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ON THE ATOMIC AND MOLECULAR DECOMPOSITION OF
WEIGHTED HARDY SPACES

PABLO ROCHA

ABSTRACT. The purpose of this article is to give another molecular decom-
position for members of weighted Hardy spaces, different from that given by
Lee and Lin [J. Funct. Anal. 188 (2002), no. 2, 442-460], and to review some
overlooked details. As an application of this decomposition, we obtain the
boundedness on HE,(R™) of every bounded linear operator on some LP0(R"™)

with 1 < pg < +o0, for all weights w € Aso and all 0 < p < 1ifl < %po7

orall 0 < p< T‘:;1p0 if T‘:;1p0 < 1, where 7y, is the critical index of w
for the reverse Holder condition. In particular, the well-known results about
boundedness of singular integrals from H% (R™) into L%, (R™) and on HL (R™)
for all w € Ax and all 0 < p < 1 are established. We also obtain the

HP (R™)-H!,(R™) boundedness of the Riesz potential I for 0 < p < 1,
1

;= % — o, and certain weights w.

1. INTRODUCTION

The Hardy spaces on R™ were defined in [4] by C. Fefferman and E. Stein; since
then the subject has received considerable attention. One of the most important
applications of Hardy spaces is that they are good substitutes for Lebesgue spaces
when p < 1. For example, when p < 1, it is well known that Riesz transforms are
not bounded on L?(R™); however, they are bounded on Hardy spaces HP(R™).

To obtain the boundedness of operators—like singular integrals or fractional
type operators—in the Hardy spaces HP(R™), one can appeal to the atomic or
molecular characterization of HP(R™), which means that a distribution in H? can
be represented as a sum of atoms or molecules. The atomic decomposition of
elements in HP(R™) was obtained by Coifman in [2] (for n = 1), and by Latter
in [8] (for n > 1). In [20], Taibleson and Weiss gave the molecular decomposition
of elements in H?(R™). Then the boundedness of linear operators in H? can be
deduced, in principle, from their behavior on atoms or molecules. However, it
must be mentioned that M. Bownik in [I], based on an example of Y. Meyer,
constructed a linear functional defined on a dense subspace of H!(R"), which maps
all (1, 00,0) atoms into bounded scalars, and yet cannot be extended to a bounded
linear functional on the whole H!(R™). This implies that it does not suffice to
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check that an operator from a Hardy space HP, 0 < p < 1, into some quasi
Banach space X, maps atoms into bounded elements of X to establish that this
operator extends to a bounded operator on HP. Bownik’s example is, in a certain
sense, pathological. Fortunately, if T is a classical operator, then the uniform
boundedness of T on atoms implies the boundedness from HP? into LP; this follows
from the boundedness on L®, 1 < s < oo, of T, and since one always can take an
atomic decomposition which converges in the norm of L* (see [2I] and [I4]).

The weighted Lebesgue spaces L, (R™) are a generalization of the classical Lebes-
gue spaces LP(R™), replacing the Lebesgue measure dx by the measure w(z) dz,
where w is a non-negative measurable function. Then one can define the weighted
Hardy spaces H? (R™) by generalizing the definition of HP(R™) (see [I8]). It is well
known that the harmonic analysis on these spaces is relevant if the “weights” w
belong to the class As. The atomic characterization of HY (R™) has been given
in [5] and [I8]. The molecular characterization of H2 (R™) was developed indepen-
dently by X. Li and L. Peng in [I0] and by M.-Y. Lee and C.-C. Lin in [9]. In both
works the authors obtained the boundedness of the classical singular integrals on
HP for w € A;. We extend these results for all w € A.

Given w € Ay, a w-(p,po,d) atom is a measurable function a(-) with support
in a ball B such that

1/po
(1) |lallzro < uﬂ?)l/lﬂ and
(2) [x*a(x)dx = 0, for all multi-indices |a| <d,

where the parameters p, pg, and d satisfy certain restrictions. We remark that our
definition of atom differs from that given in [5] [18].

One of our main results is Theorem of Section 2 below, which states the
following:

If w e As and f belongs to a dense subspace of HE , then there exist a sequence
of w-(p, po,d) atoms {a;} and a sequence of scalars {\;} with 3= |N;[P < el f|[%»
such that f =3, Aja;, where the series converges to f in L*(R"), for all s > 1.

With this result we avoid any problems that could arise with respect to es-
tablishing the boundedness of classical operators on HY. The verification of the
convergence in L® for the infinite atomic decomposition was sometimes an over-
looked detail. As far as the author knows, the above result has been proved for
w-(p, 00, d) atoms in R by J. Garcia-Cuerva in [5], and for w-(p, 0o, d) atoms in R™
by D. Cruz-Uribe et al. in [3].

Given w € Ay, we say that a measurable function m(-) is a w-(p, po, d) molecule
centered at a ball B = B(xg,r) if it satisfies the following conditions:

1 1
(m1) [ImllLeo (B(zo,2r)) < |BlPow(B) ">,

—2n—2d-3
) for all x € R™\ B(xo, 2r).

