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ON THE ATOMIC AND MOLECULAR DECOMPOSITION OF
WEIGHTED HARDY SPACES

PABLO ROCHA

Abstract. The purpose of this article is to give another molecular decom-
position for members of weighted Hardy spaces, different from that given by
Lee and Lin [J. Funct. Anal. 188 (2002), no. 2, 442–460], and to review some
overlooked details. As an application of this decomposition, we obtain the
boundedness on Hp

w(Rn) of every bounded linear operator on some Lp0 (Rn)
with 1 < p0 < +∞, for all weights w ∈ A∞ and all 0 < p ≤ 1 if 1 < rw−1

rw
p0,

or all 0 < p < rw−1
rw

p0 if rw−1
rw

p0 ≤ 1, where rw is the critical index of w

for the reverse Hölder condition. In particular, the well-known results about
boundedness of singular integrals from Hp

w(Rn) into Lpw(Rn) and on Hp
w(Rn)

for all w ∈ A∞ and all 0 < p ≤ 1 are established. We also obtain the
Hp
wp (Rn)-Hq

wq (Rn) boundedness of the Riesz potential Iα for 0 < p ≤ 1,
1
q

= 1
p
− α
n

, and certain weights w.

1. Introduction

The Hardy spaces on Rn were defined in [4] by C. Fefferman and E. Stein; since
then the subject has received considerable attention. One of the most important
applications of Hardy spaces is that they are good substitutes for Lebesgue spaces
when p ≤ 1. For example, when p ≤ 1, it is well known that Riesz transforms are
not bounded on Lp(Rn); however, they are bounded on Hardy spaces Hp(Rn).

To obtain the boundedness of operators—like singular integrals or fractional
type operators—in the Hardy spaces Hp(Rn), one can appeal to the atomic or
molecular characterization of Hp(Rn), which means that a distribution in Hp can
be represented as a sum of atoms or molecules. The atomic decomposition of
elements in Hp(Rn) was obtained by Coifman in [2] (for n = 1), and by Latter
in [8] (for n ≥ 1). In [20], Taibleson and Weiss gave the molecular decomposition
of elements in Hp(Rn). Then the boundedness of linear operators in Hp can be
deduced, in principle, from their behavior on atoms or molecules. However, it
must be mentioned that M. Bownik in [1], based on an example of Y. Meyer,
constructed a linear functional defined on a dense subspace of H1(Rn), which maps
all (1,∞, 0) atoms into bounded scalars, and yet cannot be extended to a bounded
linear functional on the whole H1(Rn). This implies that it does not suffice to
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check that an operator from a Hardy space Hp, 0 < p ≤ 1, into some quasi
Banach space X, maps atoms into bounded elements of X to establish that this
operator extends to a bounded operator on Hp. Bownik’s example is, in a certain
sense, pathological. Fortunately, if T is a classical operator, then the uniform
boundedness of T on atoms implies the boundedness from Hp into Lp; this follows
from the boundedness on Ls, 1 < s < ∞, of T , and since one always can take an
atomic decomposition which converges in the norm of Ls (see [21] and [14]).

The weighted Lebesgue spaces Lpw(Rn) are a generalization of the classical Lebes-
gue spaces Lp(Rn), replacing the Lebesgue measure dx by the measure w(x) dx,
where w is a non-negative measurable function. Then one can define the weighted
Hardy spaces Hp

w(Rn) by generalizing the definition of Hp(Rn) (see [18]). It is well
known that the harmonic analysis on these spaces is relevant if the “weights” w
belong to the class A∞. The atomic characterization of Hp

w(Rn) has been given
in [5] and [18]. The molecular characterization of Hp

w(Rn) was developed indepen-
dently by X. Li and L. Peng in [10] and by M.-Y. Lee and C.-C. Lin in [9]. In both
works the authors obtained the boundedness of the classical singular integrals on
Hp
w for w ∈ A1. We extend these results for all w ∈ A∞.
Given w ∈ A∞, a w-(p, p0, d) atom is a measurable function a(·) with support

in a ball B such that

(1) ‖a‖Lp0 ≤
|B|1/p0

w(B)1/p , and

(2)
∫
xαa(x) dx = 0, for all multi-indices |α| ≤ d,

where the parameters p, p0, and d satisfy certain restrictions. We remark that our
definition of atom differs from that given in [5, 18].

One of our main results is Theorem 2.9 of Section 2 below, which states the
following:

If w ∈ A∞ and f belongs to a dense subspace of Hp
w, then there exist a sequence

of w-(p, p0, d) atoms {aj} and a sequence of scalars {λj} with
∑
j |λj |p ≤ c‖f‖p

Hpw
such that f =

∑
j λjaj, where the series converges to f in Ls(Rn), for all s > 1.

With this result we avoid any problems that could arise with respect to es-
tablishing the boundedness of classical operators on Hp

w. The verification of the
convergence in Ls for the infinite atomic decomposition was sometimes an over-
looked detail. As far as the author knows, the above result has been proved for
w-(p,∞, d) atoms in R by J. Garćıa-Cuerva in [5], and for w-(p,∞, d) atoms in Rn
by D. Cruz-Uribe et al. in [3].

Given w ∈ A∞, we say that a measurable function m(·) is a w-(p, p0, d) molecule
centered at a ball B = B(x0, r) if it satisfies the following conditions:

(m1) ‖m‖Lp0 (B(x0,2r)) ≤ |B|
1
p0 w(B)−

1
p .

(m2) |m(x)| ≤ w(B)−
1
p

(
1 + |x−x0|

r

)−2n−2d−3
for all x ∈ Rn \B(x0, 2r).

(m3)
∫
Rn x

αm(x) dx = 0 for every multi-index α with |α| ≤ d.
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Our definition of molecule is an adaptation from that given in [13] by E. Nakai
and Y. Sawano in the setting of variable Hardy spaces. It is clear that a w-(p, p0, d)
atom is a w-(p, p0, d) molecule. The pointwise inequality in (m2) seems a good
substitute for “the loss of compactness in the support of an atom”.

In Section 3, we obtain the following result (Theorem 3.3 below):
Let 0 < p ≤ 1, w ∈ A∞, and let f ∈ S ′(Rn) be such that f =

∑
j λjmj in

S ′(Rn), where {λj} is a sequence of positive numbers belonging to `p(N) and the
functions mj are (p, p0, d)-molecules centered at Bj with respect to the weight w.
Then f ∈ Hp

w(Rn), with
‖f‖p

Hpw
≤ Cw,p,p0

∑
j

λpj .

