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VISCOSITY APPROXIMATION METHOD FOR MODIFIED
SPLIT GENERALIZED EQUILIBRIUM AND FIXED POINT

PROBLEMS

HAMMED ANUOLUWAPO ABASS, CHINEDU IZUCHUKWU,
AND OLUWATOSIN TEMITOPE MEWOMO

Abstract. We introduce a viscosity iterative algorithm for approximating a
common solution of a modified split generalized equilibrium problem and a
fixed point problem for a quasi-pseudocontractive mapping which also solves
some variational inequality problems in real Hilbert spaces. The proposed
iterative algorithm is constructed in such a way that it does not require the
prior knowledge of the operator norm. Furthermore, we prove a strong conver-
gence theorem for approximating the common solution of the aforementioned
problems. Finally, we give a numerical example of our main theorem. Our
result complements and extends some related works in the literature.

1. Introduction

Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and
H2 respectively. The Split Feasibility Problem (SFP), first introduced in [7] by
Censor and Elfving, requires finding a point in a nonempty closed convex subset
in one space such that its image under a bounded linear operator is in another
nonempty closed convex subset in the image space. That is, find x∗ ∈ C such that

Ax∗ ∈ Q,
where A : H1 → H2 is a bounded linear operator. The SFP arises in many fields
in the real world, such as signal processing, image reconstruction, and intensity-
modulated radiation therapy problems. For example, see [8, 9, 23] and the ref-
erences therein. Many well-known iterative algorithms have been established for
the SFP; for instance, Byrne [5] proposed the CQ algorithm to study the SFP; Qu
and Xiu [20] considered a modified CQ algorithm to study the SFP; and Xu [26]
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introduced a regularized algorithm for studying the SFP and proved a strong con-
vergence result.

The introduction of the SFP to fixed point theory has also yielded some op-
timization problems such as the split equilibrium problem, the split variational
inequality problem, the split inclusion poblem, among others.

Let A : C → H be a mapping. The Variational Inequality Problem (VIP) is to
find u ∈ C such that

〈Au, v − u〉 ≥ 0, (1.1)
for all v ∈ C. The solution set of (1.1) is denoted by VIP(C,A). The VIP has
emerged as a fascinating branch of mathematical and engineering sciences, with a
wide range of applications in industry, finance, economics, ecology, and pure and
applied sciences; see, for instance, [11, 17, 25].

Another optimization problem which includes the VIP is the Equilibrium Prob-
lem (EP), first introduced and studied by Blum and Oettli [4]; see also [24]. Many
problems in physics, optimization, and economics can be reduced to finding the
solution of EP, which is defined as follows: find x ∈ C such that

F (x, y) ≥ 0, (1.2)

for all y ∈ C, where F : C × C → R is a bifunction. We denote by EP (1.2) the
solution set of (1.2).

Let F : C×C → R be a bifunction and f : H → H a mapping. The Generalized
Equilibrium Problem (GEP) is to find x ∈ C such that

F (x, y) + 〈f(x), y − x〉 ≥ 0, (1.3)

for all y ∈ C. We denote by EP(F, f) the solution set of (1.3).

Remark 1.1. If F ≡ 0, the GEP (1.3) reduces to VIP (1.1), and when f ≡ 0, the
GEP (1.3) reduces to EP (1.2).

In 2013, Kazmi and Rizvi [18] introduced and studied the following Split Equi-
librium Problem (SEP), which is to find x∗ ∈ C such that

F1(x∗, x) ≥ 0, ∀x ∈ C, (1.4)

and such that

y∗ = Ax∗ ∈ Q solves F2(y∗, y) ≥ 0, ∀ y ∈ Q, (1.5)

where F1 : C × C → R and F2 : Q×Q→ R are nonlinear bifunctions.
The SEP (1.4)-(1.5) reduces to EP (1.2), if H1 ≡ H2, F1 ≡ F2, A ≡ I, and

C = Q.
The Split Variational Inequality Problem (SVIP) was introduced and studied by

Censor et al. [10], who defined the problem as follows: find x∗ ∈ C such that

〈f1(x∗), x− x∗〉 ≥ 0, ∀x ∈ C, (1.6)

and such that

y∗ = Ax∗ ∈ Q solves 〈f2(y∗), y − y∗〉 ≥ 0, ∀ y ∈ Q, (1.7)
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where f1 : C → H1 and f2 : Q → H2 are nonlinear mappings. The SVIP has
already been used in practice as a model in intensity-modulated radiation therapy
(IMRT) treatment planning and the modelling of many inverse problems arising
from phase retrieval and other real-world problems such as data compression or
sensor networks in computerized tomography; see for example [14].

Very recently, Cheawchan and Kangtunyakarn [13] introduced the Modified Split
Generalized Equilibrium Problem (MSGEP), which is to find x∗ ∈ C such that

F1(x∗, x) + 〈f1(x∗), x− x∗〉 ≥ 0, ∀x ∈ C, (1.8)

and such that

y∗ = Ax∗ ∈ Q solves F2(y∗, y) + 〈f2(y∗), y − y∗〉 ≥ 0, ∀ y ∈ Q, (1.9)

where F1 : C × C → R and F2 : Q × Q → R are nonlinear bifunctions and
f1 : C → H1 and f2 : Q → H2 are nonlinear mappings. We denote by Ω = {x∗ ∈
EP (F1, f1) : Ax∗ ∈ EP (F2, f2)} the solution set of MSGEP (1.8)–(1.9).

