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VISCOSITY APPROXIMATION METHOD FOR MODIFIED
SPLIT GENERALIZED EQUILIBRIUM AND FIXED POINT
PROBLEMS

HAMMED ANUOLUWAPO ABASS, CHINEDU IZUCHUKWU,
AND OLUWATOSIN TEMITOPE MEWOMO

ABSTRACT. We introduce a viscosity iterative algorithm for approximating a
common solution of a modified split generalized equilibrium problem and a
fixed point problem for a quasi-pseudocontractive mapping which also solves
some variational inequality problems in real Hilbert spaces. The proposed
iterative algorithm is constructed in such a way that it does not require the
prior knowledge of the operator norm. Furthermore, we prove a strong conver-
gence theorem for approximating the common solution of the aforementioned
problems. Finally, we give a numerical example of our main theorem. Our
result complements and extends some related works in the literature.

1. INTRODUCTION

Let C and @ be nonempty closed convex subsets of real Hilbert spaces H; and
Hj respectively. The Split Feasibility Problem (SFP), first introduced in [7] by
Censor and Elfving, requires finding a point in a nonempty closed convex subset
in one space such that its image under a bounded linear operator is in another
nonempty closed convex subset in the image space. That is, find z* € C such that

Ax* € Q,

where A : Hy — Hs is a bounded linear operator. The SFP arises in many fields
in the real world, such as signal processing, image reconstruction, and intensity-
modulated radiation therapy problems. For example, see [8, 9, 23] and the ref-
erences therein. Many well-known iterative algorithms have been established for
the SFP; for instance, Byrne [5] proposed the CQ algorithm to study the SFP; Qu
and Xiu [20] considered a modified CQ algorithm to study the SFP; and Xu [26]
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introduced a regularized algorithm for studying the SFP and proved a strong con-
vergence result.

The introduction of the SFP to fixed point theory has also yielded some op-
timization problems such as the split equilibrium problem, the split variational
inequality problem, the split inclusion poblem, among others.

Let A: C — H be a mapping. The Variational Inequality Problem (VIP) is to
find u € C such that

(Au,v —u) >0, (1.1)

for all v € C. The solution set of is denoted by VIP(C,A). The VIP has
emerged as a fascinating branch of mathematical and engineering sciences, with a
wide range of applications in industry, finance, economics, ecology, and pure and
applied sciences; see, for instance, [IT], [17, [25].

Another optimization problem which includes the VIP is the Equilibrium Prob-
lem (EP), first introduced and studied by Blum and Oettli [4]; see also [24]. Many
problems in physics, optimization, and economics can be reduced to finding the
solution of EP, which is defined as follows: find = € C such that

F(z,y) = 0, (1.2)

for all y € C, where F : C x C — R is a bifunction. We denote by EP (1.2) the

solution set of (1.2).
Let F': C'xC — R be a bifunction and f : H — H a mapping. The Generalized

Equilibrium Problem (GEP) is to find « € C such that
for all y € C. We denote by EP(F, f) the solution set of (|1.3).

Remark 1.1. If F' =0, the GEP (|1.3) reduces to VIP (1.1), and when f = 0, the
GEP (|1.3) reduces to EP (1.2).

In 2013, Kazmi and Rizvi [I8] introduced and studied the following Split Equi-
librium Problem (SEP), which is to find z* € C such that

Fi(z*,2) >0, VzeCl, (1.4)
and such that
y*=Ax* € @Q solves Fy(y*,y) >0, VyeqQ, (1.5)
where F1 : C'x C' = R and F5 : @ X Q — R are nonlinear bifunctions.

The SEP — reduces to EP , if HH = Hy, F1 = F5, A = I, and
¢ T}(li.Split Variational Inequality Problem (SVIP) was introduced and studied by
Censor et al. [I0], who defined the problem as follows: find 2* € C such that

(fi(z*),x —2*) >0, Vzedl, (1.6)
and such that
y*=Az" € @Q solves (fa(y"),y—y™) >0, Vye@, (1.7)
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where f; : C' — H; and fs : Q — Hy are nonlinear mappings. The SVIP has
already been used in practice as a model in intensity-modulated radiation therapy
(IMRT) treatment planning and the modelling of many inverse problems arising
from phase retrieval and other real-world problems such as data compression or
sensor networks in computerized tomography; see for example [I4].

Very recently, Cheawchan and Kangtunyakarn [I3] introduced the Modified Split
Generalized Equilibrium Problem (MSGEP), which is to find z* € C such that

Fi(z*,z) + (fi(z*),x —2") >0, VzeCl, (1.8)
and such that
yr=Ax" €Q solves F(y",y)+ (f2(y),y—y") >0, VyeqQ, (1.9)

where F; : C x C — R and F> : Q x Q — R are nonlinear bifunctions and
f1:C — Hy and f5 : Q — Hy are nonlinear mappings. We denote by Q = {z* €
EP(Fy, f1) : Az* € EP(F3, f2)} the solution set of MSGEP ([1.8])-(L.9).
The MSGEP generalizes the SEP ((1.4)-(1.5) and the SVIP (L.6)-(1.7) in the
following ways:
(i) if f1 = fo =0 in MSGEP (|1.8)-(1.9), then MSGEP (|1.8)-(1.9) reduces to
SEP (T.4)-(T3);
(i) if Fy = F5 =0 in MSGEP (1.8))- (1.9)), then MSGEP (L.8)-(1.9) reduces to
SVIP (L.6)-(17).
For solving EP, we assume that the bifunction F' : C x C' — R satisfies the
following conditions:
(Al) F(x,z) =0, for all x € C,
(A2) F is monotone, i.e. F(x,y)+ F(y,z) <0, Va,y € C;
(A3) for each x,y,z € C, limsup,_,, F(tz + (1 — t)z,y) < F(x,y);
(A4) for each x € C, y — F(z,y) is convex and lower semi-continuous.
Let 7 > 0 and = € H. Then, there exists z € C such that

1
F(z,y)—l—;(y—z,z—x)zO, VyeC.

Let C be a nonempty closed convex subset of a real Hilbert space H. For every
point « € H, there exists a unique nearest point in C, denoted by Pcox, such that
lo - Po(@)l| < lz —yll, Vyec.