With these results in Section 4 we re-establish the boundedness on Hp
w and from

Hp
w into Lpw of certain singular integrals, for all w ∈ A∞ and all 0 < p ≤ 1. We

also obtain the Hp
wp -Hq

wq boundedness of the Riesz potential Iα, for 0 < p ≤ 1,
1
q = 1

p −
α
n , and certain weights w.

Notation. The symbol A . B stands for the inequality A ≤ cB for some con-
stant c. We denote by B(x0, r) the ball centered at x0 ∈ Rn of radius r. Given a
ball B(x0, r) and a constant c > 0, we set cB = B(x0, cr). For a measurable subset
E ⊂ Rn we denote by |E| and χE the Lebesgue measure of E and the characteristic
function of E, respectively. Given a real number s ≥ 0, we write bsc for the integer
part of s. As usual we denote by S(Rn) the space of smooth and rapidly decreasing
functions and with S ′(Rn) the dual space. If β is the multi-index β = (β1, . . . , βn),
then |β| = β1 + · · ·+ βn.

Throughout this paper, C will denote a positive constant, not necessarily the
same at each occurrence.

2. Preliminaries

2.1. Weighted theory. A weight is a non-negative locally integrable function
on Rn that takes values in (0,∞) almost everywhere, i.e., the weights are allowed
to be zero or infinity only on a set of Lebesgue measure zero.

Given a weight w and 0 < p < ∞, we denote by Lpw(Rn) the space of all
functions f satisfying ‖f‖p

Lpw
:=
∫
Rn |f(x)|pw(x) dx < ∞. When p = ∞, we have

that L∞w (Rn) = L∞(Rn), with ‖f‖L∞w = ‖f‖L∞ . If E is a measurable set, we use
the notation w(E) =

∫
E
w(x) dx.

Let f be a locally integrable function on Rn. The function

M(f)(x) = sup
B3x

1
|B|

∫
B

|f(y)| dy,

where the supremum is taken over all balls B containing x, is called the uncentered
Hardy–Littlewood maximal function of f .

We say that a weight w belongs to A1 if there exists C > 0 such that
M(w)(x) ≤ Cw(x), a.e. x ∈ Rn;
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the best possible constant is denoted by [w]A1 . Equivalently, a weight w belongs
to A1 if there exists C > 0 such that for every ball B

1
|B|

∫
B

w(x) dx ≤ C ess inf
x∈B

w(x). (2.1)

Remark 2.1. If w ∈ A1 and 0 < r < 1, then by Hölder’s inequality we have that
wr ∈ A1.

For 1 < p <∞, we say that a weight w ∈ Ap if there exists C > 0 such that for
every ball B (

1
|B|

∫
B

w(x) dx
)(

1
|B|

∫
B

[w(x)]−
1
p−1 dx

)p−1
≤ C.

It is well known that Ap1 ⊂ Ap2 for all 1 ≤ p1 < p2 < ∞. Also, if w ∈ Ap
with 1 < p < ∞, then there exists 1 < q < p such that w ∈ Aq. We denote by
q̃w := inf{q > 1 : w ∈ Aq} the critical index of w.

Lemma 2.2. If w ∈ Ap for some 1 ≤ p <∞, then the measure w(x) dx is doubling:
precisely, for all λ > 1 and all balls B we have

w(λB) ≤ λnp[w]Apw(B),
where λB denotes the ball with the same center as B and radius λ times the radius
of B.

Theorem 2.3 ([11, Theorem 9]). Let 1 < p <∞. Then∫
Rn

[Mf(x)]pw(x) dx ≤ Cw,p,n
∫
Rn
|f(x)|pw(x) dx,

for all f ∈ Lpw(Rn) if and only if w ∈ Ap.

Given 1 < p ≤ q <∞, we say that a weight w ∈ Ap,q if there exists C > 0 such
that for every ball B(

1
|B|

∫
B

[w(x)]q dx
)1/q ( 1

|B|

∫
B

[w(x)]−p
′
dx

)1/p′

≤ C <∞.

For p = 1, we say that a weight w ∈ A1,q if there exists C > 0 such that for every
ball B (

1
|B|

∫
B

[w(x)]q dx
)1/q

≤ C ess inf
x∈B

w(x).

When p = q, this definition is equivalent to wp ∈ Ap.

Remark 2.4. From the inequality (2.1) it follows that if a weight w ∈ A1, then
0 < ess infx∈B w(x) < ∞ for each ball B. Thus w ∈ A1 implies that w

1
q ∈ Ap,q,

for each 1 ≤ p ≤ q <∞.

Given 0 < α < n, we define the fractional maximal operator Mα by

Mαf(x) = sup
B3x

1
|B|1−αn

∫
B

|f(y)| dy,
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where f is a locally integrable function and the supremum is taken over all balls B
containing x.

The fractional maximal operator satisfies the following weighted inequality.

Theorem 2.5 ([12, Theorem 3]). If 0 < α < n, 1 < p < n
α , 1

q = 1
p −

α
n , and

w ∈ Ap,q, then(∫
Rn

[Mαf(x)]qwq(x) dx
)1/q

≤ C
(∫

Rn
|f(x)|pwp(x) dx

)1/p
,

for all f ∈ Lpwp(Rn).

A weight w satisfies the reverse Hölder inequality with exponent s > 1, denoted
by w ∈ RHs, if there exists C > 0 such that for every ball B,(

1
|B|

∫
B

[w(x)]s dx
) 1
s

≤ C 1
|B|

∫
B

w(x) dx;

the best possible constant is denoted by [w]RHs . We observe that if w ∈ RHs,
then by Hölder’s inequality, w ∈ RHt for all 1 < t < s, and [w]RHt ≤ [w]RHs .
Moreover, if w ∈ RHs, s > 1, then w ∈ RHs+ε for some ε > 0. We denote by
rw = sup{r > 1 : w ∈ RHr} the critical index of w for the reverse Hölder condition.

It is well known that a weight w satisfies the condition A∞ if and only if w ∈ Ap
for some p ≥ 1 (see [6, Corollary 7.3.4]). So A∞ = ∪1≤p<∞Ap. Also, w ∈ A∞ if
and only if w ∈ RHs for some s > 1 (see [6, Theorem 7.3.3]). Thus 1 < rw ≤ +∞
for all w ∈ A∞.

Another remarkable result about the reverse Hölder classes was discovered by
Stromberg and Wheeden. They proved in [19] that w ∈ RHs, 1 < s < +∞, if and
only if ws ∈ A∞.