(m2) |m(x)| < w(B) > (1 + 2=zl

(m3) [ z¥m(x)dx = 0 for every multi-index o with |a| < d.
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DECOMPOSITION OF WEIGHTED HARDY SPACES 231

Our definition of molecule is an adaptation from that given in [I3] by E. Nakai
and Y. Sawano in the setting of variable Hardy spaces. It is clear that a w-(p, po, d)
atom is a w-(p,po,d) molecule. The pointwise inequality in (m2) seems a good
substitute for “the loss of compactness in the support of an atom”.

In Section 3, we obtain the following result (Theorem below):

Let 0 < p <1, w € A, and let f € S'(R") be such that f = > ; A\jm; in
S'(R™), where {\;} is a sequence of positive numbers belonging to ¢P(N) and the

functions m; are (p, po, d)-molecules centered at B; with respect to the weight w.
Then f € HE(R™), with

115 < Cupipe > AT
J

With these results in Section 4 we re-establish the boundedness on H?, and from
H? into LP of certain singular integrals, for all w € A, and all 0 < p < 1. We
also obtain the HY,-H{, boundedness of the Riesz potential I, for 0 < p < 1,
1 1 Q

1T 5w and certain weights w.

Notation. The symbol A < B stands for the inequality A < ¢B for some con-
stant ¢. We denote by B(xzg, ) the ball centered at xg € R™ of radius r. Given a
ball B(xg,r) and a constant ¢ > 0, we set ¢B = B(xo, cr). For a measurable subset
E C R™ we denote by |E| and x g the Lebesgue measure of E and the characteristic
function of E, respectively. Given a real number s > 0, we write |s]| for the integer
part of s. As usual we denote by S(R™) the space of smooth and rapidly decreasing
functions and with S§’'(R™) the dual space. If 3 is the multi-index 8 = (51, ..., Bn),
then |8] = B1+ - + Ba.

Throughout this paper, C' will denote a positive constant, not necessarily the
same at each occurrence.

2. PRELIMINARIES

2.1. Weighted theory. A weight is a non-negative locally integrable function
on R™ that takes values in (0, 00) almost everywhere, i.e., the weights are allowed
to be zero or infinity only on a set of Lebesgue measure zero.

Given a weight w and 0 < p < oo, we denote by LP (R™) the space of all
functions f satisfying ||f||]£g = Jon |f(@)[Pw(z) dz < co. When p = oo, we have
that L3y (R™) = L>®(R"), with ||f[|zec = [|f[|ze. If E' is a measurable set, we use
the notation w(E) = [, w(x) dx.

Let f be a locally integrable function on R™. The function

Awngﬁﬁmmw

where the supremum is taken over all balls B containing x, is called the uncentered
Hardy—Littlewood maximal function of f.
We say that a weight w belongs to Aj; if there exists C' > 0 such that

M(w)(z) < Cw(z), a.e.xz€R™;
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the best possible constant is denoted by [w]4,. Equivalently, a weight w belongs
to A; if there exists C' > 0 such that for every ball B

1
E/Bw(x) de < C eiseigfw(x). (2.1)
Remark 2.1. If w € A; and 0 < r < 1, then by Holder’s inequality we have that
w" € Al.

For 1 < p < oo, we say that a weight w € A, if there exists C' > 0 such that for

every ball B
(|;|/Bw(m) dx) (; /B[w(x)]*ﬁ dm)p_l <c

It is well known that A, C A,, for all 1 < p; < py < oo. Also, if w € A,
with 1 < p < oo, then there exists 1 < ¢ < p such that w € A;. We denote by
Gw :=inf{g > 1:w € Ay} the critical index of w.

Lemma 2.2. Ifw € A, for some 1 < p < 0o, then the measure w(x) dx is doubling:
precisely, for all A > 1 and all balls B we have

w(AB) < A"Pw]4,w(B),

where \B denotes the ball with the same center as B and radius \ times the radius
of B.

Theorem 2.3 ([11, Theorem 9]). Let 1 < p < co. Then

[ i@ ds < Cogn [ IS @)Puts) de.

Rl
for all f € LY (R™) if and only if w € A,.

Given 1 < p < ¢ < oo, we say that a weight w € A, , if there exists C' > 0 such
that for every ball B

<|;|/B[w(x)]qu>l/q <|;|/B[w(aﬁ)]_p/ dx>w <0<

For p =1, we say that a weight w € A; , if there exists C' > 0 such that for every
ball B

1 1/q
<|B /B[w(x)]q da:) <C eiseigfw(x).
When p = ¢, this definition is equivalent to w? € A,,.

Remark 2.4. From the inequality (2.1)) it follows that if a weight w € A;, then

0 < essinf,epw(z) < oo for each ball B. Thus w € A; implies that wi € Ap g
for each 1 < p < ¢ < oo.

Given 0 < a < n, we define the fractional maximal operator M, by

1
Mof(w) = swp e [ 17l dy
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DECOMPOSITION OF WEIGHTED HARDY SPACES 233

where f is a locally integrable function and the supremum is taken over all balls B
containing x.
The fractional maximal operator satisfies the following weighted inequality.

Theorem 2.5 ([12, Theorem 3]). If 0 < a <n, 1 <p < %, %
w e Ay, g, then

(/n [Ma f(x)]"w?(z) dx)l/q <C (/n (@) PP () d:c> 1/z>7

for all f € LY, (R™).