The MSGEP generalizes the SEP (1.4)-(1.5) and the SVIP (1.6)-(1.7) in the
following ways:

(i) if f1 ≡ f2 ≡ 0 in MSGEP (1.8)-(1.9), then MSGEP (1.8)-(1.9) reduces to
SEP (1.4)-(1.5);

(ii) if F1 ≡ F2 ≡ 0 in MSGEP (1.8)- (1.9), then MSGEP (1.8)-(1.9) reduces to
SVIP (1.6)-(1.7).

For solving EP, we assume that the bifunction F : C × C → R satisfies the
following conditions:

(A1) F (x, x) = 0, for all x ∈ C;
(A2) F is monotone, i.e. F (x, y) + F (y, x) ≤ 0, ∀x, y ∈ C;
(A3) for each x, y, z ∈ C, lim supt→0 F (tz + (1− t)x, y) ≤ F (x, y);
(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semi-continuous.
Let r > 0 and x ∈ H. Then, there exists z ∈ C such that

F (z, y) + 1
r
〈y − z, z − x〉 ≥ 0, ∀ y ∈ C.

Let C be a nonempty closed convex subset of a real Hilbert space H. For every
point x ∈ H, there exists a unique nearest point in C, denoted by PCx, such that

‖x− PC(x)‖ ≤ ‖x− y‖ , ∀ y ∈ C.

PC is called the metric projection of H onto C. It is well known that PC is a
nonexpansive mapping of H onto C and satisfies

‖PC(x)− PC(y)‖ ≤ 〈x− y, PC(x)− PC(y)〉.

Moreover, PC(x) is characterized by the following properties:

〈x− PC(x), y − PC(x)〉 ≤ 0

and
‖x− y‖2 ≥ ‖x− PC(x)‖2 + ‖y − PC(x)‖2 , ∀x ∈ H, y ∈ C.
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For all x, y ∈ H, it is well known that every nonexpansive operator T : H → H
satisfies the inequality

〈(x− T (x))− (y − T (y)), T (y)− T (x)〉 ≤ 1
2 ‖(T (x)− x)− (T (y)− y)‖2 ,

and therefore, we have that for all x ∈ H and y ∈ F (T ).

〈x− T (x), y − T (x)〉 ≤ 1
2 ‖T (x)− x‖2 .

We now give some definitions that will be needed later.

Definition 1.2. Let C be a nonempty closed convex subset of a real Hilbert
space H. A point p ∈ C is called a fixed point of a mapping T if Tp = p. We
denote by F (T ) the set of all fixed points of T .

Definition 1.3. Let C be a nonempty closed convex subset of a real Hilbert
space H. We say that a nonlinear mapping T : C → C is

(i) a contraction, if there exists a constant φ ∈ (0, 1) such that

‖Tx− Ty‖ ≤ φ ‖x− y‖ , ∀x, y ∈ C;

(ii) nonexpansive, if

‖Tx− Ty‖ ≤ ‖x− y‖ , ∀x, y ∈ C;

(iii) firmly nonexpansive, if

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(I − T )x− (I − T )y‖2 , ∀x, y ∈ C;

(iv) firmly quasi-nonexpansive, if F (T ) 6= ∅ and

‖Tx− x∗‖2 ≤ ‖x− x∗‖2 − ‖(I − T )x‖2 , ∀x ∈ C and x∗ ∈ F (T );

(v) strictly pseudo-contractive if there exists k ∈ (0, 1] such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k ‖(I − T )x− (I − T )y‖2 , ∀x, y ∈ C;

(vi) demicontractive, if F (T ) 6= ∅ and there exists k ∈ [0, 1) such that

‖Tx− x∗‖2 ≤ ‖x− x∗‖2 + k ‖Tx− x‖2 , ∀x ∈ C and x∗ ∈ F (T ).

From the definitions stated above, we notice that the class of demicontrac-
tive mappings includes many nonlinear mappings, such as quasi-nonexpansive and
strictly pseudo-contractive with nonempty fixed points sets, as special cases.

In 2015, Chang et al. [12] introduced a new type of nonlinear mapping called
quasi-pseudo-contractive mapping, as follows:

Definition 1.4. An operator T : C → C is said to be quasi-pseudo-contractive if
F (T ) 6= ∅ and

‖Tx− x∗‖2 ≤ ‖x− x∗‖2 + ‖Tx− x‖2 , ∀x ∈ C and x∗ ∈ F (T ).

It is obvious that this class of mappings contains the class of demicontractive
mappings, see [12].
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Definition 1.5. A bounded linear operator D on H is called strongly positive if
there exists a constant β > 0 such that

〈Dx, x〉 ≥ β ‖x‖2 , ∀x ∈ C.

Definition 1.6. Let H be a real Hilbert space and C be a nonempty closed
convex subset of H. A mapping T : C → C is said to be demiclosed at 0 if
for any bounded sequence {xn} ⊂ C such that {xn} converges weakly to x and
limn→∞ ‖xn − Txn‖ = 0, we have that Tx = x.

The viscosity iterative algorithm is one of the algorithms that have been used
extensively by authors to approximate solutions of fixed point problems and opti-
mization problems. The algorithm is constructed in such a way that it also solves
some variational inequality problem (see [6, 21, 28] and the references therein). In
2017, Deepho et al. [16] considered the viscosity iterative algorithm to approximate
a common element of the set of solutions of a split variational inclusion problem
of a finite family of k-strictly pseudo-contractive nonself mappings. They proved a
strong convergence result under suitable conditions, which also solves some varia-
tional inequality problem. The following iteration process was used to approximate
the aforementioned problems:

un = JB1
λ (xn + γA∗(JB2

λ )Axn),

yn = βnun + (1− βn)
N∑
i=1

ηni=1Tiun,

xn+1 = αnτg(xn) + (I − αnD)yn, n ≥ 1,

where αn, βn ∈ (0, 1), λ > 0, g is a contraction mapping with coefficient ρ ∈ (0, 1),∑N
i=1 η

n
i=1 = 1, {Ti}Ni=1 is a finite family of ki-strictly pseudo-contraction mappings,

and JBiλ (i = 1, 2) is the resolvent of the maximal monotone mappings.
In 2018, Abass et al. [1] introduced an iterative algorithm that does not require

the prior knowledge of the operator norm to approximate the common solution of
SEP and fixed point problem for an infinite family of quasi-nonexpansive multi-
valued mappings. Using their iterative algorithm, they prove a strong convergence
result.