Given a weight w, 0 < p < ∞, and a measurable set E, we set wp(E) =∫
E

[w(x)]p dx. The following result is an immediate consequence of the reverse
Hölder condition.

Lemma 2.6. For 0 < α < n, let 0 < p < n
α and 1

q = 1
p −

α
n . If wp ∈ RH q

p
then

[wp(B)]−
1
p [wq(B)]

1
q ≤ [wp]1/pRHq/p

|B|−αn ,

for each ball B in Rn.

2.2. Weighted Hardy spaces. Topologize S(Rn) by the collection of semi-norms
‖ · ‖α,β , with α and β multi-indices, given by

‖ϕ‖α,β = sup
x∈Rn

|xα∂βϕ(x)|.

For each N ∈ N, we set SN = {ϕ ∈ S(Rn) : ‖ϕ‖α,β ≤ 1, |α|, |β| ≤ N}. Let f ∈
S ′(Rn). We denote by MN the grand maximal operator given by

MNf(x) = sup
t>0

sup
ϕ∈SN

∣∣(t−nϕ(t−1·) ∗ f
)

(x)
∣∣ .
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Given a weight w ∈ A∞ and p > 0, the weighted Hardy space Hp
w(Rn) consists of

all tempered distributions f such that

‖f‖Hpw(Rn) = ‖MNf‖Lpw(Rn) =
(∫

Rn
[MNf(x)]pw(x) dx

)1/p
<∞.

Let φ ∈ S(Rn) be a function such that
∫
φ(x) dx 6= 0. For f ∈ S ′(Rn), we define

the maximal function Mφf by
Mφf(x) = sup

t>0

∣∣(t−nφ(t−1 ·) ∗ f
)

(x)
∣∣ .

For N sufficiently large, we have ‖Mφf‖Lpw ' ‖MNf‖Lpw (see [18]).

In what follows we consider the set
D̂0 = {φ ∈ S(Rn) : φ̂ ∈ C∞c (Rn) and supp(φ̂) ⊂ B(0, δ) for some δ > 0}.

The following theorem is crucial to get the main results.

Theorem 2.7 ([18, Theorem 1, p. 103]). Let w be a doubling weight on Rn. Then
D̂0 is dense in Hp

w(Rn), 0 < p <∞.

2.2.1. Weighted atom theory. Let w ∈ A∞ with critical index q̃w and critical index
rw for the reverse Hölder condition. Let 0 < p ≤ 1, max

{
1, p
(

rw
rw−1

)}
< p0 ≤ +∞,

and d ∈ Z such that d ≥
⌊
n
(
q̃w
p − 1

)⌋
. We say that a function a(·) is a w-(p, p0, d)

atom centered at x0 ∈ Rn if

(a1) a ∈ Lp0(Rn) with support in the ball B = B(x0, r).

(a2) ‖a‖Lp0 (Rn) ≤ |B|
1
p0 w(B)−

1
p .

(a3)
∫
xαa(x) dx = 0 for all multi-indices α such that |α| ≤ d.

We observe that the condition max
{

1, p
(

rw
rw−1

)}
< p0 < +∞ implies that

w ∈ RH( p0
p )′ . If rw = +∞, then w ∈ RHt for each 1 < t < +∞. So, if rw = +∞

and since limt→+∞
t
t−1 = 1, we put rw

rw−1 = 1. For example, if w ≡ 1, then q̃w = 1
and rw = +∞, and our definition of atom coincides in this case with the definition
of atom in the classical Hardy spaces.

Lemma 2.8. Let w ∈ A∞ with critical index q̃w and critical index rw. If a(·) is a
w-(p, p0, d) atom, then a(·) ∈ Hp

w(Rn). Moreover, there exists a positive constant C
independent of the atom a such that ‖a‖Hpw ≤ C.

Proof. Let φ ∈ S(Rn) with
∫
φ(x) dx 6= 0. Since φ has a radial majorant that is a

non-increasing, bounded, and integrable function, we have that
Mφa(x) ≤ cMa(x), for all x ∈ Rn.

In view of the moment condition of a we have

(a ∗ φt)(x) =
∫

[φt(x− y)− qx,t(y)]a(y) dy, if x ∈ Rn \B(x0, 4r),
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DECOMPOSITION OF WEIGHTED HARDY SPACES 235

where qx,t is the degree d Taylor polynomial of the function y → φt(x−y) expanded
around x0. By the standard estimate of the remainder term of the Taylor expansion,
the condition (a2), and Hölder’s inequality, we obtain that

Mφa(x) ≤ c‖a‖1rd+1|x− x0|−n−d−1

≤ cw(B)−1/prn+d+1|x− x0|−n−d−1

≤ cw(B)−1/p[M(χB)(x)]
n+d+1
n , if x ∈ Rn \B(x0, 4r).

Therefore,∫
[Mφa(x)]pw(x) dx ≤ c

∫ (
χB(x0,4r)[Ma(x)]p + [M(χB)(x)]

(n+d+1)p
n

w(B)

)
w(x) dx.

On the right side of this inequality, we apply Hölder’s inequality with p0/p and
use that w ∈ RH( p0

p )′ (p0 > p
(

rw
rw−1

)
) and Lemma 2.2 for the first term; for the

second term we have that (n+d+1)p
n > q̃w, so w ∈ A (n+d+1)p

n

. Then by invoking
Theorem 2.3 we obtain

‖Mφa‖pLpw =
∫
Rn

[Mφa(x)]pw(x) dx ≤ C,

where the constant C is independent of the w-(p, p0, d) atom a. Thus a ∈ Hp
w(Rn).

�

Theorem 2.9. Let f ∈ D̂0, and 0 < p ≤ 1. If w ∈ A∞, then there exist a sequence
of w-(p, p0, d) atoms {aj} and a sequence of scalars {λj} with

∑
j |λj |p ≤ c‖f‖p

Hpw
such that f =

∑
j λjaj, where the convergence is both in Ls(Rn) and pointwise, for

each 1 < s <∞.

Proof. Given f ∈ D̂0, let Oj = {x : MNf(x) > 2j} and let Fj = {Qjk}k be the
Whitney decomposition associated to Oj such that

⋃
kQ

j∗
k = Oj . Fixed j ∈ Z, we

define the set
Ej = {(i, k) ∈ Z× Z : Qj+1∗

i ∩Qj∗k 6= ∅}

and let Ejk = {i : (i, k) ∈ Ej} and Eji = {k : (i, k) ∈ Ej}. Following the proof in
[16, Ch. III, §2.3, pp. 107–109], we have a sequence of functions Ajk such that

(i) supp(Ajk) ⊂ Qj∗k ∪
⋃
i∈Ej

k
Qj+1∗
i and |Ajk(x)| ≤ c2j for all k, j ∈ Z.