Lo und
P n

A weight w satisfies the reverse Holder inequality with exponent s > 1, denoted
by w € RHg, if there exists C' > 0 such that for every ball B,

(|;|/B[w(sc)]sdx); SC%/Bw(m) dz;

the best possible constant is denoted by [w]gm,. We observe that if w € RH,,
then by Hoélder’s inequality, w € RH; for all 1 < t < s, and [w|gy, < [W]|rH,.
Moreover, if w € RHg, s > 1, then w € RHz . for some ¢ > 0. We denote by
rw = sup{r > 1:w € RH,} the critical index of w for the reverse Hélder condition.

It is well known that a weight w satisfies the condition A if and only if w € A,
for some p > 1 (see [6, Corollary 7.3.4]). So Asx = Ui<pcooAp. Also, w € Ay if
and only if w € RH, for some s > 1 (see [0, Theorem 7.3.3]). Thus 1 < 7, < 400
for all w € A.

Another remarkable result about the reverse Holder classes was discovered by
Stromberg and Wheeden. They proved in [19] that w € RH,, 1 < s < +o0, if and
only if w® € As.

Given a weight w, 0 < p < oo, and a measurable set E, we set wP(E) =
Jplw(@)]P dx. The following result is an immediate consequence of the reverse
Holder condition.

Lemma 2.6. For0<a<mn,let0<p<Z and%—%— > Ifw? ERH% then
1 1 _a
[w?(B)]”# [w(B)] < [w?]{f |B|7%,

for each ball B in R™.

2.2. Weighted Hardy spaces. Topologize S(R™) by the collection of semi-norms
Il - la,8, with @ and 8 multi-indices, given by

[ @llas = sup [2*07p()|.
rER™

For each N € N, we set Sy = {9 € SR") : ||¢llas <1, ||, |8] < N}. Let f €
S'(R™). We denote by My the grand maximal operator given by

My f(z) =sup sup |(t"p(t™) * f) ()]

t>0 peSN
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234 PABLO ROCHA

Given a weight w € Ay and p > 0, the weighted Hardy space HP (R™) consists of
all tempered distributions f such that

1/p
g = 1M ey = ([ Mt @lPuta)ds) <.

Let ¢ € S(R™) be a function such that [ ¢(z)dz # 0. For f € S’(R™), we define
the maximal function Mgy f by

Mgy f(z) = sup |t ot )« f) (z)].

For N sufficiently large, we have ||[Myf| . ~ | Mn f|l 1z (see [18]).

In what follows we consider the set
Dy = {p € S(R") : $ € C=(R™) and supp(¢) € B(0,6) for some § > 0}.
The following theorem is crucial to get the main results.

Theorem 2.7 ([I8, Theorem 1, p. 103]). Let w be a doubling weight on R™. Then
Dy is dense in HE(R™), 0 < p < 0.

2.2.1. Weighted atom theory. Let w € A, with critical index g, and critical index
ry for the reverse Holder condition. Let 0 < p < 1, max {1 p(r _1)} < po < +00,

and d € Z such that d > {n(q“’ - 1)J We say that a function a(-) is a w-(p, po, d)
atom centered at xg € R™ if

(al) a € LP°(R™) with support in the ball B = B(zo,r).
1

. _1
(a2) lal[zro®ny < [BlPow(B) 7.

(a3) [z%a(x)dz = 0 for all multi-indices a such that |a| < d.

We observe that the condition max {1,p (T“jl)} < pg < +oo implies that
w e RH(po)f If r, = 400, then w € RHt for each 1 < t < +00. So, if r, = 400
and since lim;_, 4 o0 7= 1 = 1. For example, if w =1, then ¢, =1

and r,, = 400, and our deﬁmtlon of atom coincides in this case with the definition
of atom in the classical Hardy spaces.

Lemma 2.8. Let w € Ao, with critical index ¢, and critical index ry,. If a(-) is a
w-(p, po, d) atom, then a(-) € HE(R™). Moreover, there exists a positive constant C
independent of the atom a such that ||a|| e < C.

Proof. Let ¢ € S(R™) with [ ¢(x)dz # 0. Since ¢ has a radial majorant that is a
non-increasing, bounded, and integrable function, we have that

Mga(z) < cMa(z), for all z € R"™.

In view of the moment condition of a we have

(MWM@=/MW—M—%AMMw@,Hmew\MmAm
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DECOMPOSITION OF WEIGHTED HARDY SPACES 235

where ¢+ is the degree d Taylor polynomial of the function y — ¢;(x—y) expanded
around zo. By the standard estimate of the remainder term of the Taylor expansion,
the condition (a2), and Hoélder’s inequality, we obtain that

Mya(z) < cflallir®™ |z — x| 74!
S C’LU(B)_I/an+d+1|!E _ x0|—n—d—1

n+d+1

< cw(B)"YP[M(xp)(x)] T+, ifzeR™\ B(x,4r).

