defined by f → (f (p2(ej)))j∈J . We observe that
• W is an upper p-frame∗ for E if and only if S1 is continuous.
• p2(V ) is an upper p-frame∗ for E2 if and only if S2 is continuous.

Suppose that p1(V ) is a lower p-frame∗ for E1. There exists a constant A > 0
such that we have the inequality

A‖x‖∗ ≤ ‖(x(p1(ej)))j∈J‖p for each x ∈ E∗1 .
(i) Let us see that p2∗(W ∗) = (p2∗(λl))l∈L is an upper p-Riesz sequence for E∗2 .

Take R0 ∈ P0(L), R0 6= ∅. {λl}l∈R0 ⊆ E∗, and
λl(ej) = δil = 0 for each l ∈ R0, j ∈ J, because R0 ∩ J = ∅.

That is,
λl(v) = 0 for every l ∈ R0, v ∈ V .

Take {cl}l∈R0 ⊆ C. We define f :=
∑
l∈R0

clλl ∈ E∗ ⊆ E∗1 ⊕ E∗2 . We shall split
f = f1+f2 ∈ E∗1⊕E∗2 , where f1 ∈ E∗1 , f2 ∈ E∗2 are unique (in fact: f1 = f |E1 ∈ E∗1 ,
f2 = f |E2 ∈ E∗2 ). Besides,

f1 =
∑
l∈R0

clλl|E1 , f2 =
∑
l∈R0

clλl|E2 .

For each l ∈ R0 we have that f(el) =
∑
r∈R0

crλr(el) =
∑
r∈R0

crδlr = cl, so that

f =
∑
l∈R0

f(el)λl ∈ E∗.

On the other hand, for all v ∈ V we have: f(v) =
∑
l∈R0

f(el)λl(v) = 0, which is
equivalent to f1(p1(v)) = −f2(p2(v)). Since p1(V ) is a lower p-frame∗ for E1, we
have the next consequence:

‖f1‖p∗ ≤
1
Ap

∑
v∈V
|f1(p1(v))|p = 1

Ap

∑
v∈V
|f2(p2(v))|p ≤ D‖f2‖p∗,

where the last inequality comes from the continuity of S2. Then∑
l∈R0

|cl|p =
∑
l∈R0

|f(el)|p ≤
∑
w∈W

|f(w)|p ≤ D1‖f‖p∗

= D1‖f1 + f2‖p∗ ≤ D2 (‖f1‖p∗ + ‖f2‖p∗) ≤ D2 ·(D + 1)‖f2‖p∗
= D3‖f2‖p∗,
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where in the second inequality we have used that S1 is continuous. Defining D4 :=
1

D
1/p
3

we obtain

D4

( ∑
l∈R0

|cl|p
)1/p

≤ ‖f2‖∗.

For p = +∞ it is completely analogous:

max
l∈R0
|cl| = max

l∈R0
|f(el)| ≤ max

w∈W
|f(w)| ≤ D1‖f‖∗

= D1‖f1 + f2‖∗ ≤ D1 (‖f1‖∗ + ‖f2‖∗) ≤ D1 ·(D + 1)‖f2‖∗
= D2‖f2‖∗.

Conclusion: p2∗(W ∗) = (p2∗(λl))l∈L is an upper p-Riesz sequence for E∗2 .

(ii) Let us prove now the second part of the theorem.
Assume in addition that W ∗ is a lower p-Riesz sequence for E∗ and E = E1⊕E2

is a topological direct sum. Let us see that p2∗(W ∗) is a p-Riesz sequence for E∗2 .
By the first item we know that it is an upper p-Riesz sequence for E∗2 ; we just have
to prove that it is also a lower one.

Since the direct sum E = E1 ⊕ E2 is topological, the respective projections are
continuous. In the same way we did before, we have:∑

l∈R0

|cl|p ≤ D3‖f2‖p∗ ≤ D4‖f‖p∗ ≤ D5
∑
l∈R0

|cl|p.

Hence,

(D3)−1/p
( ∑
l∈R0

|cl|p
)1/p

≤ ‖f2‖∗ ≤ (D5)1/p
( ∑
l∈R0

|cl|p
)1/p

.