(ii)
∫
xαAjk(x) dx = 0 for all α with |α| ≤ d and all k, j ∈ Z.

(iii) The sum
∑
j,k A

j
k converges to f in the sense of distributions.

From (i) we obtain

∑
k

|Ajk| ≤ c2
j

(∑
k

χQj∗
k

+
∑
k

χ⋃
i∈Ej

k

Qj+1∗
i

)
;
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following the proof of Theorem 5 in [14] we obtain

≤ c2j
(
χOj +

∑
k

∑
i∈Ej

k

χQj+1∗
i

)
= c2j

(
χOj +

∑
i

∑
k∈Ej

i

χQj+1∗
i

)

≤ c2j
(
χOj + 84n

∑
i

χQj+1∗
i

)
≤ c2j

(
χOj + χOj+1

)
≤ c2jχOj .

By [14, Lemma 4] we have that∑
j,k

|Ajk(x)| ≤ c
∑
j

2jχOj\Oj+1(x), a.e. x ∈ Rn.

Thus, for 1 < s <∞ fixed,∫ (∑
j,k

|Ajk(x)|
)s

dx ≤ c
∑
j

∫
Oj\Oj+1

2js dx ≤ c
∑
j

∫
Oj\Oj+1

(Mf(x))s dx

≤ c
∫
Rn

(Mf(x))s dx <∞,

(2.2)

since f ∈ D̂0 ⊂ Ls(Rn). From (2.2) and (iii) we obtain that the sum
∑
j,k A

j
k

converges to f in Ls(Rn), and
∑
j,k A

j
k(x) = f(x) a.e. x ∈ Rn, for each 1 < s <∞.

Now, we set aj,k = λ−1
j,kA

j
k with λj,k = c2jw(Bjk)1/p, where Bjk is the smallest

ball containing Qj∗k as well as all the Qj+1∗
i that intersect Qj∗k . Then we have a

sequence {aj,k} of w-(p, p0, d) atoms and a sequence of scalars {λj,k} such that the
sum

∑
j,k λj,kaj,k converges to f in Ls(Rn) and a.e. x ∈ Rn. On the other hand

there exists a universal constant c1 such that Bjk ⊂ c1Q
j
k, so∑

j,k

|λj,k|p .
∑
j,k

2jpw(Bjk) .
∑
j,k

2jpw(c1Qjk) . cnp1

∑
j,k

2jpw(Qjk) = c
∑
j

2jpw(Oj).

If x ∈ Rn, there exists a unique j0 ∈ Z such that 2j0p <MNf(x)p ≤ 2(j0+1)p. So∑
j

2jpχOj (x) ≤
∑
j≤j0

2jp = 2(j0+1)p

2p − 1 ≤
2p

2p − 1MNf(x)p.

From this it follows that∑
j,k

|λj,k|p ≤ c
∑
j

2jpw(Oj) ≤ c
2p

2p − 1‖MNf‖pLpw = c
2p

2p − 1‖f‖
p
Hpw
,

which proves the theorem. �

Theorem 2.10. Let T be a bounded linear operator from Lp0(Rn) into Lp0(Rn)
for some 1 < p0 < +∞. If w ∈ A∞ with critical index rw, 0 < p ≤ 1 < rw−1

rw
p0

or 0 < p < rw−1
rw

p0 ≤ 1, then T can be extended to an Hp
w(Rn)-Lpw(Rn) bounded

linear operator if and only if T is uniformly bounded in Lpw norm on all w-(p, p0, d)
atoms a.
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Proof. Since T is a bounded linear operator on Lp0(Rn), T is well defined on
Hp
w(Rn)∩Lp0(Rn). If T can be extended to a bounded operator from Hp

w(Rn) into
Lpw(Rn), then ‖Ta‖Lpw ≤ cp‖a‖Hpw for all w-atoms a. By Lemma 2.8, there exists a
universal constant C such that ‖a‖Hpw ≤ C <∞ for all w-atoms a; so ‖Ta‖Lpw ≤ Cp
for all w-atoms a.

Conversely, taking into account the assumptions on p and p0, given f ∈ D̂0, by
Theorem 2.9 there exists a w-(p, p0, d) atomic decomposition such that

∑
j |λj |p .

‖f‖Hpw and
∑
j λjaj = f in Lp0(Rn). From the boundedness of T on Lp0(Rn) we

have that the sum
∑
j λjTaj converges to Tf in Lp0(Rn), thus there exists a sub-

sequence of natural numbers {kN}N∈N such that limN→+∞
∑kN
j=−kN λjTaj(x) =

Tf(x) a.e. x ∈ Rn; this implies that

|Tf(x)| ≤
∑
j

|λjTaj(x)|, a.e. x ∈ Rn.

If ‖Ta‖Lpw ≤ Cp <∞ for all w-(p, p0, d) atoms a, and since 0 < p ≤ 1, we get

‖Tf‖p
Lpw
≤
∑
j

|λj |p‖Taj‖pLpw ≤ C
p
p

∑
j

|λj |p ≤ Cpp‖f‖
p
Hpw

for all f ∈ D̂0. By Theorem 2.7, we have that D̂0 is a dense subspace of Hp
w(Rn),

so the theorem follows by a density argument. �

3. Molecular decomposition

Our definition of molecule is an adaptation from that given in [13] by E. Nakai
and Y. Sawano in the setting of variable Hardy spaces.

Definition 3.1. Let w ∈ A∞ with critical index q̃w and critical index rw for the
reverse Hölder condition. Let 0 < p ≤ 1, max

{
1, p
(

rw
rw−1

)}
< p0 ≤ +∞, and

d ∈ Z such that d ≥
⌊
n
(
q̃w
p − 1

)⌋
. We say that a function m(·) is a w-(p, p0, d)

molecule centered at a ball B = B(x0, r) if it satisfies the following conditions:
(m1) ‖m‖Lp0 (B(x0,2r)) ≤ |B|

1
p0 w(B)−

1
p .

(m2) |m(x)| ≤ w(B)−
1
p

(
1 + |x−x0|

r

)−2n−2d−3
for all x ∈ Rn \B(x0, 2r).

(m3)
∫
Rn x

αm(x) dx = 0 for every multi-index α with |α| ≤ d.

Remark 3.2. The conditions (m1) and (m2) imply that ‖m‖Lp0 (Rn) ≤ c |B|
1
p0

w(B)
1
p

,
where c is a positive constant independent of the molecule m.