Very recently, Cheawchan and Kangtunyakarn [13] introduced a new iterative
algorithm for finding a common element of the set of solutions of variational in-
equality problems and the set of solutions of MSGEP without assuming the demi-
closedness condition. They proved the following theorem.

Theorem 1.7 ([13]). Let C and Q be nonempty closed convex subsets of real
Hilbert spaces H1 and H2 respectively. Let A : H1 → H2 be a bounded linear
operator. Let D1, D2 : C → H1 be α-, β-inverse strongly monotone mappings
respectively. Let F1 : C × C → R and F2 : Q × Q → R be bifunctions satisfying
(A1)–(A4). Let {Ti}∞i=1 be a finite family of quasi-nonexpansive mappings of C
into itself with ∩Ni=1F (Ti) 6= ∅. Let f1 : H1 → H1 be a ρ-inverse strongly monotone
mapping and f2 : H2 → H2 be a firmly nonexpansive mapping. Assume that
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Π := V I(C,D1) ∩ V I(C,D2) ∩ ∩Ni=1F (Ti) ∩Ω 6= ∅. For x1, u ∈ C, let {xn}, {un},
and {yn} be sequences generated by

un = TF1
r (I − rf1)(xn + γA∗(TF2

s (I − sf2)− I)Axn),
yn = PC(I − d1D1)(aun + (I − a)PC(I − d2D2)un),

xn+1 = αnu+ βnxn + γnPC

(
I − λn

( N∑
i=1

ki(I − Ti)
))

yn, ∀n ∈ N,

where d1 ∈ (0, 2α), d2 ∈ (0, 2β), r ∈ (0, 2ρ), s ∈ (0, 1), a ∈ [0, 1], 0 < ki < 1, with∑N
i=1 ki = 1, γ ∈ (0, 1

L ), L is the spectral radius of the operator A∗A, and A∗ is the
adjoint of A. Also, {αn}, {βn}, {γn} are sequences in [0, 1] with αn + βn + γn = 1
for all n ∈ N. Suppose the following conditions hold:

(i) limn→∞ αn = 0 and
∑∞
n=1 αn =∞;

(ii) 0 < c ≤ βn, γn ≤ d < 1 for some c, d > 0 for all n ≥ 1;
(iii)

∑∞
i=1 λn <∞ and 0 < λn < 1;

(iv)
∑∞
n=1 |αn+1 − αn| <∞,

∑∞
n=1 |βn+1 − βn| <∞.

Then {xn} converges strongly to z = PΠu.

Motivated by the works of Abass et al. [1], Deepho et al. [16], Cheawchan and
Kangtunyakarn [13], we propose a viscosity iterative algorithm that does not re-
quire any knowledge of the spectral radii to approximate a common solution of
MSGEP and fixed point problem for a quasi-pseudo-contractive mapping, which is
also a solution of some variational inequality problem. We prove a strong conver-
gence of the iterative scheme to a solution of the aforementioned problems in the
framework of real Hilbert spaces. Furthermore, we give a numerical example of our
main result.

2. Preliminaries

We state some known and useful results which will be needed in the proof of our
main theorem. In what follows, we denote strong and weak convergence by “→”
and “⇀”, respectively.

Lemma 2.1. Let H be a real Hilbert space. Then for all x, y ∈ H and α ∈ (0, 1)
we have

‖αx+ (1− α)y‖2 = α ‖x‖2 + (1− α) ‖y‖2 − α(1− α) ‖x− y‖2 ;

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉;

2〈x, y〉 = ‖x‖2 + ‖y‖2 − ‖x− y‖2 = ‖x+ y‖2 − ‖x‖2 − ‖y‖2 .

Lemma 2.2 ([13]). Let C and Q be nonempty closed convex subsets of real Hilbert
spaces H1 and H2 respectively. Let F1 : C × C → R and F2 : Q × Q → R
be bifunctions satisfying (A1)–(A4). Let f1 : H1 → H1 be a ρ-inverse strongly
monotone mapping and f2 : H2 → H2 be a firmly nonexpansive mapping. Then
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TF1
r (I − rf1) and TF2

s (I − sf2) are nonexpansive mappings, where r ∈ (0, 2ρ),
s ∈ (0, 1), and TF1

r : H1 : C is defined by

TF1
r (x) = {z ∈ C : F1(z, y) + 1

r
〈y − z, z − x〉 ≥ 0, ∀ y ∈ C},

for all x ∈ H1 and TF2
s : H2 → Q is defined by

TF2
s (x) = {z ∈ Q : F2(z, y) + 1

s
〈y − z, z − x ≥ 0, ∀ y ∈ Q},

for all x ∈ H2.

Recall that a Banach space X is said to satisfy Opial’s condition if for any
sequence {xn} in X which converges weakly to x∗,

lim sup
n→∞

‖xn − x∗‖ < lim sup
n→∞

‖xn − y‖ , ∀ y ∈ X with y 6= x∗.