For p = +∞ it is completely analogous:

(D3)−1 max
l∈R0
|cl| ≤ ‖f2‖∗ ≤ D4‖f‖∗ ≤ D5 max

l∈R0
|cl|.

Conclusion: p2∗(W ∗) is a p-Riesz sequence for E∗2 . �

2.2. Proof of Theorem 1.11.

Proof. Recalling the definitions 1.8 and 1.9 of p-Riesz sequence and p-dual frame
(upper, lower or both), we have:

(i) B∗ = (λi)i∈N being a lower p-Riesz sequence for E∗ means that there exists
a constant B > 0 such that for each I0 ∈ P0(N) and each a = (ai)i∈I0 ∈ CI0

we have that ‖
∑
i∈I0

aiλi‖∗ ≤ B‖(ai)i∈I0‖p.
(ii) p1(V ) = (p1(ej))j∈J being an upper p-frame∗ for E1 means that there exists

a constant C > 0 satisfying

‖(g(p1(ej)))j∈J‖p ≤ C ‖g‖∗ for each g ∈ E∗1 .
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Since E∗ = E∗1 ⊕ E∗2 is a topological direct sum, the canonical projection

pk∗ : (E∗ = E∗1 ⊕ E∗2 , ‖ ‖∗)→ (E∗k , ‖ ‖∗),

defined by f = f1 + f2 7→ fk = f |Ek
, is continuous for every k ∈ {1, 2}.

Suppose that p2∗ (W ∗) = (p2∗(λl))l∈L is an upper p-Riesz sequence for E∗2 .
Let us see that p1(V ) = (p1(ej))j∈J is a lower p-frame∗ for E1; in other words,
there exists a constant D > 0 such that each g ∈ E∗1 satisfies the inequality
D‖g‖∗ ≤ ‖(g (p1(ej)))j∈J‖p.

By hypothesis, B∗ = (λi)i∈N is a generator set of E∗(⊇ E∗1 , E∗2 ). We will prove
the result in two steps.

Step 1. Let g̃ ∈ p1∗ (span(B∗)) = span {p1∗ (B∗)} ⊆ E∗1 . There exists I0 ∈ P0(N)
and coefficients c = (ci)i∈I0

∈ CI0 such that

g̃ =
∑
i∈I0

ci p1∗ (λi) .

Let us consider the function g := g̃ ◦ p1 ∈ E∗, which is an extension of g̃ to E,
and satisfies g|E1 = g̃, g|E2 = 0. A direct calculus shows that ‖g̃‖∗ ≤ ‖g‖∗. Since
B∗ = (λi)i∈N is a generator set of E∗, there exists a sequence ag = (ai)i∈N in C
such that

g =
∑
i∈N

aiλi ∈ E∗.

Since λi (ej) = δij for each i, j ∈ N, we have ai = g(ei) for each i ∈ N and thus

g =
∑
i∈N

g(ei)λi ∈ E∗.

Hence, g̃ = g|E1 = p1∗(g) =
∑
i∈N g(ei)p1∗ (λi) ∈ E∗1 .

The assumption (iii) in the theorem implies the uniqueness of the coefficients, so
that we have ci = g(ei) for each i ∈ I0 and g(ei) = 0 for every i ∈ N\I0. Therefore,
g̃ =

∑
i∈I0

g(ei)p1∗ (λi) and g =
∑
i∈I0

g(ei)λi.
Define J0 := J ∩ I0 ∈ P0(J), L0 := L ∩ I0 ∈ P0(L). We define now:

gV ∗ :=
∑
j∈J0

g(ej)λj ∈ span(V ∗),

gW∗ :=
∑
l∈L0

g(el)λl ∈ span(W ∗).