P is called the metric projection of H onto C. It is well known that Po is a
nonexpansive mapping of H onto C' and satisfies

[1Pc(z) = Po(y)ll < (x—y, Po(z) — Po(y)).
Moreover, Pc(z) is characterized by the following properties:
(x = Po(x),y — Po(z)) <0

and
o —y||* > ||z — Po(@)|? + |ly — Pe(2)|?, VaeH, yecC.
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For all z,y € H, it is well known that every nonexpansive operator T': H — H
satisfies the inequality

1
(@ =T(@)) = (y = T(), T(y) = T(2)) < 5 [(T(z) — 2) = (T(y) ~ v,
and therefore, we have that for all z € H and y € F(T).
1
(@ =T(2),y = T(2)) < 5 [T() - z|)*.
We now give some definitions that will be needed later.

Definition 1.2. Let C' be a nonempty closed convex subset of a real Hilbert
space H. A point p € C is called a fixed point of a mapping T" if Tp = p. We
denote by F(T') the set of all fixed points of T'.

Definition 1.3. Let C' be a nonempty closed convex subset of a real Hilbert
space H. We say that a nonlinear mapping 7 : C' — C is

(i) a contraction, if there exists a constant ¢ € (0,1) such that
[Tz =Tyl < ollz—yll, Va,yedl;
(ii) nonexpansive, if
(iii) firmly nonexpansive, if
1Tz = Ty|* < [lz - y|* = | = T)e = (I = T)yl|*, Va,yeC;

(iv) firmly quasi-nonexpansive, if F(T) # () and

| Tz — 2| < ||z — 2*||> = || = T)z||*, VaeCandz* € F(T);
(v) strictly pseudo-contractive if there exists k € (0, 1] such that

ITz = Ty|* < llz —y|* + k|(I = D)z — (I = T)yl*, Va.y € C;
(vi) demicontractive, if F'(T') # () and there exists k € [0,1) such that

Tz — 2*|)* < ||z — 2*||> + k| Tz — z|°, VaeCandz* € F(T).

From the definitions stated above, we notice that the class of demicontrac-
tive mappings includes many nonlinear mappings, such as quasi-nonexpansive and
strictly pseudo-contractive with nonempty fixed points sets, as special cases.

In 2015, Chang et al. [12] introduced a new type of nonlinear mapping called
quasi-pseudo-contractive mapping, as follows:

Definition 1.4. An operator T : C' — C is said to be quasi-pseudo-contractive if
F(T) # () and

Tz — 2*|* < |z — 2*||* + || Tz — z|*, VazeC andz* € F(T).

It is obvious that this class of mappings contains the class of demicontractive
mappings, see [12].
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Definition 1.5. A bounded linear operator D on H is called strongly positive if
there exists a constant 8 > 0 such that

(Dz,z) > B ||lz|*, VzeC.

Definition 1.6. Let H be a real Hilbert space and C' be a nonempty closed
convex subset of H. A mapping T : C — C is said to be demiclosed at 0 if
for any bounded sequence {z,} C C such that {z,} converges weakly to x and
lim, o ||, — Tz, || = 0, we have that Ta = .

The viscosity iterative algorithm is one of the algorithms that have been used
extensively by authors to approximate solutions of fixed point problems and opti-
mization problems. The algorithm is constructed in such a way that it also solves
some variational inequality problem (see [6] 2], 28] and the references therein). In
2017, Deepho et al. [16] considered the viscosity iterative algorithm to approximate
a common element of the set of solutions of a split variational inclusion problem
of a finite family of k-strictly pseudo-contractive nonself mappings. They proved a
strong convergence result under suitable conditions, which also solves some varia-
tional inequality problem. The following iteration process was used to approximate
the aforementioned problems:

Uy = J)J\31 (zn + 'yA*(JfQ)A;vn),

N
Yn = ﬁnun + (1 - Bn) Z 77?:1Tiun,
=1

Tp41 = O‘nTg(zn) + (I - anD)yna n>1,

where «,,, 8, € (0,1), A > 0, g is a contraction mapping with coefficient p € (0, 1),
Eﬁil iy =1, {T;}¥, is a finite family of k;-strictly pseudo-contraction mappings,
and J7 (i = 1,2) is the resolvent of the maximal monotone mappings.

In 2018, Abass et al. [I] introduced an iterative algorithm that does not require
the prior knowledge of the operator norm to approximate the common solution of
SEP and fixed point problem for an infinite family of quasi-nonexpansive multi-
valued mappings. Using their iterative algorithm, they prove a strong convergence
result.

Very recently, Cheawchan and Kangtunyakarn [13] introduced a new iterative
algorithm for finding a common element of the set of solutions of variational in-
equality problems and the set of solutions of MSGEP without assuming the demi-
closedness condition. They proved the following theorem.