Therefore,

(n+¢i+1>p
/w@wmvw@wm30/<xmumﬂMwmw+“Wuﬂﬁg> )w@mx

On the right side of this inequality, we apply Holder’s inequality with pg/p and
use that w € RH(LO)/ (po > p( Lo )) and Lemma for the first term; for the
p

Tw—1

second term we have that W > Gu,

80 W € Amiasnp. Then by invoking
Theorem 2.3] we obtain !

IMgallfy = [ Moa@)Pute)do < C.

where the constant C is independent of the w-(p, po, d) atom a. Thus a € H? (R"™).
O

Theorem 2.9. Let f € 750, and 0 <p < 1. Ifw € Ay, then there exist a sequence
of w-(p, po, d) atoms {a;} and a sequence of scalars {\;} with > |\;|P < || f[I%»
such that f =3, Aja;, where the convergence is both in L*(R") and pointwise, for
each 1 < s < o0.

Proof. Given f € Dy, let O; = {2 : My f(z) > 27} and let F; = {Q}}x be the
Whitney decomposition associated to O; such that |J, Q] = O;. Fixed j € Z, we
define the set

EI={(i,k) €ZxZ: QI nQL #0}
and let E,JC = {i:(i,k) € B} and E/ = {k: (i,k) € ET}. Following the proof in
[16, Ch. III, §2.3, pp. 107-109], we have a sequence of functions Aj, such that
(i) supp(A%) C QLU UzeEi QM and |A](z)| < c27 for all k, j € Z.
(ii) [x*Al(x)dx =0 for all @ with |a| < d and all k,j € Z.
(iif) The sum >~ , Aj converges to f in the sense of distributions.

From (i) we obtain
J J . ) .
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236 PABLO ROCHA

following the proof of Theorem 5 in [I4] we obtain

= C2j< X0, +Z > XQJ“*) —02J< xXo, +) Y XQ?“*)

i€E] i keE!
< ¢ (x(g]. + 84" ZXQZJA*) <2 (XO]- + X0j+1) < c2jX@j.
By [14, Lemma 4] we have that
Z |Af€($)| < cz2jx@j\oj+1(x), a.e. ¢ € R™.
j J
Thus, for 1 < s < oo fixed,

/<§|Ai(m>|>sd$§c;/oj\% Qﬂ,dﬂcz/ ooy
= C/H(Mf(x))s dx < o0,

since f € Dy € L*(R™). From and (iii) we obtain that the sum }, Al
converges to f in L*(R"), and >_, , A} (z) = f(z) a.e. z € R", for each 1 < s < o0.

Now, we set a;jp = AJ_;A{C with \jx = c2/w(B])Y/?, where B} is the smallest
ball containing Q" as well as all the QJ"'* that intersect Q1". Then we have a

sequence {a; } of w-(p, po,d) atoms and a sequence of scalars {); 1} such that the
sum Y4 Ajkajk converges to f in L*(R™) and a.e. # € R™. On the other hand

(2.2)

there exists a universal constant c¢; such that Bj C lei, SO
Z|/\jk|p<22“’w (B}) <Z2“’w (1Q)) < RPZQJ”U) Q1) —622“’111

If z € R™, there exists a unique jo € Z such that 2707 < My f(z)? < 2“0+1 P. So

ZQ“’XO Z 0 _ 9(jo+1)p - op Mo ()P,
= 2r -1 —2r—1
From this it follows that
Dokl < ey 2Pw(0;) <
Jik J
which proves the theorem. O

Theorem 2.10. Let T be a bounded linear operator from LPo(R™) into LP°o(R™)
for some 1 < po < +o00. If w € Ay with critical index r,, 0 < p <1< “;w rw—ly,,
or 0 <p < ™=tp, <1, then T can be extended to an HE(R™)-L? (R™) bounded
linear opemtor zf and only if T is uniformly bounded in LE, norm on all w-(p, po, d)
atoms a.

Rev. Un. Mat. Argentina, Vol. 61, No. 2 (2020)



DECOMPOSITION OF WEIGHTED HARDY SPACES 237

Proof. Since T is a bounded linear operator on LP°(R™), T is well defined on
HP (R™)NLPo(R™). If T can be extended to a bounded operator from HP (R™) into
LP (R™), then ||Tal|,» < c,llal/gr for all w-atoms a. By Lemma there exists a
universal constant C' such that ||a|| gz < C < oo for all w-atoms a; so || Ta|» < C,
for all w-atoms a. R

Conversely, taking into account the assumptions on p and pg, given f € Dy, by
Theorem here exists a w-(p, po, d) atomic decomposition such that 3 |A;[P <
[fllzz and }°; Aja; = f in LP°(R™). From the boundedness of T" on LF*(R") we
have that the sum ;AjTa; converges to T'f in LF° (R™), thus there exists a sub-
sequence of natural numbers {ky}nyen such that limpy o0 Z?Z_,W NTaj(z) =
Tf(x) a.e. x € R™; this implies that

Tf(x)| <> INTaj(x), ae zeR™
J

If |Tal|pr < Cp < oo for all w-(p,po, d) atoms a, and since 0 < p < 1, we get
1T, < S INPITa 2, < €8S I < CEIFIE,
J J

for all f € Dy. By Theorem we have that Dy is a dense subspace of H? (R™),
so the theorem follows by a density argument. O

3. MOLECULAR DECOMPOSITION

Our definition of molecule is an adaptation from that given in [I3] by E. Nakai
and Y. Sawano in the setting of variable Hardy spaces.