Lemma 2.3 ([15]). Let C be a nonempty closed convex subset of a real Hilbert
space H and F : C × C → R be a bifunction satisfying (A1)–(A4). For r > 0 and
x ∈ H, define a mapping TFr : H → C as follows:

TFr x =
{
z ∈ C : F (z, y) + 1

r
〈y − z, z − x〉 ≥ 0, ∀ y ∈ C

}
, (2.1)

for all x ∈ H. Then the following hold:
(i) TFr is nonempty and single-valued;

(ii) TFr is firmly nonexpansive, that is, ∀x, y ∈ H,∥∥TFr x− TFr y∥∥2 ≤ 〈TFr x− TFr y, x− y〉;
(iii) F (TFr ) = EP (F );
(iv) EP (F ) is closed and convex.

Lemma 2.4 ([19]). Assume that D is a strongly positive bounded linear operator on
a Hilbert space H with a coefficient τ > 0 and 0 < µ < ‖D‖−1. Then ‖I − µD‖ ≤
1− µτ .

Lemma 2.5 ([12]). Let H be a real Hilbert space and T : H → H be an L-
Lipschitzian mapping with L ≥ 1. Denote K := (1 − ξ)I + ξT

(
(1 − η)I + ηT

)
if

0 < ξ < η < 1
1+
√

1+L2 . Then the following conclusions hold:
(1) F (T ) = F (T ((1− η)I + ηT )) = F (K);
(2) if T is demiclosed at 0, then K is also demiclosed at 0;
(3) in addition, if T : H → H is quasi-pseudocontractive, then the mapping K

is quasi-nonexpansive, that is,
‖Kx− u∗‖ ≤ ‖x− u∗‖ , ∀x ∈ H and u∗ ∈ F (T ) = F (K).

Lemma 2.6 ([19]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Assume that f : C → C is a contraction with coefficient µ ∈ (0, 1) and
D is a strongly positive linear bounded operator with a coefficient σ > 0. Then, for
0 < σ < σ

µ ,

〈x− y, (D − σf)x− (D − σf)y〉 ≥ (σ − σµ) ‖x− y‖2 , x, y ∈ H.
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That is, D − σf is strongly monotone with coefficient σ − σµ.

Lemma 2.7 ([26]). Assume that {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− σn)an + σnδn, n > 0,
where {σn} is a sequence in (0, 1) and {δn} is a real sequence satisfying

(i)
∑∞
n=1 σn =∞,

(ii) lim supn→∞ δn ≤ 0 or
∑∞
n=1 |σnδn| <∞.

Then limn→∞ an = 0.

3. Main result

Lemma 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let F : C × C → R be a bifunction satisfying (A1)–(A4) and f : H → H be any
nonlinear mapping. Then, for 0 < r1 ≤ r2, we have that∥∥TFr1

(I − r1f)x− TFr2
(I − r2f)x

∥∥ ≤ ∥∥x− TFr2
(I − r2f)x

∥∥ , ∀x ∈ H.

Proof. Let z = TFr1
(I − r1f)x and w = TFr2

(I − r2f)x. Then, from (2.1) we obtain

F (z, w) + 1
r1
〈w − z, z − (I − r1f)x〉 ≥ 0.

Similarly, we obtain

F (w, z) + 1
r2
〈z − w,w − (I − r2f)x〉 ≥ 0.

Adding the last two inequalities and using condition (A2) we obtain

〈x− z − r1fx, z − w〉 −
r1

r2
〈x− w − r2fx, z − w〉 ≥ 0.

That is,
〈(x− r1fx− z)−

(r1

r2
x− r1fx−

r1

r2
w
)
, z − w〉 ≥ 0,

which implies that
〈x− z, z − w〉 ≥ r1

r2
〈x− w, z − w〉.

Thus, from Lemma 2.1 we obtain

‖x− w‖2−‖x− z‖2−‖x− z‖2−‖z − w‖2 ≥ r1

r2

(
‖x− w‖2 +‖w − z‖2−‖x− z‖2

)
.

Since r1
r2
≤ 1, we get(

1 + r1

r2

)
‖z − w‖2 ≤

(
1− r1

r2

)
‖x− w‖2 ,

which implies that

‖z − w‖2 ≤
(
r2 − r1

r2 + r1

)
‖x− w‖2 ≤ ‖x− w‖2 . �
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Lemma 3.2. Let C and Q be nonempty closed convex subsets of real Hilbert spaces
H1 and H2 respectively. Let A : H1 → H2 be a bounded linear operator and
T : H1 → H2 be an L-Lipschitzian and quasi-pseudocontractive mapping with
L ≥ 1. Let F1 : C × C → R, F2 : Q×Q → R be bifunctions satisfying (A1)–(A4)
and let D be a strongly positive bounded linear operator on H1 with coefficient τ > 0.
Let f1 : H1 → H1 be a ρ1-inverse strongly monotone mapping and f2 : H2 → H2
be a ρ2-inverse strongly monotone mapping. Assume that Γ := F (T )∩Ω 6= ∅ and g
is a contraction mapping with coefficient µ ∈ (0, 1). Let the sequences {un}, {yn},
and {xn} be generated for arbitrary x1 ∈ H by


un = TF1

rn (I − rnf1)(xn + γnA
∗(TF2

sn (I − snf2)− I)Axn),
yn = αnun + (1− αn)((1− ξn)I + ξnT (1− ηn)I + ηnT )un,

xn+1 = βnτg(xn) + (I − βnD)yn, n ≥ 1,
(3.1)

where K := ((1− ξn)I+ ξnT (1−ηn)I+ηnT ), 0 < r ≤ rn < 2ρ1, 0 < s ≤ sn < 2ρ2,
αn ∈ (0, 1), and the step size γn is chosen in such a way that for some ε > 0,

γn ∈

(
ε,

∥∥(TF2
sn (I − snf2)− I)Axn

∥∥2∥∥A∗(TF2
sn (I − snf2)− I)Axn

∥∥2 − ε

)
, (3.2)

for all TF2
sn (I − snf2)Axn 6= Axn, and γn = γ otherwise (γ being any nonnegative

real number), with the sequence {βn} satisfying the following conditions:

(i) βn ∈ (0, 1), limn→∞ βn = 0, and
∑∞
n=1 βn =∞;

(ii) 0 < τ < τ
µ ;

(iii) 0 < a < ξn < ηn < b < 1
1+
√

1+L2 , ∀n ≥ 1.