Theorem 1.7 ([I3]). Let C and Q be nonempty closed convex subsets of real
Hilbert spaces Hy and Ho respectively. Let A : Hi — Hs be a bounded linear
operator. Let D1,Ds : C — Hi be «-, B-inverse strongly monotone mappings
respectively. Let F1 : C'x C — R and Fs : @ x Q — R be bifunctions satisfying
(A1)-(A4). Let {T;}2, be a finite family of quasi-nonexpansive mappings of C
into dtself with NN F(T;) # 0. Let f1 : Hi — H; be a p-inverse strongly monotone
mapping and fo : Ho — Hy be a firmly nonexpansive mapping. Assume that
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II:=VI(C,D)NVI(C,D) NN F(T,))NQ # 0. Forxy,u € C, let {x,}, {u,},
and {y,} be sequences generated by

Up =T (I =7 f1) (2 + YA (T2 (I = sfa) — 1) Axy),
yYn = Po(I — d1D1)(auy, + (I — a)Po(I — daDo)uy,),

N
i=1

where di € (0,2a), d2 € (0,28), r € (0,2p), s € (0,1), a € [0,1], 0 < k; < 1, with
Zf;l ki=1,~¢€ (0, %), L 1is the spectral radius of the operator A*A, and A* is the
adjoint of A. Also, {an},{Bn},{n} are sequences in [0,1] with ap + B + o =1
for allm € N. Suppose the following conditions hold:
(i) im0 ap =0 and Y07 |, = 00;

(i) 0 < ¢ < Bpyyn <d<1 for some c,d >0 for alln > 1;

(iii) Yoo An <00 and 0 < A, < 1;

(iv) Z;L.Ozl |1 — | < oo, Z;.Lozl |Bn+1 — Bnl| < oo

Then {x,} converges strongly to z = Pru.

Motivated by the works of Abass et al. [I], Deepho et al. [I6], Cheawchan and
Kangtunyakarn [I3], we propose a viscosity iterative algorithm that does not re-
quire any knowledge of the spectral radii to approximate a common solution of
MSGEP and fixed point problem for a quasi-pseudo-contractive mapping, which is
also a solution of some variational inequality problem. We prove a strong conver-
gence of the iterative scheme to a solution of the aforementioned problems in the
framework of real Hilbert spaces. Furthermore, we give a numerical example of our
main result.

2. PRELIMINARIES

We state some known and useful results which will be needed in the proof of our
main theorem. In what follows, we denote strong and weak convergence by “—”
and “—” respectively.

Lemma 2.1. Let H be a real Hilbert space. Then for all x,y € H and o € (0,1)
we have

2 2 2 2
laz + (1 = a)y[” = aflz]” + (1 =) lyl” = a(l = @)z = y[I";
2 2
[z +ylI” < [l + 2(y, = + y);
2 2 2 2 2 2
2(z,y) = ll=lI” + lyll” =z = yllI” = llz + ylI” = [lz]” = lly[I”-

Lemma 2.2 ([13]). Let C and Q be nonempty closed convex subsets of real Hilbert
spaces Hy and Hy respectively. Let Fy : C x C — R and Fr : @ x Q — R
be bifunctions satisfying (A1)—-(A4). Let f1 : Hi — H; be a p-inverse strongly
monotone mapping and fo : Ho — Hs be a firmly nonexpansive mapping. Then
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TH(I — rfy) and TF2(I — sfy) are nonewpansive mappings, where v € (0,2p),
s€(0,1), and TFr : Hy : C is defined by

TH(z)={2€C: Fi(z,y) + %(yfz,zf@ >0, VyeC},
for all x € Hy and TF? : Hy — Q is defined by
TH (@) ={z€Q: F(z,y) + %(y -z,z-T>0,Vy € Q},
for allT € Hs.
Recall that a Banach space X is said to satisfy Opial’s condition if for any

sequence {x,} in X which converges weakly to x*,

limsup ||z, — z*|| < limsup ||z, —y|, Vye X with y # z".
n—oo

n—oo

Lemma 2.3 ([15]). Let C be a nonempty closed convex subset of a real Hilbert
space H and F : C x C — R be a bifunction satisfying (A1)-(A4). Forr >0 and
x € H, define a mapping TY : H — C as follows:

1
TTFarz{zEC’:F(z,y)—i—;(y—z,z—x)20, VyeC}, (2.1)
for all x € H. Then the following hold:

(i) T is nonempty and single-valued;
(ii) TF is firmly nonexpansive, that is, Vx,y € H,
Tz = TFy||* < (T2 = Ty, — y);
(iii) F(TF) = EP(F);
(iv) EP(F) is closed and convex.

Lemma 2.4 ([19]). Assume that D is a strongly positive bounded linear operator on
a Hilbert space H with a coefficient 7 >0 and 0 < u < ||D||™". Then ||I — uD| <
1—pur.
Lemma 2.5 ([12]). Let H be a real Hilbert space and T : H — H be an L-
Lipschitzian mapping with L > 1. Denote K := (1 — &{)I + &T((1 —n)I +nT) if
0<é<n< ﬁ Then the following conclusions hold:

(1) F(T) = F(T((1 —n)I +nT)) = F(K);

(2) if T is demiclosed at 0, then K is also demiclosed at 0;

(8) in addition, if T : H — H is quasi-pseudocontractive, then the mapping K

is quasi-nonexpansive, that is,

|Kz—u*|| <|lz—u*||, VzeHandu" € F(T)=F(K).

Lemma 2.6 ([19]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Assume that f : C — C is a contraction with coefficient p € (0,1) and
D is a strongly positive linear bounded operator with a coefficient @ > 0. Then, for
0<o< 2,

“w

(@ =y, (D—0f)x—(D=of)y) =@ —op)llz—yl*, zyeH
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That is, D — o f is strongly monotone with coefficient & — opu.

Lemma 2.7 ([26]). Assume that {a,} is a sequence of nonnegative real numbers
such that

Ap41 S (1 - Un)an + Unana n> Oa
where {on} s a sequence in (0,1) and {0, } is a real sequence satisfying

(1) i1 0n =00,

(i) limsup,,_, o 8, <0 or Y07 | [0,0,| < cc.

Then lim,,_, o a, = 0.