We have g = gV ∗ + gW∗ .
Since 0 = g|E2 = p2∗(g) = p2∗(gV ∗) + p2∗(gW∗), we have

p2∗(gV ∗) = −p2∗(gW∗).
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Therefore

‖gW∗‖∗ =
∥∥∥∥ ∑
l∈L0

g(el)λl
∥∥∥∥
∗
≤ D1

(∑
l∈L0

|g(el)|p
)1/p

≤ D2

∥∥∥∥ ∑
l∈L0

g(el)p2∗(λl)
∥∥∥∥
∗

= D2‖p2∗(gW∗)‖∗ = D2‖ − p2∗(gV ∗)‖∗

= D2 ‖p2∗(gV ∗)‖∗ ≤ D′‖gV ∗‖∗.
The first inequality comes from the assumption (i), whereas the second inequality
follows from the fact that p2∗(W ∗) is an upper p-Riesz sequence for E∗2 . Therefore
‖gW∗‖∗ ≤ D′‖gV ∗‖∗, with D′ > 0 independent of g. Thus

‖g‖∗ = ‖gV ∗ + gW∗‖∗ ≤ ‖gV ∗‖∗ + ‖gW∗‖∗ ≤ (1 +D′)‖gV ∗‖∗

= D3

∥∥∥∥ ∑
j∈J0

g(ej)λj
∥∥∥∥
∗
≤ D4

(∑
j∈J0

|g(ej)|p
)1/p

,

where we have defined D3 := 1 +D′, D4 := D3 ·D1, and the last inequality is true
by the assumption (i). So we have

‖g‖∗ ≤ D4

(∑
j∈J0

|g(ej)|p
)1/p

,

with D4 > 0 independent of g. By definition of g we also have that
g(ej) = g̃(p1(ej)) for each j ∈ J0.

Then,

‖g̃‖∗ ≤ ‖g‖∗ ≤ D4

(∑
j∈J0

|g̃(p1(ej))|p
)1/p

.

We define D := 1
D4

> 0. Then,

D‖g̃‖∗ ≤
(∑
j∈J0

|g̃(p1(ej))|p
)1/p

≤
(∑
j∈J
|g̃(p1(ej))|p

)1/p
.

Therefore

D‖g̃‖∗ ≤
(∑
j∈J
|g̃(p1(ej))|p

)1/p
.

The assumption (iii) implies that p1∗(B∗) ⊆ E∗1 is a total set for E∗1 :

span (p1∗(B∗)) = E∗1 .

Define S1∗ := p1∗(B∗) = {p1∗(λi) : i ∈ N} ⊆ E∗1 . We have proved that there
exists a constant D > 0 satisfying

D‖g̃‖∗ ≤
(∑
j∈J
|g̃(p1(ej))|p

)1/p
= ‖(g̃(p1(ej)))j∈J‖p

for all g̃ ∈ span(S∗1 ) ⊆ E∗1 .
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For p = +∞ we obtain the same result with standard modifications to the proof
given above.
Step 2. General case: Let g ∈ E∗1 = span(S∗1 ). There exists a sequence (gn)n∈Z+ ∈
span(S∗1 ) ⊆ E∗1 which converges to g in E∗1 . By Step 1 we have that

D‖gn‖∗ ≤ ‖(gn(p1(ej)))j∈J‖p
for each n ∈ Z+. By the assumption (ii) we also have that

‖(f(p1(ej)))j∈J‖p ≤ C3‖f‖∗ for all f ∈ E∗1 .
In other words, the function

ϕ : (E∗1 , ‖ ‖∗)→ (lp(J), ‖ ‖p)
given by

f → (f(p1(ej)))j∈J
is well defined and continuous. Since (gn)n∈Z+ converges to g in E∗1 ,

(gn(p1(ej)))j∈J →n→+∞ (g(p1(ej)))j∈J in (lp(J), ‖ ‖p),
and thus

‖(gn(p1(ej)))j∈J‖p →n→+∞ ‖(g(p1(ej)))j∈J‖p.
On the other hand, because of the convergence of (gn)n∈Z+ to g, we have that

‖gn‖∗ →n→+∞ ‖g‖∗.
We saw before that D‖gn‖∗ ≤ ‖(gn (p1(ej)))j∈J‖p for each n ∈ Z+. Taking limits
when n→ +∞, we obtain

D‖g‖∗ ≤ ‖(g (p1(ej)))j∈J‖p,
where D > 0 is independent of g ∈ E∗1 .

Conclusion: p1(V ) = (p1 (ej))j∈J is a p-frame∗ for E1. �
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