Definition 3.1. Let w € A, with critical index ¢, and critical index r,, for the
reverse Holder condition. Let 0 < p < 1, max {1,;0( T )} < po < 400, and

Tw—1

d € Z such that d > Ln(ﬂ%‘” - 1)J We say that a function m(-) is a w-(p, po, d)
molecule centered at a ball B = B(xg, ) if it satisfies the following conditions:
1 _1
(m1) |Iml[zro(B(zo,2r)) < |BlPow(B)™>.

) —2n—2d—-3

(m2) |m(z)| < w(B)™7 (1 + lo=zol for all = € R" \ B(zo, 2r).

(m3) [ x¥m(x)dx = 0 for every multi-index o with |a| < d.

1
Bl

1
w(B)P

)

Remark 3.2. The conditions (m1) and (m2) imply that ||m||zee@n) < ¢
where c is a positive constant independent of the molecule m.

From the definition of molecule it is clear that a w-(p, po, d) atom is a w-(p, po, d)
molecule.

In view of Lemma [2.8] the following theorem assures, among other things, that
the pointwise inequality in (m2) is a good substitute for “the loss of compactness
in the support of an atom”.
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238 PABLO ROCHA

Theorem 3.3. Let 0 < p < 1, w € Ay, and let f € §'(R™) be such that f =
Zj Aymj in S'(R™), where {\;} is a sequence of positive numbers belonging to
¢P(N) and the functions m; are (p,po,d)-molecules centered at B; with respect to
the weight w. Then f € HP (R™) with

112y < Cuopy 3 XL
J

Proof. Let ¢ € CF(R™) be such that xp(,1) < ¢ < XB(0,2); We set ¢or(z) =
2k ¢(2%2), where k € Z. Since f = Zj Ajm; in the sense of the distributions, we
have that

(G % )(@)] <D Njl(ar +my)(w)],
j=1
for all z € R™ and all £ € Z. We observe that the argument used in the proof of
Theorem 5.2 in [I3] to obtain the pointwise inequality (5.2) in that paper works in
this setting, but considering now the conditions (m1), (m2), and (m3). Therefore,
we get

n—+dy+1
M(x £ " n
$)§Z)\j)(23j($) -i-Z/\ 5,)( >]; , xeR"
i w(B;)?
where M is the Hardy-Littlewood maxunal operator.
Since 0 < p < 1, it follows that
(@)
M(xs, " n
[My()@)]? S Mxap, (2)[M +Z wl (B , TER™,
' J

and by integrating with respect to w we get
Jtap@ P ds < > 7 [ e, @) M) )P () d
n+tdy+1

+zj:/\§/ [M(XBJU))E:EB)% ’ w(z) d.

On the right side of this inequality, we apply Holder’s inequality with po/p, Re-
mark Lemma and use that w € RH( Y (po > p(+27)) for the first term;

for the second term we have that W > Qu, SO W € A (niat1)p, and by invoking
Theorem [2.3] we obtain '

1 s, < Cuopno DN
J

This completes the proof. O

Theorem 3.4. Let T be a bounded linear operator from LPo(R™) into LPo(R™) for
some 1 < py < +oo If w € Ay with critical index r,, 0 < p <1 < T“;—_lpo
or 0 < p < "= Tw=ly, < 1, and Ta is a w-(p,po,ds) molecule for each w-(p,po,d:)

atom a, then T can be extended to an HE (R™)-HE (R™) bounded linear operator.
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DECOMPOSITION OF WEIGHTED HARDY SPACES 239

Proof. Taking into account the assumptions on p and pg, given f € ﬁo, from
Theorem it follows that there exists a sequence of w-(p, po,d:1) atoms {a;} and
a sequence of scalars {\;} with

NP S I (3.1)

J
such that f = 37, Aja; in LP°(R™). From the boundedness of T on LP°(R") we
have that T'f = . A\;Ta; in LP°(R") and therefore in §'(R™). By hypothesis Ta;
is a w-(p, po, d2) molecule for all j, so Theorem and the inequality (3.1) imply
that

1T, < S NI S 1FIE
J
for all f € Dy, so the theorem follows from the density of Dy in HP (R™). O

4. APPLICATIONS

4.1. Singular integrals. Let Q € C°°(S" ') with [g,_, Qu)do(u) = 0. We
define the operator T by

Tf(z)= lim Mf(x —y)dy, x€R". (4.1)

=0t Jiyse  yl”
It is well known that ﬂ” (&) =m(¢ )f({ ), where the multiplier m is homogeneous of

degree 0 and is indefinitely differentiable on R™ \ {0}. Moreover, if k(y) = %

we have
10, k(y)| < Cly|=™ 11, for all y # 0 and all multi-indices a. (4.2)

Then the operator T is bounded on L*(R™) for all 1 < s < 400 and of weak-type
(1,1) (see [19]).
Let 0 < p<landd= {n(%" - 1)J Given a w-(p, po,n + 2d + 2) atom a(-)
with support in the ball B(xg,r) we have that
ITall Lo (B(wo,2ry) < Cllallpy < C|BIYPow(B)~7, (4.3)

since T is bounded on L?°(R™). In view of the moment condition of a(-) we obtain
Ta(o) = [ k= y)aly) dy

- /B k(2 — ) — qoyasa(z.aly) dy, = ¢ B = Blao,2r),

where gy, 42412 is the degree n+2d+2 Taylor polynomial of the function y — k(z—y)
expanded around zp. From the estimate (4.2)) and the standard estimate of the
remainder term of the Taylor expansion, there exists £ between y and x( such that

. |n+2d+3 2n+2d+3
ly = o] <ot E
|.Z‘ _ €|2n+2d+3 w(B)l/p

- x0|72"*2d*3, x ¢ B(xg,2r).