3. MAIN RESULT

Lemma 3.1. Let C' be a nonempty closed convex subset of a real Hilbert space H.
Let F : C x C — R be a bifunction satisfying (A1)-(A4) and f : H — H be any
nonlinear mapping. Then, for 0 < r; < 19, we have that

HTf;(I —rf)z—TE(I - raf)z|| < ||z — TH(I - rof)z||, Ve H.
Proof. Let z = Tg(] —r1f)x and w = TTI“;(I — rof)a. Then, from we obtain
F(z,w)+ %(w—z,z— (I—=rif)z)>0.
Similarly, we obtain
F(w,z) + %(z —w,w— (I —raf)x) > 0.
Adding the last two inequalities and using condition (A2) we obtain

<$—z—7“1fx,z—w>—r—1<x—w—r2fx,z—w>20.
T2

That is,

T1 1
— — — = - I — >
((x —rifx —2) (Tzac rfr . w),z w) > 0,

which implies that
<m—z,z—w>2r—1<x—w,z—w>.
T2
Thus, from Lemma [2.1] we obtain
2 2 2 2" 2 2 2
2 —w|”=[lz = 2" =[x — 2" =[]z — w]| Zg(Hx*wH +w =27 = [lz = 2|7).

Since X <1, we get
2
1 2 ™ 2
<1+> [z —w|]” < <1> |z —wl|”,
9 T2

o= wl? < (252 ) o = wl? < flo - ol 0

which implies that
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Lemma 3.2. Let C and Q be nonempty closed convex subsets of real Hilbert spaces
H, and Hy respectively. Let A : Hi — Hy be a bounded linear operator and
T : Hi — Hs be an L-Lipschitzian and quasi-pseudocontractive mapping with
L>1. Let F1 :CxC =R, Fy:Q xQ — R be bifunctions satisfying (A1)-(A4)
and let D be a strongly positive bounded linear operator on Hy with coefficient T > 0.
Let f1 : Hy — Hi be a pi-inverse strongly monotone mapping and fo : Hy — Hy
be a pa-inverse strongly monotone mapping. Assume that T := F(T)NQ # 0 and g
is a contraction mapping with coefficient p € (0,1). Let the sequences {un}, {yn},
and {x,} be generated for arbitrary x1 € H by

Un, :TrFl( _rnfl)(xn'i"VnA*(TsIzQ( — snf2) — I)Axy,),
Yn = Qplin + (1 - O‘n)((l - fn)l +&.T (1 - nn)l + nnT)unv (3-1)
Tn41 = ﬁnTg(xn) + (I - ﬁnD)yna n 2 ]-7

where K := (1 =&) I+ 6T —np) I +0,T), 0 <r <r, <2p1,0< s < s, <2p,
€ (0,1), and the step size 7y, is chosen in such a way that for some e > 0,

Yo € |(TE2 = sufa) = DAz | —c (3.2)
"\ A @R —safa) - DA )

for all TS}ZQ (I — spfo)Axy, # Axy, and v, = v otherwise (v being any nonnegative
real number), with the sequence {fn} satisfying the following conditions:

(Z) ﬂn S (07 17)7 lim,, 00 577, =0, and Zzozl ﬂn =00,
(ii) 0<T<Z;
(4ii) 0<a<£n<17n<b<ﬁ7 VYn>1.

Then, the sequence {x,} generated by (3.1)) is bounded.

Proof. Let p € I'. We have p = TFl( —rnf1)p and Ap = TFZ( — Snf2)Ap. From
Lemma we have that (TF1 (I —rf1)) and (TF2(I — s, f2)) are nonexpansive
mappings. Usmg (3.1 j and , we obtain

= pII> = | TN = 1o fi) (0 + 3 AT (TE2 (I = s f2) Awn) = TE(I = v i)
< len + A (T2 (1 = s0f2) — D) Aza) = p||”

< lwn =l + A2 | A (T2 (I = $0f2) — 1) Az, |
+ 290 (00— p, AT (I — s, f2) — 1) ),

(3.3)
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where
29n(@n — p, AT (1 = snf2) — 1) An)
= 290 (A(zn — p), (T2 (I = spf2) — I) Ay
=29 (A(wn —p) + (T2 (I = snf2) — 1) Axy
— (T2(I = spfo) = D) Az, (T2 (1 = sn fo) — 1) Awy)
= 2’yn{<TF2 (I — spfo)Ax, — Ap, (Tsljf (I —sfy) —I)Axy,)
— (2821 = suf2) = DAz, |}
< 2%{ (1821 = suf2) = DAwa|” = |71 = suf2) = DAz}

—In H TF2 - san) - Amn“ .
On substituting into , we have
= plI* < l2n = pI* + 92 || AT (L = 50 f2) — D) Az, |
— o |(TE2(T = 5, f2) — I) A, ||

(3.4)

. 9 (3.5)
= |lzn — p” _'Yn[H T 2( _San)—I)Aan
2
— Y |[(TE2(I = s, fo) — I) Az, || ]
Fo R e
Since v, € | e, (T (T=sn o) =D Az | 5 — € |, we obtain
(| A= (T2 (I=s0 f2) = 1) A |
lun = plI* < [0 — pII* - (3.6)
Using (3.1 and ., we have
I = pI” = lwn + (1= ) (1 = )T + & T (A = 1) + 1T (wn — p)||*

2
= llan(un —p) + (1 = o) (Kun = p)||
< ag up = pl* + (1= ) [ Kup = plf* — a1 = o) || Kuy, — iy |*

< ap ||un_p|‘2+(1_o‘n) ||un_p||2 (37)
< JJun = p|I?

2
< lzn —pl”.