Then, the sequence {xn} generated by (3.1) is bounded.

Proof. Let p ∈ Γ. We have p = TF1
rn (I − rnf1)p and Ap = TF2

sn (I − snf2)Ap. From
Lemma 2.2, we have that (TF1

rn (I − rf1)) and (TF2
sn (I − snf2)) are nonexpansive

mappings. Using (3.1) and (3.2), we obtain

‖un − p‖2 =
∥∥TF1

rn (I − rnf1)(xn + γnA
∗(TF2

sn (I − snf2)Axn)− TF1
rn (I − rnf1)p

∥∥2

≤
∥∥xn + γnA

∗(TF2
sn (I − snf2)− I)Axn)− p

∥∥2

≤ ‖xn − p‖2 + γ2
n

∥∥A∗(TF2
sn (I − snf2)− I)Axn

∥∥2

+ 2γn〈xn − p,A∗(TF2
sn (I − snf2)− I)Axn〉,

(3.3)
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where

2γn〈xn − p,A∗(TF2
sn (I − snf2)− I)Axn〉

= 2γn〈A(xn − p), (TF2
sn (I − snf2)− I)Axn〉

= 2γn〈A(xn − p) + (TF2
sn (I − snf2)− I)Axn

− (TF2
sn (I − snf2)− I)Axn, (TF2

sn (I − snf2)− I)Axn〉
= 2γn

{
〈TF2
sn (I − snf2)Axn −Ap, (TF2

sn (I − sf2)− I)Axn〉

−
∥∥(TF2

sn (I − snf2)− I)Axn
∥∥2 }

≤ 2γn
{ 1

2
∥∥TF2

sn (I − snf2)− I)Axn
∥∥2 −

∥∥(TF2
sn (I − snf2)− I)Axn

∥∥2 }
≤ −γn

∥∥(TF2
sn (I − snf2)− I)Axn

∥∥2
.

(3.4)

On substituting (3.4) into (3.3), we have

‖un − p‖2 ≤ ‖xn − p‖2 + γ2
n

∥∥A∗(TF2
sn (I − snf2)− I)Axn

∥∥2

− γn
∥∥(TF2

sn (I − snf2)− I)Axn
∥∥2

= ‖xn − p‖2 − γn
[ ∥∥(TF2

sn (I − snf2)− I)Axn
∥∥2

− γn
∥∥(TF2

sn (I − snf2)− I)Axn
∥∥2 ]

.

(3.5)

Since γn ∈
(
ε,
‖(TF2

sn (I−snf2)−I)Axn‖2

‖A∗(TF2
sn (I−snf2)−I)Axn‖2 − ε

)
, we obtain

‖un − p‖2 ≤ ‖xn − p‖2 . (3.6)

Using (3.1) and (3.6), we have

‖yn − p‖2 = ‖αnun + (1− αn)(1− ξn)I + ξnT (1− ηn)I + ηnT (un − p)‖2

= ‖αn(un − p) + (1− αn)(Kun − p)‖2

≤ αn ‖un − p‖2 + (1− αn) ‖Kun − p‖2 − α(1− αn) ‖Kun − un‖2

≤ αn ‖un − p‖2 + (1− αn) ‖un − p‖2

≤ ‖un − p‖2

≤ ‖xn − p‖2 .

(3.7)

Furthermore, using Lemma 2.4, (3.1), and (3.7), we obtain

‖xn+1 − p‖ = ‖βn[τg(xn)−Dp] + (1− βnD)(yn − p)‖
≤ (1− βnτ) ‖yn − p‖+ βn ‖τg(xn)−Dp‖
≤ (1− βnτ) ‖yn − p‖+ βn[‖τg(xn)− τg(p)‖+ ‖τg(p)−Dp‖]
≤ [1− (τ − τµ)βn] ‖xn − p‖+ βn ‖τg(p)−Dp‖ .
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It follows from induction that

‖xn − p‖ ≤ max
{
‖x1 − p‖ ,

‖τg(p)−Dp‖
τ − τµ

}
, n ≥ 1.

Hence {xn} is bounded. Consequently, we deduce that {un} and {yn} are all
bounded. �

Theorem 3.3. Let C and Q be nonempty closed convex subsets of real Hilbert
spaces H1 and H2 respectively. Let A : H1 → H2 be a bounded linear operator
and T : H1 → H2 be an L-Lipschitzian and quasi-pseudocontractive mapping with
L ≥ 1. Let F1 : C × C → R, F2 : Q×Q → R be bifunctions satisfying (A1)–(A4)
and let D be a strongly positive bounded linear operator on H1 with coefficient τ > 0.
Let f1 : H1 → H1 be a ρ1-inverse strongly monotone mapping and f2 : H2 → H2
be a ρ2-inverse strongly monotone mapping. Assume that Γ := F (T ) ∩ Ω 6= ∅ and
that g is a contraction mapping with coefficient µ ∈ (0, 1). Let K := ((1 − ξn)I +
ξnT ((1 − ηn)I + ηnT ), 0 < r ≤ rn < 2ρ1, 0 < s ≤ sn < 2ρ2, αn ∈ (0, 1), and the
step size γn is chosen in such a way that, for some ε > 0,

γn ∈

ε, ∥∥(TF2
sn (I − snf2)− I)Axn

∥∥2∥∥∥A∗(TF2
sn (I − snf2)− I)Axn

∥∥∥2 − ε

,

for all TF2
sn (I−snf2)Axn 6= Axn and γn = γ otherwise (γ being any nonnegative real

number), with the sequences {βn}, {ξn}, {ηn} satisfying the following conditions:

(i) βn ∈ (0, 1), limn→∞ βn = 0, and
∑∞
n=1 βn =∞;

(ii) 0 < a < ξn < ηn < b < 1
1+
√

1+L2 , ∀n ≥ 1;
(iii) 0 < τ < τ

µ ;
(iv) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1.