From the definition of molecule it is clear that a w-(p, p0, d) atom is a w-(p, p0, d)
molecule.

In view of Lemma 2.8, the following theorem assures, among other things, that
the pointwise inequality in (m2) is a good substitute for “the loss of compactness
in the support of an atom”.
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Theorem 3.3. Let 0 < p ≤ 1, w ∈ A∞, and let f ∈ S ′(Rn) be such that f =∑
j λjmj in S ′(Rn), where {λj} is a sequence of positive numbers belonging to

`p(N) and the functions mj are (p, p0, d)-molecules centered at Bj with respect to
the weight w. Then f ∈ Hp

w(Rn) with

‖f‖p
Hpw
≤ Cw,p,p0

∑
j

λpj .

Proof. Let φ ∈ C∞c (Rn) be such that χB(0,1) ≤ φ ≤ χB(0,2); we set φ2k(x) =
2knφ(2kx), where k ∈ Z. Since f =

∑
j λjmj in the sense of the distributions, we

have that

|(φ2k ∗ f)(x)| ≤
∞∑
j=1

λj |(φ2k ∗mj)(x)|,

for all x ∈ Rn and all k ∈ Z. We observe that the argument used in the proof of
Theorem 5.2 in [13] to obtain the pointwise inequality (5.2) in that paper works in
this setting, but considering now the conditions (m1), (m2), and (m3). Therefore,
we get

Mφ(f)(x) .
∑
j

λjχ2Bj (x)M(mj)(x) +
∑
j

λj

[
M(χBj )(x)

]n+dw+1
n

w(Bj)
1
p

, x ∈ Rn,

where M is the Hardy–Littlewood maximal operator.
Since 0 < p ≤ 1, it follows that

[Mφ(f)(x)]p .
∑
j

λpjχ2Bj (x)[M(mj)(x)]p+
∑
j

λpj

[
M(χBj )(x)

]pn+dw+1
n

w(Bj)
, x ∈ Rn,

and by integrating with respect to w we get∫
[Mφ(f)(x)]pw(x) dx .

∑
j

λpj

∫
χ2Bj (x)[M(mj)(x)]pw(x) dx

+
∑
j

λpj

∫ [
M(χBj )(x)

]pn+dw+1
n

w(Bj)
w(x) dx.

On the right side of this inequality, we apply Hölder’s inequality with p0/p, Re-
mark 3.2, Lemma 2.2, and use that w ∈ RH( p0

p )′ (p0 > p( rw
rw−1 )) for the first term;

for the second term we have that (n+d+1)p
n > q̃w, so w ∈ A (n+d+1)p

n

, and by invoking
Theorem 2.3 we obtain

‖f‖p
Hpw
≤ Cw,p,p0

∑
j

λpj .

This completes the proof. �

Theorem 3.4. Let T be a bounded linear operator from Lp0(Rn) into Lp0(Rn) for
some 1 < p0 < +∞. If w ∈ A∞ with critical index rw, 0 < p ≤ 1 < rw−1

rw
p0

or 0 < p < rw−1
rw

p0 ≤ 1, and Ta is a w-(p, p0, d2) molecule for each w-(p, p0, d1)
atom a, then T can be extended to an Hp

w(Rn)-Hp
w(Rn) bounded linear operator.
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Proof. Taking into account the assumptions on p and p0, given f ∈ D̂0, from
Theorem 2.9 it follows that there exists a sequence of w-(p, p0, d1) atoms {aj} and
a sequence of scalars {λj} with ∑

j

|λj |p . ‖f‖pHpw , (3.1)

such that f =
∑
j λjaj in Lp0(Rn). From the boundedness of T on Lp0(Rn) we

have that Tf =
∑
j λjTaj in Lp0(Rn) and therefore in S ′(Rn). By hypothesis Taj

is a w-(p, p0, d2) molecule for all j, so Theorem 3.3 and the inequality (3.1) imply
that

‖Tf‖p
Hpw
.
∑
j

|λj |p . ‖f‖pHpw

for all f ∈ D̂0, so the theorem follows from the density of D̂0 in Hp
w(Rn). �

4. Applications

4.1. Singular integrals. Let Ω ∈ C∞(Sn−1) with
∫
Sn−1 Ω(u) dσ(u) = 0. We

define the operator T by

Tf(x) = lim
ε→0+

∫
|y|>ε

Ω(y/|y|)
|y|n

f(x− y) dy, x ∈ Rn. (4.1)

It is well known that T̂ f(ξ) = m(ξ)f̂(ξ), where the multiplier m is homogeneous of
degree 0 and is indefinitely differentiable on Rn \ {0}. Moreover, if k(y) = Ω(y/|y|)

|y|n
we have

|∂αy k(y)| ≤ C|y|−n−|α|, for all y 6= 0 and all multi-indices α. (4.2)

Then the operator T is bounded on Ls(Rn) for all 1 < s < +∞ and of weak-type
(1, 1) (see [15]).

Let 0 < p ≤ 1 and d =
⌊
n
(
q̃w
p − 1

)⌋
. Given a w-(p, p0, n + 2d + 2) atom a(·)

with support in the ball B(x0, r) we have that

‖Ta‖Lp0 (B(x0,2r)) ≤ C‖a‖p0 ≤ C|B|1/p0w(B)−1/p, (4.3)
since T is bounded on Lp0(Rn). In view of the moment condition of a(·) we obtain

Ta(x) =
∫
B

k(x− y)a(y) dy

=
∫
B

[k(x− y)− qn+2d+2(x, y)]a(y) dy, x /∈ B = B(x0, 2r),

where qn+2d+2 is the degree n+2d+2 Taylor polynomial of the function y → k(x−y)
expanded around x0. From the estimate (4.2) and the standard estimate of the
remainder term of the Taylor expansion, there exists ξ between y and x0 such that

|Ta(x)| ≤ C‖a‖1
|y − x0|n+2d+3

|x− ξ|2n+2d+3 ≤ C
r2n+2d+3

w(B)1/p |x− x0|−2n−2d−3, x /∈ B(x0, 2r).