(4.4)

[Ta(z)| < Cllally
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This inequality and a simple computation allow us to obtain
. 2z — | 2n—2d—3
|Ta(x)] < Cw(B) » (1 + > , forall x ¢ B(zo,2r). (4.5)
r

From the estimate (4.4) we obtain that the function x — z%Ta(x) belongs to
L' (R") for each |a| < d, so

|((=2miz)*Ta)™(§)] = |0 (m(§)a(§))] =

Y ca (077 m)(€) (856)(5)'

BLa

S o (08P m)(©) ((—m%ﬂe)‘.

Ba

From the homogeneity of the function 8“75 m we obtain that

((~2riz)*Ta)™ |<cz|caﬁ| 2@'? V;I @ 2o (4.6)

B<a

—9mix)Pa)”
Since %H%K( |§|Zﬁag| (§)| = 0 for each § < « (see [16, Ch. 3, §5.4, p. 128]),
o

taking the limit as £ — 0 in (4.6) we get

/ (—2riz)°Ta(z) dz = ((—2miz)*Ta)~(0) = 0, forall |a| <d.  (47)

From , , and it follows that there exists a universal constant C' > 0
such that CTa(-) is a w-(p, po, d) molecule if a(+) is a w-(p, po,n + 2d + 2) atom.
Taking py € (1, +00) such that 1 < “2=1p, and since T"is bounded on LP°(R™), by
Theorem [3.4] we get the following result.

Theorem 4.1. Let T be the operator defined in (4.1)). If w € Ay, and 0 < p <1,
then T' can be extended to an HE(R™)-HE (R™) bounded operator.

In particular, the Hilbert transform and the Riesz transforms admit a continuous
extension on HY (R) and HE (R™), for each w € A and 0 < p < 1, respectively.

Remark 4.2. Let d = {n(% - I)J If a(-) is a w-(p, po, d) atom with 1 < Ze=Lp,

then by proceeding as in the estimation of (4.4)) we find that
n+d+1

l,0|—n—d—1

|z — » @ ¢ B(xo, 2r),

SO
n4d+1

|Ta<x>|<c[M(fjgfflp" \ g Blro,),

where M is the Hardy—Littlewood maximal operator.

Lemma 4.3. Let py € (1,400) be such that 1 < Tj;lpo. If T is the operator

defined in (4.1) and 0 < p < 1, then there exists a universal constant C' > 0 such
that ||Tal|,» < C for all w-(p, po,d) atoms a(-).
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Proof. Given a w-(p,po,d) atom a(-), let 2B = B(xq, 2r), where B = B(xg,r) is
the ball containing the support of a(-). We write

/Rn |Ta(z)Pw(z) de = /213 |Ta(z)Pw(z) dx + /IR"\2B |Ta(x)|Pw(z)de =1+ II.

Since T is bounded on LP°(R™) and w € RH o

( (p <1< e Lpg), Holder’s
inequality applied Wlth % and the condition (a2)

)
giv

1< Cllally, |BI 7/ w(B) = C.

From Remark and since w € .Ap ntdt1 (p"+d+1 > qw) we get

n+d+1

1 < w(B)"! /H[M(XB)(Q;)] () de < Cw_l(B)/Bw(x) dr = C,

where the second inequality follows from Theorem [2.3] This completes the proof.
O

Theorem 4.4. Let T be the operator defined in (4.1)). If w € Ay, and 0 < p <1,
then T' can be extended to an HE(R™)-LE (R™) bounded operator.

Proof. The theorem follows from Lemma and Theorem [2.10) (]

4.2. The Riesz potential. For 0 < a < n, let I, be the Riesz potential defined
by

1f@) = [ (1.9

feL*(R"), 1 <s< 2. A well-known result of Sobolev gives the boundedness
of I, from LP(R") into LY(R"™) for 1 < p < Z and % = %— %, In [I7], E. Stein and
G. Weiss used the theory of harmonic functions of several variables to prove that
these operators are bounded from H'(R") into L7== (R™). In [20], M. Taibleson
and G. Weiss obtained, using the molecular decomposition, the boundedness of
the Riesz potential I, from HP(R™) into HY(R™), for 0 < p < 1 and 1 = l -
2. S. Krantz independently obtained the same result in [7]. We extend these
results to the context of weighted Hardy spaces using the weighted molecular theory
developed in Section 3.

First we recall the definition of the critical indices for a weight w.

Definition 4.5. Given a weight w, we denote by g, = inf{q > 1: w € A} the
critical index of w, and we denote by r,, = sup{r > 1:w € RH,} the critical index
of w for the reverse Hélder condition.