Then, the sequence {xn} generated by (3.1) converges strongly to x∗ ∈ Γ which
solves the variational inequality

〈(D − τg)x∗, x∗ − x〉 ≤ 0, ∀x ∈ Γ,

where x = PΓ(I + τg −D)x.
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Proof. Let p ∈ Γ. Then, applying Lemma 2.4 and (3.5), we obtain

‖xn+1 − p‖2 = ‖βn[τg(xn)−Dp] + (I − βnD)(yn − p)‖2

≤ (1− βnτ)2 ‖yn − p‖2 + β2
n ‖τg(xn)−Dp‖2

+ 2βn(1− βnτ) ‖τg(xn)−Dp‖ ‖yn − p‖

≤ (1− βnτ)2 ‖un − p‖2 + β2
n ‖τg(xn)−Dp‖2

+ 2βn(1− βnτ) ‖τg(xn)−Dp‖ ‖yn − p‖

≤ (1− βnτ)2[ ‖xn − p‖2 + γ2
n

∥∥A∗(TF2
sn (I − snf2)− I)Axn

∥∥2

− γn
∥∥(TF2

sn (I − snf2)− I)Axn
∥∥2 ]+ β2

n ‖τg(xn)−Dp‖
+ 2βn(1− βnτ) ‖τg(xn)−Dp‖ ‖yn − p‖

≤ (1− βnτ)2 ‖xn − p‖2 − γn
[ ∥∥(TF2

sn (I − snf2)− I)Axn
∥∥2

− γn
∥∥A∗(TF2

sn (I − snf2)− I)Axn
∥∥2 ]

+ β2
n ‖τg(xn)−Dp‖2 + 2βn(1− βnτ) ‖τg(xn)−Dp‖ ‖yn − p‖ .

(3.8)

It follows from (3.8) and the condition γn ∈
(
ε,
‖(TF2

sn (I−snf2)−I)Axn‖2

‖A∗(TF2
sn (I−snf2)−I)Axn‖2 − ε

)
that

‖xn+1 − p‖2 ≤ (1− βnτ)2 ‖xn − p‖2 − ε
∥∥A∗(TF2

sn (I − snf2)− I)Axn
∥∥2

+ β2
n ‖τg(xn)−Dp‖2 + 2βn(1− βnτ) ‖τg(xn)−Dp‖ ‖yn − p‖ .

(3.9)

We now divide our proof into two cases.

Case 1: Assume that {‖xn − p‖} is a monotonically nonincreasing sequence. Then
{xn} is convergent and clearly

lim
n→∞

‖xn − p‖ = lim
n→∞

‖xn+1 − p‖.

Thus from (3.9) we have that

ε
∥∥A∗(TF2

sn (I − snf2)− I)Axn
∥∥2 ≤ (1− βnτ)2 ‖xn − p‖2 − ‖xn+1 − p‖2

+ β2
n ‖τg(xn)−Dp‖2 + 2βn(1− βnτ) ‖τg(xn)−Dp‖ ‖yn − p‖ .

Hence, from condition (i) of Theorem 3.3, we obtain

lim
n→∞

∥∥A∗(TF2
sn (I − snf2)Axn

∥∥ = 0. (3.10)

Furthermore, from (3.8) and (3.10) we have that

γn
∥∥(TF2

sn (I − snf2)− I)Axn
∥∥2 ≤ (1− βnτ)2 ‖xn − p‖2 − ‖xn+1 − p‖2

+ γ2
n

∥∥A∗(TF−2
sn (I − snf2)− I)Axn

∥∥2 + β2
n ‖τg(xn)−Dp‖2

+ 2βn(1− βnτ) ‖τg(xn)−Dp‖ ‖yn − p‖ ,
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which implies from condition (i) of Theorem 3.3 and (3.2) that

lim
n→∞

∥∥(TF2
sn (I − snf2)− I)Axn

∥∥ = 0. (3.11)

Let wn = xn + γnA
∗(TF2

sn (I − snf2)− I)Axn. Applying inequality (3.6), we have

‖wn − p‖ ≤ ‖xn − p‖ . (3.12)

Using the property of inverse strongly monotone operator and (3.12), we have

‖un − p‖2 =
∥∥TF1

rn (I − rnf1)wn − TF1
rn (I − rnf1)p

∥∥2

≤ ‖(I − rnf1)wn − (I − rnf1)p‖2

= ‖wn − p‖2 − 2rn〈wn − p, f1wn − f1p〉+ r2
n ‖f1wn − f1p‖2

≤ ‖xn − p‖2 − rn(2ρ1 − rn) ‖f1wn − f1p‖2 .

(3.13)

From Theorem 3.3, we have that

‖xn+1 − p‖2 = ‖βn[τg(xn)−Dp] + (I − βnD)(yn − p)‖2

≤ (1− βnτ)2 ‖yn − p‖2 + β2
n ‖τg(xn)−Dp‖2

+ 2βn(1− βnτ) ‖τg(xn)−Dp‖ ‖yn − p‖

≤ (1− βnτ)2 ‖un − p‖2 + β2
n ‖τg(xn)−Dp‖2

+ 2βn(1− βnτ) ‖τg(xn)−Dp‖ ‖yn − p‖ .