Furthermore, using Lemma (3.1), and (3.7), we obtain
[#nt1 = pll = |Bulrg(2n) — Dp] + (1 = BnD)(yn — p)||
< (1= 5a7) llyn = pll + BullTg(@n) — Dp||
< (1 =827 lyn — pll + Bulllrg(@n) = T9(P)|| + IT9(p) — Dpll]
<[1 = (F = 71)Bn) lzn = pll + Bn I T9(p) — Dpl|.
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It follows from induction that

Tg(p) — Dp
len - pl < max{||x1 —pu,”””}, sl
T—TH

Hence {x,} is bounded. Consequently, we deduce that {u,} and {y,} are all
bounded. g

Theorem 3.3. Let C and Q be nonempty closed convex subsets of real Hilbert
spaces Hi and Hs respectively. Let A : Hy — Hy be a bounded linear operator
and T : Hy — Hs be an L-Lipschitzian and quasi-pseudocontractive mapping with
L>1. LetF1 :CxC =R, Fy:Q xQ — R be bifunctions satisfying (A1)-(A4)
and let D be a strongly positive bounded linear operator on Hy with coefficientT > 0.
Let f1 : Hy — Hi be a pi-inverse strongly monotone mapping and fo : Ho — Hy
be a pa-inverse strongly monotone mapping. Assume that T’ := F(T)NQ # 0 and
that g is a contraction mapping with coefficient u € (0,1). Let K := ((1 —&,)I +
ET(1 =) +1,T),0<r <71, <2p1,0<5< 5, <2p, a, € (0,1), and the
step size v, is chosen in such a way that, for some € > 0,

(T (1 = snfo) = DAz|”
2 )

Tn € | €
AS(TE(I = s, fo) — 1) Az,

for all TF2(I—s,, f2) Azy, # Az and v, = 7 otherwise (v being any nonnegative real
number), with the sequences {Bn}, {&n}, {nn} satisfying the following conditions:

(Z) Bn € (O, 1); limy, 00 Bn = 0, and Zzozl Bn = 00;
(ii) 0<a<€n<nn<b<ﬁ,Vn21,'
(iti) 0 <7 < 3;

(iv) 0 < liminf, o a, <limsup,_,., o, < 1.

Then, the sequence {x,} generated by (3.1)) converges strongly to =* € T' which
solves the variational inequality
((D—=71g)x*,x* —x) <0, Vx €T,

where x = Pr(I + 79 — D)z.
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Proof. Let p € I'. Then, applying Lemma and , we obtain
|#nt1 = plI* = Bulrg(zn) — Dpl + (I = BuD)(yn — p)|I?

< (1= B8a7) lyn — plI* + B3 I7g(2n) — Dp|®
+ 2B, (1 = B7) IT9(zn) — Dp| 1y — pl|

< (1= Ba7)? [[tm — plI* + B2 mg(2n) — Dpl|?
+ 2B, (1 = B7) IT9(zn) — Dp|l 1y — pl|

< (1= a7 [llon = plI” + 2 || A" (T = 50 f2) — 1) Az
= (T (1 = 50 f2) = 1 Awa|[*] + 82 I 7g(wa) — Dp
+ 280 (1 = B7) IT9(zn) — Dp|l 1y — pl|

< (1= 3u7)? on = pII” = [ || (TF2(1 = 50 f2) — 1) Az ||”
- Yn ||A* TFZ( — Spfa) — Aﬂan ]
+ B2 rg(xa) — Dpl* + 28, (1 = Bu7) |I7g(zn) — Dp|l llyn — pll -

(3.8)

. 2 (I=sn f>)=1) Az ||’
It follows from (3; [[ChCha =
t follows from ([3.8)) and the condition 7, € (67 A (22 (1o f2)—D) A | € | that

s =P < (1= BuP? len — pl* — € | A" (T2 (L = suf2) — D) Az, |

+ B2 lrg(zn) — Dpl|* + 2B, (1 — B7) | 7g(x0) — Dpll lyn — pll
(3.9)

We now divide our proof into two cases.

Case 1: Assume that {||z,, — p||} is a monotonically nonincreasing sequence. Then
{z,} is convergent and clearly

lim [z, —pll = lim [0 — p].
Thus from we have that
e[| A" (TE (T = 50 f2) = DAza|” < (0= 8272 2 = II* = lonss = pl
+ B Img(@n) = Dpl* + 284(1 = Bu7) lIrg(an) = Dol llyn —
Hence, from condition (i) of Theorem [3.3] we obtain

lim [|A*(T>(1 = snfo) Az, || = 0. (3.10)
n—oo

Furthermore, from (3.8) and (3.10) we have that

Tn ||(Ts€2(1 — Snfa) — Axn“ (1-8.7 ) |Zn _pH2 — lznt1 _pH2

* — 2
+ o [|AN(TE2(T = sufa) = D Awn|” + B2 |79 (xn) — Dp?
+26,(1 = Bu7) I7g9(zn) — Dp|l llyn — 2l ,

Rev. Un. Mat. Argentina, Vol. 61, No. 2 (2020)



MODIFIED SPLIT GENERALIZED EQUILIBRIUM PROBLEM 401

which implies from condition (i) of Theorem and (3.2 that

lim |[(T22(1 = snfo) — I)Azy|| = 0. (3.11)

n—oo

Let w,, = ©,, + WnA*(Tsljf (I — spf2) — I)Az,. Applying inequality (3.6), we have
[wn = pll < [lzn — pl - (3.12)

Using the property of inverse strongly monotone operator and (3.12)), we have

2

[[un _pH2 = HTTIZl (I = rnfr)wn — Tril (I - Tnfl)pH

2
< ||(I - Tnfl)wn - (I - Tnfl)pH

2 2
= |lwn — plI* = 2rn(wn — p, frw, — f1p) + 72 || frwn — f1p)
<z = pl* = (201 — 72) | frwn — fipl)? -