(4.4)

Rev. Un. Mat. Argentina, Vol. 61, No. 2 (2020)



240 PABLO ROCHA

This inequality and a simple computation allow us to obtain

|Ta(x)| ≤ Cw(B)−
1
p

(
1 + |x− x0|

r

)−2n−2d−3
, for all x /∈ B(x0, 2r). (4.5)

From the estimate (4.4) we obtain that the function x → xαTa(x) belongs to
L1(Rn) for each |α| ≤ d, so

|((−2πix)αTa)̂(ξ)| = |∂αξ (m(ξ)â(ξ))| =

∣∣∣∣∣∑
β≤α

cα,β (∂α−βξ m)(ξ) (∂βξ â)(ξ)

∣∣∣∣∣
=

∣∣∣∣∣∑
β≤α

cα,β (∂α−βξ m)(ξ) ((−2πix)βa)̂(ξ)

∣∣∣∣∣.
From the homogeneity of the function ∂α−βξ m we obtain that

|((−2πix)αTa)̂(ξ)| ≤ C
∑
β≤α

|cα,β |
∣∣((−2πix)βa)̂(ξ)

∣∣
|ξ||α|−|β|

, ξ 6= 0. (4.6)

Since lim
ξ→0

∣∣((−2πix)βa)̂(ξ)
∣∣

|ξ||α|−|β|
= 0 for each β ≤ α (see [16, Ch. 3, §5.4, p. 128]),

taking the limit as ξ → 0 in (4.6) we get∫
Rn

(−2πix)αTa(x) dx = ((−2πix)αTa)̂(0) = 0, for all |α| ≤ d. (4.7)

From (4.3), (4.5), and (4.7) it follows that there exists a universal constant C > 0
such that CTa(·) is a w-(p, p0, d) molecule if a(·) is a w-(p, p0, n + 2d + 2) atom.
Taking p0 ∈ (1,+∞) such that 1 < rw−1

rw
p0 and since T is bounded on Lp0(Rn), by

Theorem 3.4 we get the following result.

Theorem 4.1. Let T be the operator defined in (4.1). If w ∈ A∞ and 0 < p ≤ 1,
then T can be extended to an Hp

w(Rn)-Hp
w(Rn) bounded operator.

In particular, the Hilbert transform and the Riesz transforms admit a continuous
extension on Hp

w(R) and Hp
w(Rn), for each w ∈ A∞ and 0 < p ≤ 1, respectively.

Remark 4.2. Let d =
⌊
n
(
q̃w
p − 1

)⌋
. If a(·) is a w-(p, p0, d) atom with 1 < rw−1

rw
p0,

then by proceeding as in the estimation of (4.4) we find that

|Ta(x)| ≤ C rn+d+1

w(B)1/p |x− x0|−n−d−1, x /∈ B(x0, 2r),

so

|Ta(x)| ≤ C [M(χB)(x)]n+d+1
n

w(B)1/p , x /∈ B(x0, 2r),

where M is the Hardy–Littlewood maximal operator.

Lemma 4.3. Let p0 ∈ (1,+∞) be such that 1 < rw−1
rw

p0. If T is the operator
defined in (4.1) and 0 < p ≤ 1, then there exists a universal constant C > 0 such
that ‖Ta‖Lpw ≤ C for all w-(p, p0, d) atoms a(·).
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Proof. Given a w-(p, p0, d) atom a(·), let 2B = B(x0, 2r), where B = B(x0, r) is
the ball containing the support of a(·). We write∫

Rn
|Ta(x)|pw(x) dx =

∫
2B
|Ta(x)|pw(x) dx+

∫
Rn\2B

|Ta(x)|pw(x) dx = I + II .

Since T is bounded on Lp0(Rn) and w ∈ RH( p0
p )′

(
p ≤ 1 < rw−1

rw
p0
)
, Hölder’s

inequality applied with p0
p and the condition (a2) give

I ≤ C‖a‖pp0
|B|−p/p0w(B) = C.

From Remark 4.2 and since w ∈ Apn+d+1
n

(
pn+d+1

n > q̃w
)
, we get

II ≤ w(B)−1
∫
Rn

[M(χB)(x)]
n+d+1
n w(x) dx ≤ Cw−1(B)

∫
B

w(x) dx = C,

where the second inequality follows from Theorem 2.3. This completes the proof.
�

Theorem 4.4. Let T be the operator defined in (4.1). If w ∈ A∞ and 0 < p ≤ 1,
then T can be extended to an Hp

w(Rn)-Lpw(Rn) bounded operator.

Proof. The theorem follows from Lemma 4.3 and Theorem 2.10. �

4.2. The Riesz potential. For 0 < α < n, let Iα be the Riesz potential defined
by

Iαf(x) =
∫
Rn

1
|x− y|n−α

f(y) dy, (4.8)

f ∈ Ls(Rn), 1 ≤ s < n
α . A well-known result of Sobolev gives the boundedness

of Iα from Lp(Rn) into Lq(Rn) for 1 < p < n
α and 1

q = 1
p −

α
n . In [17], E. Stein and

G. Weiss used the theory of harmonic functions of several variables to prove that
these operators are bounded from H1(Rn) into L

n
n−α (Rn). In [20], M. Taibleson

and G. Weiss obtained, using the molecular decomposition, the boundedness of
the Riesz potential Iα from Hp(Rn) into Hq(Rn), for 0 < p ≤ 1 and 1

q = 1
p −

α
n ; S. Krantz independently obtained the same result in [7]. We extend these
results to the context of weighted Hardy spaces using the weighted molecular theory
developed in Section 3.

First we recall the definition of the critical indices for a weight w.

Definition 4.5. Given a weight w, we denote by q̃w = inf{q > 1 : w ∈ Aq} the
critical index of w, and we denote by rw = sup{r > 1 : w ∈ RHr} the critical index
of w for the reverse Hölder condition.

Lemma 4.6. Let 0 < p < 1. If w1/p ∈ A1, then p · rwp ≤ rw ≤ rwp .
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Proof. The condition w1/p ∈ A1, with 0 < p < 1, implies that wp ∈ RH1/p. It is
well known that if w ∈ RHr, then w ∈ RHr+ε for some ε > 0, and thus 1/p < rwp .
Taking 1/p < t < rwp we have that 1 < pt < t and wp ∈ RHt, so(

1
|B|

∫
B

[w(x)]pt dx
)1/pt

=
(

1
|B|

∫
B

[wp(x)]t dx
)1/pt

≤ C
(

1
|B|

∫
B

wp(x) dx
)1/p

≤ C 1
|B|

∫
B

w(x) dx,

where the last inequality follows from Jensen’s inequality. This implies that p t < rw
for all t < rwp , and thus p · rwp ≤ rw.