Lemma 4.6. Let 0 <p < 1. Ifw'/? € Ay, then p-ruyr < T < Tuwpr.
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Proof. The condition w'/? € A;, with 0 < p < 1, implies that w? € RHyp. It is
well known that if w € RH,., then w € RH,, for some € > 0, and thus 1/p < ry».
Taking 1/p < ¢ < ry» we have that 1 < pt < ¢t and wP € RHy, so

(Bl' /B[w(x)]pt dw) - B (|;| /B[wp(g”)]t dw) Upt <cC <|113 /B w”(x) d:c> N

1
<C— | w(z)dz,
51 /"

where the last inequality follows from Jensen’s inequality. This implies that pt < 7,
for all t < ryp, and thus p - rye < 7.

On the other hand, since 0 < p < 1 and w'/? € A; we have that w € RH,/,. So
1/p < ry; taking 1/p <t < ry, it follows that 1 < pt < ¢, and therefore w € RHp;.
Then

(o)~ Gy o™ <o i o

1 P 1
=C (/ w? () 1”"dnc) <C— [ [wP(x)]dx,
B /" B /")
where the last inequality follows from the fact that w” € RH,/,. So t < ry» for all
t < ry, and this gives r,, < ryp. O
Lemma 4.7. Let 0 <p <gq. Ifw? € Ay, then p-ryr < q - Topa.

Proof. Since w? € A; and 0 < p < q we have that w? € A; and w? € RH,/,. Thus
q/p < Twr. Taking q/p < s < 1y we have that w? € RH, and 1 < ps/q < s, so

(i [wrrrna)™ = (5 [were)" <o (k[ wew)”

<C— | wi(x)dx,
P

where the last inequality follows from Jensen’s inequality. This implies that gs <

Twa for all s < ryp, and thus p-rye < q - rya. O

Proposition 4.8. For 0 < «a < n, let I, be the Riesz potential defined in (4.8))
and let w'/* € Ay, 0 < s < -, with T < Ifsgpgnﬁ—a and%:%—g

n+a’ Tw n’

then Ina(-) is a wi-(q, qo, Ln(% —1)]) molecule for each wP-(p,po,2|n(: —1)] +

3+ | +n) atom a(-), where -5 < po < % and 1_1_a

Tw—1 qo Po n

1
q

Proof. The condition w'/* € A; implies that w? and w? belong to A;, s0 Gur =
Guws = 1. We observe that 2[71(% 1] +3+a]+n> Ln(% —1)], and thus a(-) is
an atom with additional vanishing moments.

Now we shall see that pr:z’il < po and qT:Z{l < qo. The condition prljil < Do
is required in the definition of atom and qTT;“q_l < qo in the definition of molecule.
By Lemma [£.6] and by hypothesis we have that
r r
W< M < py. (4.9)

Twp—lirw—l
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Lemma and the fact that the function ¢ — 5 is decreasing on the region
(1, 400) imply that

Twa Twp

(4.10)

p <
qu—a Twp—].

If L =1L 2 from ([9) we have

do Po n’
1 rwr —1 @
—_— < — —.
qo PTwr n

From (4.10) we obtain
L YA R
9 D Tawa n o p q Typa n q Tya
So qh:';"il < qo.
Now we will show that I,a(-) satisfies the conditions (ml), (m2), and (m3) in
the definition of molecule, if a(-) is a wP- (p,po, 2{71(% - 1)J +3+ o]+ n) atom.
Since I, is bounded from LP°(R") into L% (R") and w? € RH,yp, by Lemma
we get
||Iaa'||Lq0(B(xo,2r)) < CHaHLpo(]Rn) < C‘B|1/p0(wp(B))_l/p < C|B|1/q0 (wq(B))—l/q’
so I,a(+) satisfies (ml).
Let d =2 Ln(% —1)| +3+ [a] +n, and let a(-) be a wP-(p, po, d) atom supported
on the ball B(zg, ). In view of the moment condition of a(-) we obtain

Loa(z) = /B (el aa ) aty)dy, o allz ¢ Blro,20)
Zo,Tr

where ¢4 is the degree d Taylor polynomial of the function y — |z —y|*~" expanded
around zo. By the standard estimate of the remainder term of the Taylor expansion,
there exists £ between y and xy such that

|lz = y|*™" = qa(z,y)| < Cly — wo| ™|z — g7,
for any y € B(xo,r) and any = ¢ B(zo,2r). Since |z — &| > lz=z0l e get
2
“.’IJ - yla_n - qd($7 y)’ < CTdJrl‘SC — .’Eol_n—’_a_d_l.

This inequality and the condition (a2) allow us to conclude that

rn+d+1
[Tpa(z)] < CWM —xo| 7O for all @ ¢ B(xg, 2r). (4.11)
Lemma and a simple computation give

|z — o]

—2n—2d,—3
[T a(z)| < C(w!(B))~Y4 (1 + > , for all x ¢ B(z,2r),

r

where d; = Ln(% —1)]. So I,a(-) satisfies (m2).
Finally, in [20] Taibleson and Weiss proved that

/ 2P Ia(x)de =0,
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forall 0 <|8| < |n ( 1)]. This shows that I,a(-) is a w9-molecule. The proof of
the proposition is therefore concluded. O

Theorem 4.9. For 0 < a < n, let I, be the Riesz potential defined in (4.8)). If

wl/s € Ay with 0 < s < % and 111 < g, then I, can be extended to an

HE L (R™)-HL,(R™) bounded operator for each s <p < = and 1 = % -

Proof. Let 1 = %— *. For the range p < # we have that p < ¢ < 1. If
pE [s, n+a] the condition w'/* € A1, 0 < s < n+ , implies that w, w!/?, and w?
belong to A;, so w? € A;. Then qur = que = 1. We put d, = Ln(% —1)] and
dg = Ln(% —1)]. We recall that in the atomic decomposition, we can always choose
atoms with additional vanishing moments (see the corollary in [16, Ch. 3, §2.1.5,
p. 105]). That is, if [ is any fixed integer with [ > d,, then we have an atomic
decomposition such that all moments up to order ! of our atoms are zero.