3.13)

From Theorem we have that

|#nt1 = plI* = 1Bulrg(zn) — Dpl+ (I = BuD)(yn — p)|I?
< (1= B8a7)” lyn — plI* + B3 I7g(2n) — Dp|®
+280(1 = B7) I79(zn) — Dp| [lyn — pll (3.14)
< (1= B7)? |lun —p|* + B lI79(2n) — Dpl?
+ 2B, (1 = B,7) 79(2n) — Dpl| lyn — Il -
Substituting into , we obtain

21— plI* < (1= BoT)?[ N1z — ol = 70(201 — 70) | frewn — f1p))?]
+ 687 |rg(@n) — Dpl|*
+ 28, (1 = Ba7) I T9(xn) — Dpl| [|yn — p|
< (1= 827 an = plI* = ra(2p1 = 70) | frwn = fip|®
+ B2 |Irg(xn) — Dp|®
+2Bn(1 = Ba7) I79(zn) — Dpl| |y — pl| -

Hence,

(201 = 7n) || frwn — f1p||2 <(1- Bn?)Q Zn —p||2 — lznt1 —p||2
+ B2 |lrg(zn) — Dp|?
+ 28, (1 = B8,7) [Tg(zn) — Dp|l Iy — p|| -

Therefore, from condition (i) of Lemma we obtain

Jim[| frwn = fipl] = 0. (3.15)
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By the firm nonexpansivity of TT}; !, we have
2
||un _p||2 = HTT}:Ll (I - Tnfl)wn - Tr}:} (I - Tnfl)p”
< <un - P, (I - Tnfl)wn - (I - Tnfl)p>
1
5 Ullwn — pI* + 1T = rofr)wn = (I = rufr)pl
—(un = p) = (I = fr)wn + (T = ru f1)pll*).

l[un _p”2 <N =rafi)wn — (I = Tnfl)p”? = [[(un = wp) + ro(frwn — flp)HQ
< [lwn - p|I*
= (llun = wall* 4+ 2rp(un = wn, frwn = fip) + 7 || frwn — fipl|*)
< [lwn — p|*
— l[tn = wall* + 2 ||, = wi | [ Frwp = fipll = 77 || frwn = fip]*.

(3.16)

From , and , we obtain
|1 = plI* < (1= B,7)? [lun = plI* + 57 lIrg(xn) — Dp|”
+ 26 (1 = BuT) I7g(xn) — Dpl| [lyn — P
< (1= 827 [llwn = plI* = llun = wall* + 275 lfun = will || frwn = fip]
=75 |l frwn = fipl*] + 8 g (zn) — Dpl|*
+260(1 = BuT) I7g(2n) — Dp|l lyn —
< (1= 26,7 + (827)) l2n — 21> = (1 = Bo7)? [[un — wy?
+ 20 (1 = Bu7)? |un — wal| | frwn — fipl]
= (1= Bum)?rs || frwn = fipl’
+ 87 [mg(@n) = Dp||* +28,(1 = B27) |mg(xn) — Dpll |yn — p|
<l = pl* + (Ba7)? llzn = plI* = (1= Ba7)? | — wn|?
+ 2 (1 = BnT)? un — wall | frwn — fipll
— (L= Bu7)°r | frwn — fipl* + 87 lI7g(zn) — Dpl)*
+ 26 (1 = BnT) Irg(xn) — Dpll [lyn — pl,
which yields
(1= BT lun = wall* < lwn = plI* = |n41 = plI* + (Ba7)? 20 — pII*
+2r (1 = Bo7)? [[un = wall | frwn = fipl = (1= Bo7)%r7 || frwn — fipll®
+ 87 [mg(@n) — Dpl|* +28,(1 = 57) |79(2n) = Dol llyn = pll.
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From condition (i) of Lemma and ([3.15)), we obtain
nh_}n;o |lwn, — wy] = 0. (3.17)
Since w,, = z,, + fynA*(TS}ZZ (I — spf2) — I)Ax,, we have that
lwn — || = ||xn + Y AT (I = spfo) — 1) Az, — mnH
< | AT = s fo) = 1)
which implies from ([3.10) that

nh—{%o lwn, — zp] = 0. (3.18)
From , , and , we obtain
lun — Znll < ||tun — wnl| + ||wn — 2]l = 0, n — oco. (3.19)
Again,
lyn = II* = llan(un = p) + (1 = ) (Kuy = p)|?

2 2 2
an [lun = pl” + (1 = an) [[Kun —pl|” = a(l — an) [ Kun — un||

IN

a [[un = plI* + (1 = an) un — pl* = (1 — o) [ Ku — |
= |lun — plI* = an (1 — o) | Kty — un®. (3.20)
From , we have
|Zns1 — 2> < (1= Ba?)? lyn — 2> + Bu lITg(20) — Dp|?
+2B,(1 = BuT) I79(zn) — Dpl| |y — pl|-
On substituting into , we obtain
[2n1 = plI* < (1= Ba?)? [Nt — plI* = an (1 — ) [ K, — || ]
+ Bn lrg(zn) — Dpl|* + 28, (1 — B7) | 79(x0) — Dpl| [lyn — pl|
< (1= Ba7)? |lzn — ol = an(1 = an) (1 = BoT) || Kup — un |
+ B ||7g(zn) — Dp ||* + 28.(1 = Bu7)|| 79(2n) — Dp|| lyn — pll,

IN

(3.21)

which yields
an(l—an)(1 = BaT ) [ Kun — un” (1- ﬁnT) [E2 _pH2 = |41 _pH2
+ By Img(@n) = Dp||* +28,(1 = B7) Img(xn) = Dpll lyn — pll-  (3.22)
Thus, from condition (i) of Lemma [3.2} we obtain
hﬁm | Ky — upll = 0. (3.23)

Also, from ({3.1)) we have
||yn — Uyl = ||anun +(1 - an)Kun - Un”
< (1 —an) [ Kup — unll,
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which implies that

Jimlyn — un | = 0. (3.24)
Again, from (3.19) and (3.24) we obtain
19n = @nll < llyn — unll + [lun — znll = 0, 1 — oo (3.25)

From (3.1]) we have

[Zn+1 — Zull < | Tns1 — yull + lyn — 2nll
= ||6n7_g(1'n) + (I - ﬂnD)yn - yn” + ||yn - xn”
< BullTg(n) — Dynll + [|yn — 2nll.