On the other hand, since 0 < p < 1 and w1/p ∈ A1 we have that w ∈ RH1/p. So
1/p < rw; taking 1/p < t < rw it follows that 1 < pt < t, and therefore w ∈ RHpt.
Then(

1
|B|

∫
B

[wp(x)]t dx
)1/t

=
(

1
|B|

∫
B

[w(x)]tp dx
)p/pt

≤ C
(

1
|B|

∫
B

w(x) dx
)p

= C

(
1
|B|

∫
B

[wp(x)]1/p dx
)p
≤ C 1
|B|

∫
B

[wp(x)] dx,

where the last inequality follows from the fact that wp ∈ RH1/p. So t < rwp for all
t < rw, and this gives rw ≤ rwp . �

Lemma 4.7. Let 0 < p < q. If wq ∈ A1, then p · rwp ≤ q · rwq .
Proof. Since wq ∈ A1 and 0 < p < q we have that wp ∈ A1 and wp ∈ RHq/p. Thus
q/p < rwp . Taking q/p < s < rwp we have that wp ∈ RHs and 1 < ps/q < s, so(

1
|B|

∫
B

[wq(x)]ps/q dx
)q/ps

=
(

1
|B|

∫
B

[wp(x)]s dx
)q/ps

≤ C
(

1
|B|

∫
B

wp(x) dx
)q/p

≤ C 1
|B|

∫
B

wq(x) dx,

where the last inequality follows from Jensen’s inequality. This implies that p
q s <

rwq for all s < rwp , and thus p · rwp ≤ q · rwq . �

Proposition 4.8. For 0 < α < n, let Iα be the Riesz potential defined in (4.8)
and let w1/s ∈ A1, 0 < s < n

n+α , with rw
rw−1 <

n
α . If s ≤ p ≤ n

n+α and 1
q = 1

p −
α
n ,

then Iαa(·) is a wq-
(
q, q0,

⌊
n( 1

q − 1)
⌋)

molecule for each wp-
(
p, p0, 2

⌊
n( 1

q − 1)
⌋

+
3 + bαc+ n

)
atom a(·), where rw

rw−1 < p0 <
n
α and 1

q0
= 1

p0
− α

n .

Proof. The condition w1/s ∈ A1 implies that wp and wq belong to A1, so q̃wp =
q̃wq = 1. We observe that 2

⌊
n( 1

q − 1)
⌋

+ 3 + bαc+ n >
⌊
n( 1

p − 1)
⌋
, and thus a(·) is

an atom with additional vanishing moments.
Now we shall see that p rwp

rwp−1 < p0 and q rwq
rwq−1 < q0. The condition p rwp

rwp−1 < p0
is required in the definition of atom and q rwq

rwq−1 < q0 in the definition of molecule.
By Lemma 4.6 and by hypothesis we have that

p
rwp

rwp − 1 ≤
rw

rw − 1 < p0. (4.9)
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Lemma 4.7 and the fact that the function t → t
t−1 is decreasing on the region

(1,+∞) imply that
rwq

rwq − p
q

≤ rwp

rwp − 1 . (4.10)

If 1
q0

= 1
p0
− α

n , from (4.9) we have
1
q0
<
rwp − 1
p rwp

− α

n
.

From (4.10) we obtain

1
q0
<
rwq − p

q

p rwq
− α

n
= 1
p

(
1− p

q rwq

)
− α

n
= rwq − 1

q rwq
.

So q rwq
rwq−1 < q0.

Now we will show that Iαa(·) satisfies the conditions (m1), (m2), and (m3) in
the definition of molecule, if a(·) is a wp-

(
p, p0, 2

⌊
n( 1

q − 1)
⌋

+ 3 + bαc+ n
)

atom.
Since Iα is bounded from Lp0(Rn) into Lq0(Rn) and wp ∈ RHq/p, by Lemma 2.6

we get
‖Iαa‖Lq0 (B(x0,2r)) ≤ C‖a‖Lp0 (Rn) ≤ C|B|1/p0(wp(B))−1/p ≤ C|B|1/q0(wq(B))−1/q,

so Iαa(·) satisfies (m1).
Let d = 2

⌊
n( 1

q −1)
⌋

+ 3 + bαc+n, and let a(·) be a wp-(p, p0, d) atom supported
on the ball B(x0, r). In view of the moment condition of a(·) we obtain

Iαa(x) =
∫
B(x0,r)

(
|x− y|α−n − qd(x, y)

)
a(y) dy, for all x /∈ B(x0, 2r),

where qd is the degree d Taylor polynomial of the function y → |x−y|α−n expanded
around x0. By the standard estimate of the remainder term of the Taylor expansion,
there exists ξ between y and x0 such that∣∣|x− y|α−n − qd(x, y)

∣∣ ≤ C|y − x0|d+1|x− ξ|−n+α−d−1,

for any y ∈ B(x0, r) and any x /∈ B(x0, 2r). Since |x− ξ| ≥ |x−x0|
2 , we get∣∣|x− y|α−n − qd(x, y)

∣∣ ≤ Crd+1|x− x0|−n+α−d−1.

This inequality and the condition (a2) allow us to conclude that

|Iαa(x)| ≤ C rn+d+1

(wp(B))1/p |x− x0|−n+α−d−1, for all x /∈ B(x0, 2r). (4.11)

Lemma 2.6 and a simple computation give

|Iαa(x)| ≤ C(wq(B))−1/q
(

1 + |x− x0|
r

)−2n−2dq−3
, for all x /∈ B(x0, 2r),

where dq =
⌊
n( 1

q − 1)
⌋
. So Iαa(·) satisfies (m2).

Finally, in [20] Taibleson and Weiss proved that∫
Rn
xβIαa(x) dx = 0,
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for all 0 ≤ |β| ≤ bn( 1
q − 1)c. This shows that Iαa(·) is a wq-molecule. The proof of

the proposition is therefore concluded. �

Theorem 4.9. For 0 < α < n, let Iα be the Riesz potential defined in (4.8). If
w1/s ∈ A1 with 0 < s < n

n+α and rw
rw−1 < n

α , then Iα can be extended to an
Hp
wp(Rn)-Hq

wq (Rn) bounded operator for each s ≤ p ≤ n
n+α and 1

q = 1
p −

α
n .

Proof. Let 1
q = 1

p −
α
n . For the range p ≤ n

n+α we have that p < q ≤ 1. If
p ∈ [s, n

n+α ], the condition w1/s ∈ A1, 0 < s < n
n+α , implies that w, w1/p, and wp

belong to A1, so wq ∈ A1. Then q̃wp = q̃wq = 1. We put dp = bn( 1
p − 1)c and

dq = bn( 1
q −1)c. We recall that in the atomic decomposition, we can always choose

atoms with additional vanishing moments (see the corollary in [16, Ch. 3, §2.1.5,
p. 105]). That is, if l is any fixed integer with l > dp, then we have an atomic
decomposition such that all moments up to order l of our atoms are zero.