(3.14)

Substituting (3.13) into (3.14), we obtain

‖xn+1 − p‖2 ≤ (1− βnτ)2[ ‖xn − p‖2 − rn(2ρ1 − rn) ‖f1wn − f1p‖2
]

+ β2
n ‖τg(xn)−Dp‖2

+ 2βn(1− βnτ) ‖τg(xn)−Dp‖ ‖yn − p‖

≤ (1− βnτ)2 ‖xn − p‖2 − rn(2ρ1 − rn) ‖f1wn − f1p‖2

+ β2
n ‖τg(xn)−Dp‖2

+ 2βn(1− βnτ) ‖τg(xn)−Dp‖ ‖yn − p‖ .

Hence,

rn(2ρ1 − rn) ‖f1wn − f1p‖2 ≤ (1− βnτ)2 ‖xn − p‖2 − ‖xn+1 − p‖2

+ β2
n ‖τg(xn)−Dp‖2

+ 2βn(1− βnτ) ‖τg(xn)−Dp‖ ‖yn − p‖ .

Therefore, from condition (i) of Lemma 3.2, we obtain

lim
n→∞

‖f1wn − f1p‖ = 0. (3.15)
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By the firm nonexpansivity of TF1
rn , we have

‖un − p‖2 =
∥∥TF1

rn (I − rnf1)wn − TF1
rn (I − rnf1)p

∥∥2

≤ 〈un − p, (I − rnf1)wn − (I − rnf1)p〉

= 1
2(‖un − p‖2 + ‖(I − rnf1)wn − (I − rnf1)p‖2

− ‖(un − p)− (I − rnf1)wn + (I − rnf1)p‖2).

That is,

‖un − p‖2 ≤ ‖(I − rnf1)wn − (I − rnf1)p‖2 − ‖(un − wn) + rn(f1wn − f1p)‖2

≤ ‖wn − p‖2

−
(
‖un − wn‖2 + 2rn〈un − wn, f1wn − f1p〉+ r2

n ‖f1wn − f1p‖2
)

≤ ‖wn − p‖2

− ‖un − wn‖2 + 2rn ‖un − wn‖ ‖F1wn − f1p‖ − r2
n ‖f1wn − f1p‖2 .

(3.16)

From (3.8), (3.12) and (3.16), we obtain

‖xn+1 − p‖2 ≤ (1− βnτ)2 ‖un − p‖2 + β2
n ‖τg(xn)−Dp‖2

+ 2βn(1− βnτ) ‖τg(xn)−Dp‖ ‖yn − p‖

≤ (1− βnτ)2[‖wn − p‖2 − ‖un − wn‖2 + 2rn ‖un − wn‖ ‖f1wn − f1p‖

− r2
n ‖f1wn − f1p‖2] + β2

n ‖τg(xn)−Dp‖2

+ 2βn(1− βnτ) ‖τg(xn)−Dp‖ ‖yn − p‖

≤ (1− 2βnτ + (βnτ)) ‖xn − p‖2 − (1− βnτ)2 ‖un − wn‖2

+ 2rn(1− βnτ)2 ‖un − wn‖ ‖f1wn − f1p‖

− (1− βnτ)2r2
n ‖f1wn − f1p‖2

+ β2
n ‖τg(xn)−Dp‖2 + 2βn(1− βnτ) ‖τg(xn)−Dp‖ ‖yn − p‖

≤ ‖xn − p‖2 + (βnτ)2 ‖xn − p‖2 − (1− βnτ)2 ‖un − wn‖2

+ 2rn(1− βnτ)2 ‖un − wn‖ ‖f1wn − f1p‖

− (1− βnτ)2r2
n ‖f1wn − f1p‖2 + β2

n ‖τg(xn)−Dp‖2

+ 2βn(1− βnτ) ‖τg(xn)−Dp‖ ‖yn − p‖,

which yields

(1− βnτ)2 ‖un − wn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + (βnτ)2 ‖xn − p‖2

+ 2rn(1− βnτ)2 ‖un − wn‖ ‖f1wn − f1p‖ − (1− βnτ)2r2
n ‖f1wn − f1p‖2

+ β2
n ‖τg(xn)−Dp‖2 + 2βn(1− βτ) ‖τg(xn)−Dp‖ ‖yn − p‖ .
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From condition (i) of Lemma 3.2 and (3.15), we obtain

lim
n→∞

‖un − wn‖ = 0. (3.17)

Since wn = xn + γnA
∗(TF2

sn (I − snf2)− I)Axn, we have that

‖wn − xn‖ =
∥∥xn + γnA

∗(TF2
sn (I − snf2)− I)Axn − xn

∥∥
≤ γn

∥∥A∗(TF2
sn (I − snf2)− I)Axn

∥∥,
which implies from (3.10) that

lim
n→∞

‖wn − xn‖ = 0. (3.18)

From (3.1), (3.17), and (3.18), we obtain

‖un − xn‖ ≤ ‖un − wn‖+ ‖wn − xn‖ → 0, n→∞. (3.19)

Again,

‖yn − p‖2 = ‖αn(un − p) + (1− αn)(Kun − p)‖2

≤ αn ‖un − p‖2 + (1− αn) ‖Kun − p‖2 − α(1− αn) ‖Kun − un‖2

≤ αn ‖un − p‖2 + (1− αn) ‖un − p‖2 − α(1− αn) ‖Kun − un‖2

= ‖un − p‖2 − αn(1− αn) ‖Kun − un‖2 . (3.20)