From condition (i) of Lemma and ([3.25) we have that
lim ||wp41 —2p] =0.
n— oo

Since {z,} is bounded, there exists a weakly convergent subsequence {x,;} of
{zn} such that x,, — z*. Since every Hilbert space has the Opial property, we
have z,, — z*. On the other hand, from we have that u, — z*. Using
(3.23) and the demiclosedness property of K, we have that Kz* = z*. Hence
x* € F(T). Next, we show that * € Q. Assume that z* ¢ EP(Fy, f1); since
EP(Fy, f1) = F(TF*(I — rf1)), we obtain x* # T (I — rf;)x*. Using Opial’s
condition and , Lemma and Lemma we obtain

liminf ||w,, — 2*|| < liminf ||w,, — TH (1 - rfi)a*|
j—o0 J—0o0

< tmint (i, — T (1 = o |
+ HTS}(I — T f1)Wn,; — TTFl (I =7 f1)wn, H
+ HT#‘rJl (I - rfl)wnj - TTF1 (I—- rfl)a:*H )
< liminf ([Jun, = wn, || + [[wn,; —27])
< lim inf Hw"?‘ - :c*”
‘7*)00 ;
This is a contradiction, therefore x* € EP(F1, f1).

Next, we show that Az* € EP(F3, f3). Since A is a bounded linear operator,
Axp; — Az* as j — oco. Assume that Ax* ¢ EP(Fy, f2) and since EP (I, fo) =
F(TI2(I—s,f2)), we obtain Az* # T2 (I—s, f2)Az*. Using Opial’s condition and
(3.11)), we obtain, by a similar argument to that given above, Ax* € EP(Fy, f).
Hence, we conclude that z* € . Therefore, z* € T'.

We now show that limsup,_, .. ((D — 7g)x,x — x,) < 0, where z = Pr(I + 79 —
D)x. Indeed, the subsequence {x,,} of {x,} converges weakly to z*. We obtain,
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by the property of metric projection Pr,

limsup((D — 7g)x, 2 — x,,) = lim (D — 79)x, 2 — Ty,)
n—»00 J—o0

={((D —Tg)x,x —x¥)

=(([+79—D)x —x,z" — )

<0.
Also, we show the uniqueness of a solution of the variational inequality

(D—-71g)z,z—2") <0, z"el. (3.26)
Suppose that x € I and z* € I" are both solutions of ; then
(D—71g)x,xr—2*) <0

and

(D —=71g)x*,x* —x) <0

Adding the last two inequalities we have
(D —71g)x — (D —71g)x*,x — ) <O0.

Since D — ¢ is strongly monotone by Lemma [2.6] we have that © = z*. Hence the
uniqueness is proved.
Lastly, we prove that z,, — z* as n — oco. From (3.1)) and (3.7) we obtain

|#ni1 —*|* = (Burg(n) + (I = BuD)yn — 2%, Tpy1 — 27)
= ﬁn<7—g(xn) - Dx*vanrl - .’E*> + <(I - BnD)(yn - x*),$n+1 - {E*>
< But(g(wn) — 9(7), Tpy1 — %) + Bu(tg(z”) — D™, 2001 — 27)
+ (1= 8aT) lyn — 2" (|21 — 27|
< Batpllzn — 2| lzng1 — 2| + Bu(rg(a”) — Da*, zpqq — 27)
+ (1= BnT) lon — ™|l [[#nr — 27|
=[1 -7 — 78] llzn — 2" [2nt1 — =]
+ Bn(rg(x") — D™, xni1 — 2%)
< 1-— (? — T.U)Bn
- 2
+ Bu(rg(a”) — Da*, zpiq — 27)
< 1-— (? — T.U)Bn
- 2
+ Bn{Tg(x") — Dz, zpp1 — 7).
Then, it follows that

2 2
(lzn = 27| + lznsr — ")

1
= 2| + 5 lznss = |

2(rg(x*) — Da*, xpy1 — ™)
(T —7p)

By conditions (i) and (ii) of Lemma we obtain lim,_, ||z, — 2*|| = 0 using

Lemma

l2n i1 — 2% < [1=(F=710)8a] 20 — 2" |*+Ba(F—711)
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Case 2: Assume that {||z, — p||} is not a monotonically increasing sequence. Set
©,, = ||zn — p||* and let o : N — N be a mapping for all n > ng (for some ng large
enough) defined by

on):=max{k e N:k<n, Op <n, O <O}
Clearly, o is a non-decreasing sequence such that o(n) — 0 as n — 0o and O, () <
Og(n)+1, for n > ng. It follows from that
o) (1= Qo) (1= Bon)T)? [ Ktig() =t
< (1= B ™) o) = #l° = 7ot — oIl

+ Bom) I79(@omy) = Dp|”

+ 285y (1 = Bo)7) [|79(2m)) = D[ |95y =Pl
Therefore, since lim,, o0 B5(n) = 0, we obtain

lim HKua(n) — uUH =0.

n—oo

Following the same argument as in Case 1, we conclude that {z,}, {yo}, and {u,}
converge weakly to p € F(K) N Q. Now, for all n > ng, we have