For rw
rw−1 < p0 < n

α we consider 1
q0

= 1
p0
− α

n . We observe that 2bn( 1
q −

1)c + 3 + bαc + n > bn( 1
p − 1)c. Since w1/p ∈ A1, from Lemma 4.6 we have

p rwp
rwp−1 ≤

rw
rw−1 < p0. Thus, given f ∈ D̂0 we can write f =

∑
j λjaj , where aj

are wp-(p, p0, 2bn( 1
q − 1)c+ 3 + bαc+ n) atoms,

∑
j |λj |p . ‖f‖

p
Hp
wp

, and the series
converges in Lp0(Rn). Since Iα is a Lp0(Rn)-Lq0(Rn) bounded operator it follows
that Iαf =

∑
j λjIαaj in Lq0(Rn) and therefore in S ′(Rn). By Proposition 4.8, we

have that the operator Iα maps wp-(p, p0, 2bn( 1
q − 1)c+ 3 + bαc+ n) atoms a(·) to

wq-(q, q0, dq) molecules Iαa(·), and applying Theorem 3.3 we get

‖Iαf‖qHq
wq
.
∑
j

|λj |q .

(∑
j

|λj |p
)q/p

. ‖f‖q
Hp
wp
,

for all f ∈ D̂0, so the theorem follows from the density of D̂0 in Hp
wp(Rn). �

For n
n+α < p ≤ 1, we have that 1 < q ≤ n

n−α . For this range of q’s the space Hq
w

can be identified with the space Lqw. The following theorem contains this range of
p’s.

Theorem 4.10. For 0 < α < n, let Iα be the Riesz potential defined in (4.8).
If w

n
(n−α) s ∈ A1 with 0 < s < 1 and rw

rw−1 < n
α , then Iα can be extended to an

Hp
wp(Rn)-Lqwq (Rn) bounded operator for each s ≤ p ≤ 1 and 1

q = 1
p −

α
n .

Proof. The condition wn/(n−α)s ∈ A1, 0 < s < 1 < n
n−α , implies that w, w1/p, wp,

and wq belong to A1, for all s ≤ p ≤ 1 and 1
q = 1

p −
α
n .

We take p0 such that rw
rw−1 < p0 <

n
α ; from Lemma 4.6 we have that p rwp

rwp−1 ≤
rw
rw−1 < p0. Given f ∈ D̂0 we can write f =

∑
λjaj , where the aj ’s are wp-(p, p0, d)

atoms, the scalars λj satisfy
∑
j |λj |p . ‖f‖

p
Hp
wp

, and the series converges in
Lp0(Rn). For 1

q0
= 1

p0
− α

n , Iα is a bounded operator from Lp0(Rn) into Lq0(Rn).
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Since f =
∑
j λjaj in Lp0(Rn), we have that

|Iαf(x)| ≤
∑
j

|λj ||Iαaj(x)|, a.e. x ∈ Rn. (4.12)

If ‖Iαaj‖Lq
wq
≤ C, with C independent of the wp-(p, p0, d) atom aj(·), then (4.12)

allows us to obtain

‖Iαf‖Lq
wq
≤ C

(∑
j

|λj |min{1,q}

) 1
min{1,q}

≤ C

(∑
j

|λj |p
)1/p

. ‖f‖Hp
wp
,

for all f ∈ D̂0, so the theorem follows from the density of D̂0 in Hp
wp(Rn).

To conclude the proof we will prove that there exists C > 0 such that
‖Iαa‖Lq

wq
≤ C, for all wp-(p, p0, d) atoms a(·). (4.13)

To prove (4.13), let 2B = B(x0, 2r), where B = B(x0, r) is the ball containing the
support of the atom a(·). So∫

Rn
|Iαa(x)|qwq(x) dx =

∫
2B
|Iαa(x)|qwq(x) dx+

∫
Rn\2B

|Iαa(x)|qwq(x) dx.

To estimate the first term in the right side of this equality, we apply Hölder’s
inequality with q0

q and use that wq ∈ RH( q0
q )′ (q0 > q rwq

rwq−1 ); thus,∫
2B
|Iαa(x)|qwq(x) dx ≤ ‖Iαa‖qLq0

(∫
2B

[wq(x)](
q0
q )′ dx

)1/( q0
q )′

≤ C|B|q/p0(wp(B))−q/p|2B|1/(
q0
q )′
(

1
|2B|

∫
2B
wq(x) dx

)
≤ C|B|qα/n(wp(B))−q/pwq(B).

Lemma 2.6 gives ∫
2B
|Iαa(x)|qwq(x) dx ≤ C. (4.14)

From (4.11), taking there d = bn( 1
p − 1)c, we obtain

|Iαa(x)| ≤ C(wp(B))−1/p
[
M αn

n+d+1
(χB)(x)

]n+d+1
n

, for all x /∈ B(x0, 2r).

So∫
Rn\2B

|Iαa(x)|qwq(x) dx ≤ C(wp(B))−q/p
∫
Rn

[
M αn

n+d+1
(χB)(x)

]q n+d+1
n

wq(x) dx,

(4.15)
Since d = bn( 1

p − 1)c, we have q n+d+1
n > 1. We write q̃ = q n+d+1

n and let 1
p̃ =

1
q̃ + α

n+d+1 , so p̃
q̃ = p

q and wq/q̃ ∈ Ap̃,q̃ (see Remark 2.4). From Theorem 2.5 we
obtain∫
Rn

[
M αn

n+d+1
(χB)(x)

]q n+d+1
n

wq(x) dx ≤ C
(∫

Rn
χB(x)wp(x) dx

)q/p
= C(wp(B))q/p.
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This inequality and (4.15) give∫
Rn\2B

|Iαa(x)|qwq(x) dx ≤ C. (4.16)

Finally, (4.14) and (4.16) allow us to obtain (4.13). This completes the proof. �

To finish, we recover the classical result obtained by Taibleson and Weiss in [20].

Corollary 4.11. For 0 < α < n, let Iα be the Riesz potential defined in (4.8). If
0 < p ≤ 1 and 1

q = 1
p −

α
n , then Iα can be extended to an Hp(Rn)-Hq(Rn) bounded

operator.

Proof. If w(x) ≡ 1, then rw = +∞ and therefore rw
rw−1 = 1. Applying Theorems 4.9

and 4.10, with w ≡ 1, the corollary follows. �
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