For r:ﬁl < po < % we consider q% = pio — . We observe that QLn(% -
] +3+ |« J +n > Ln(l —1)]. Since w'/? € A, from Lemma E we have
p% < %5 < po. Thus, given fe DO we can write f = Z Ajaj, where a;

are wP-(p, p0,2L (5 — D] +3+ [a] +n) atoms, >, AP < ||f||Hp , and the series

converges in LP°(R™). Since I, is a LP°(R™)-L%(R™) bounded operator it follows

that Iof = 3_; Ajlaa; in L%(R™) and therefore in S'(R™). By Proposition@7 we

have that the operator I, maps wP-(p, po, 2Ln(% —1)| 4+ 3+ |a] +n) atoms a(-) to
-(q, qo, dy) molecules I a(-), and applying Theorem we get

q/p
o fllfe, < ZI/\ (RS (ZIA |p> SN, »

for all f € Dy, so the theorem follows from the density of Dy in HP L (R™). O

For —— < p <1, we have that 1 < ¢ < —2—. For this range of ¢’s the space H,
can be 1dent1ﬁed w1th the space LY. The followmg theorem contains this range of

p’s.
Theorem 4.10. For 0 < a < n, let I, be the Riesz potential defined in (4.8)).
If wn=ays , then I, can be extended to an

HEL(R™)-LI, (R™) bounded operator for each s <p <1 and % = 1% -2,

Proof. The condition w (s e A1 0<s< 1 < -, implies that w, wh/P wP,
and w? belong to A;, for all s<p<l1 and 1 = 5 -2,

from Lemma E we have that p ety <

—1 =

r:il < po. Given f € 2/50 we can write f > Ajaj, where the a;’s are wP- (p,po, d)
atoms, the scalars \; satisfy > [A;[P S ”f”i’ff,p’ and the series converges in

LPo(R™). For + = L — 2 ] s a bounded operator from LP°(R") into L% (R™).

q0 Po n’
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Since f =3, Aja; in LP°(R"), we have that
I, f(z)] < ZM [laaj(z)], ae. zcR™ (4.12)

If [[Taajlpe, < C, with C 1ndependent of the wP-(p, po,d) atom a;(-), then (4.12)
allows us to obtain

wlTaT 1/p
sz, < (St )™ <o Shre) s i,
J J
for all f € Dy, so the theorem follows from the density of Dy in HZ, (R™).
To conclude the proof we will prove that there exists C' > 0 such that
[Laallgs, < C,  for all w’-(p,po,d) atoms a(-). (4.13)

To prove (4.13)), let 2B = B(xq, 2r), where B = B(zg, r) is the ball containing the
support of the atom a(-). So

/Rn [Ipa(x)| 9wl (z) de = /QB [Tpa(x)|9wi (z) do + /RR\QB [lpa(x)|%wi(z) dx.

To estimate the first term in the right side of this equality, we apply Holder’s
inequality with %" and use that w? € RH(LO)' (g0 > ¢ ); thus,
q

rql

~/23 [Toa(x)|Tw?(z) de < ||14a|T e (/2B[wq( )](;))/d‘r)l/(qo)/

§C\B|q/p°(wp(B))fq/p|ZB|1/TO (|QB|/ w(x dz)

< C|B|"/™ (wP(B))~"Pw(B).
Lemma gives

/ [Toa(x)|?w!(z)dx < C. (4.14)
2B
From ({.11)), taking there d = Ln(% — 1)/, we obtain

nt+d+1

[Tpa(x)] < C(wP(B))—l/P {Mﬂfﬁl (XB)(x)} , for all x ¢ B(xz,2r).
So
qn+d+l
/ Loa(z)|"w(z) de < Clwr(B))~ /7 / Mo (p)@)] " we) de,
R"\2B no Lo
(4.15)

Since d = Ln(% —1)], we have ¢™4 > 1. We write § = ¢2FL and let L =

% + i so =L and w1 € A; 5 (see Remark . From Theorem we
obtain
qndtl

Meep o)@)] " wi@yde <0 ([ xowr@ds) = Clur ).
L (L. )
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This inequality and (4.15) give
/ | La(2)] 0 (2) dz < C. (4.16)
R"\2B

Finally, (4.14)) and (4.16)) allow us to obtain (4.13]). This completes the proof. [

To finish, we recover the classical result obtained by Taibleson and Weiss in [20].

Corollary 4.11. For 0 < «a < n, let I, be the Riesz potential defined in (4.8). If
0<p<1and é = 1% — &, then I can be extended to an HP(R™)-HY(R™) bounded
operator.

Proof. If w(x) = 1, then r,, = 400 and therefore 7:—_1 = 1. Applying Theorems
and with w = 1, the corollary follows. O
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