0< (2o =" = 70w — |
< (1= Botn?) o) — 2°||* + B2y I79(w0) — Da|?
+ 2By (1 = Bo )7 | 79(@o(m)) — Da*|| | 2o (m) — 2 | =l Zany — 2*[|”
= B |2r(y — =||” + B2y |79(@o(m)) — Da”||”
+2B5(n) (1 = Bo(n)) <Tg(;v7.(n)) — Da*, 2541 — x*>
Thus,

Bo(n R
[ < = |lrg(aom) - Da’|

2(1 - Ba(n)ﬁ)
e

[€o(n) — *

+ <7_g(x<7(n)) - D{E*, Lo(n)+1 — x*>
Since By(n) — 0 as n — oo and limsup,, , (79(Zs(n)) — DT, 5(n)41 — %) <0,
we conclude that {z,} converges to z*. O

Corollary 3.4. Let C' and @ be nonempty closed convex subsets of real Hilbert
spaces Hi and Hj respectively. Let A : H; — Hs be a bounded linear operator and
T : Hi — Hj be a nonexpansive mapping. Let F; : CxC - R, Fo: Q@ xQ — R
be bifunctions satisfying (A1)—(A4), and let D be a strongly positive bounded
linear operator on H; with coefficient 7 > 0. Let f; : Hy — Hj be a p;-inverse
strongly monotone mapping and f, : Ho — Hs be a ps-inverse strongly monotone
mapping. Assume that T := F(T) N Q # @ and that g is a contraction mapping
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with coefficient ¢ € (0,1). Let the sequences {u,}, {yn}, and {z,} be generated
for arbitrary 1 € H by

Uy = Tf:} (I —rpf1)(zn + vnA*(TSi? (I = spfa) —I)Axy,,),
Yn = QplUn + (1 - Oén)T’U,n,
Tnt+1 = 6n7'g(xn) + ([ - ﬂnD)ynv n>1,
where 0 < 7 <7, < 2p1, 0 < s < s, < 2p2, ay € (0,1), and the step size v, is
chosen in such a way that for some € > 0,
[(TF(I = sufo) = DAz |* .
2 b

A (TE(I — s, fy) — I) Az,

Yn € | €

for all TF2(I — s, f2) Az, # Azy, and 7, = v otherwise (y being any nonnegative
real number), with the sequence {f8,},{&n}, {nn} satisfying the following condi-
tions:

(i) Bn € (0,1), limp 00 B = 0, and oo B = 00;
(i) 0 <7 < &3
(iii) 0 < liminf, o o, < limsup,, ., @, < 1.
Then, the sequence {z,} generated by (3.1) converges strongly to x* € I" which
solves the variational inequality

((D—=71g)x*,z* —x) <0, Vzel.
4. A NUMERICAL EXAMPLE

We consider a numerical example of our algorithm in R2.

Let H; = Hy = R% Then for z = (21,22), ¥y = (y1,¥2), (u1,uz2), (v1,v2), and
(21, 72), define F;(z,y) = —3iz% + 2iyz + 4iy?, i = 1,2. Then, Lemma ensures
that we can find 2 € R? such that

1
Fi(z,y)+ —(y—z2z—2)>0, VyeR? i=12
T

n
1
= —3i2? + 2iyz + diy? + —(yz —ay — 2% +22) >0
Tn
= —3iry 2 + 2ir,yz + dirpy? +yz — xy — 22 + 2.

Let P(y) = 4ir,y® + (2ir,2 + 2 — 2)y — 3ir,2% — 22 + zz. Then P is a quadratic
equation in y. Thus, we obtain the determinant as follows:

A =b* — dac
= (2irpz + 2 — )% — dir, (=3ir,2? — 2% + 2x)
= 161'27“%2'2 + 8iry 22 — Qirprz — 2x2 + 2% + 22
= 2?2 — 2(4irpz + 2)x + (dirpz + 2)?
= (x — (4ir, +1)z)?
> 0.
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Since P(y) > 0 for all y € R, it has at most one solution in R, and then A < 0. So

J— T
we have that z = T Hence,

T,il(x)< 7 2 > i=1,2. (4.1)

diry, + 1" dir, +1
Let f; = 57,4 =1,2. Then f; is p;-inverse strongly monotone with p; = 2i, i =1, 2.
Let A(z) = (421 + 3w2, 371 + 272) and D(z) = 22 and g(z) = 5. Then, 7 = 2 and
p = . Thus, we can take 7 = 2 and condition (iii) of Theorem is satisfied.

From (1) we get that T2 (o) = (2. 525 ) and T52(0) = (527, 5250 ).

and s, = ;ZLl; for all n > 1.

Thus, we take r,, = %

Now we define T : R? — R? by

2 1 1
T(xl,xQ):—( a; )(xl,xz), Va > —.

2
Then T is an L-Lipschitzian and quasi-pseudocontractive mapping, with L =

2
(22t1)" > 1, Vo > 3. We now take 3, = ++1)’

1 _ —
o R) ap = ﬁ’ Tn = 2+(2 1
and &, = ﬁ Vn > 1, a > 3. Then conditions (i) and (ii) of Lemma [3.2] are

satisfied. Hence, for z; € R?, Algorithm becomes

Uy =TI — 1o f1)(@n + AN (T2 (I = s, f2) — I)Azy,),

n n+3
= 1-— _

2 2
n = n 1- n-
BT +< n+1)y

These three cases are displayed in Figure [1| on the next page:

Case 1: o = (0.1,0.5)T and a = 2.
Case 2: g = (0.1,0.5)T and a = 1.
Case 3: 79 = (1,-2)T and a = 2.
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FIGURE 1. Errors vs Number of iterations (n): Case 1 (top);
Case 2 (middle); Case 3 (bottom).
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