From (3.1), we have

‖xn+1 − p‖2 ≤ (1− βnτ)2 ‖yn − p‖2 + βn ‖τg(xn)−Dp‖2

+ 2βn(1− βnτ) ‖τg(xn)−Dp‖ ‖yn − p‖.
(3.21)

On substituting (3.20) into (3.21), we obtain

‖xn+1 − p‖2 ≤ (1− βnτ)2[ ‖un − p‖2 − αn(1− αn) ‖Kun − un‖2
]

+ βn ‖τg(xn)−Dp‖2 + 2βn(1− βnτ) ‖τg(xn)−Dp‖ ‖yn − p‖

≤ (1− βnτ)2 ‖xn − p‖2 − αn(1− αn)(1− βnτ) ‖Kun − un‖2

+ βn
∥∥τg(xn)−Dp

∥∥2 + 2βn(1− βnτ)
∥∥ τg(xn)−Dp

∥∥ ‖yn − p‖,
which yields

αn(1− αn)(1− βnτ)2 ‖Kun − un‖2 ≤ (1− βnτ)2 ‖xn − p‖2 − ‖xn+1 − p‖2

+ βn ‖τg(xn)−Dp‖2 + 2βn(1− βnτ) ‖τg(xn)−Dp‖ ‖yn − p‖. (3.22)

Thus, from condition (i) of Lemma 3.2, we obtain

lim
n→∞

‖Kun − un‖ = 0. (3.23)

Also, from (3.1) we have
‖yn − un‖ = ‖αnun + (1− αn)Kun − un‖

≤ (1− αn) ‖Kun − un‖,
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which implies that

lim
n→∞

‖yn − un‖ = 0. (3.24)

Again, from (3.19) and (3.24) we obtain

‖yn − xn‖ ≤ ‖yn − un‖+ ‖un − xn‖ → 0, n→∞. (3.25)

From (3.1) we have

‖xn+1 − xn‖ ≤ ‖xn+1 − yn‖+ ‖yn − xn‖
= ‖βnτg(xn) + (I − βnD)yn − yn‖+ ‖yn − xn‖
≤ βn ‖τg(xn)−Dyn‖+ ‖yn − xn‖.

From condition (i) of Lemma 3.2 and (3.25) we have that

lim
n→∞

‖xn+1 − xn‖ = 0.

Since {xn} is bounded, there exists a weakly convergent subsequence {xnj} of
{xn} such that xnj ⇀ x∗. Since every Hilbert space has the Opial property, we
have xn ⇀ x∗. On the other hand, from (3.19) we have that un ⇀ x∗. Using
(3.23) and the demiclosedness property of K, we have that Kx∗ = x∗. Hence
x∗ ∈ F (T ). Next, we show that x∗ ∈ Ω. Assume that x∗ /∈ EP (F1, f1); since
EP (F1, f1) = F (TF1

r (I − rf1)), we obtain x∗ 6= TF1
r (I − rf1)x∗. Using Opial’s

condition and (3.17), Lemma 2.3, and Lemma 3.1 we obtain

lim inf
j→∞

∥∥wnj − x∗∥∥ < lim inf
j→∞

∥∥wnj − TF1
r (I − rf1)x∗

∥∥
≤ lim inf

j→∞

( ∥∥wnj − TF1
rn (I − rnf1)wnj

∥∥
+
∥∥TF1

rn (I − rnf1)wnj − TF1
r (I − rf1)wnj

∥∥
+
∥∥TF1

r (I − rf1)wnj − TF1
r (I − rf1)x∗

∥∥ )
≤ lim inf

j→∞

( ∥∥wnj − unj∥∥+
∥∥wnj − x∗∥∥ )

≤ lim inf
j→∞

∥∥wnj − x∗∥∥.
This is a contradiction, therefore x∗ ∈ EP (F1, f1).

Next, we show that Ax∗ ∈ EP (F2, f2). Since A is a bounded linear operator,
Axnj ⇀ Ax∗ as j → ∞. Assume that Ax∗ /∈ EP (F2, f2) and since EP (F2, f2) =
F (TF2

sn (I−snf2)), we obtain Ax∗ 6= TF2
sn (I−snf2)Ax∗. Using Opial’s condition and

(3.11), we obtain, by a similar argument to that given above, Ax∗ ∈ EP (F2, f2).
Hence, we conclude that x∗ ∈ Ω. Therefore, x∗ ∈ Γ.

We now show that lim supj→∞〈(D − τg)x, x− xn〉 ≤ 0, where x = PΓ(I + τg −
D)x. Indeed, the subsequence {xnj} of {xn} converges weakly to x∗. We obtain,
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by the property of metric projection PΓ,
lim sup
n→∞

〈(D − τg)x, x− xn〉 = lim
j→∞
〈(D − τg)x, x− xnj 〉

= 〈(D − τg)x, x− x∗〉
= 〈(I + τg −D)x− x, x∗ − x〉
≤ 0.

Also, we show the uniqueness of a solution of the variational inequality

〈(D − τg)x, x− x∗〉 ≤ 0, x∗ ∈ Γ. (3.26)

Suppose that x ∈ Γ and x∗ ∈ Γ are both solutions of (3.26); then

〈(D − τg)x, x− x∗〉 ≤ 0

and
〈(D − τg)x∗, x∗ − x〉 ≤ 0.

Adding the last two inequalities we have

〈(D − τg)x− (D − τg)x∗, x− x∗〉 ≤ 0.

Since D− τg is strongly monotone by Lemma 2.6, we have that x = x∗. Hence the
uniqueness is proved.

Lastly, we prove that xn → x∗ as n→∞. From (3.1) and (3.7) we obtain

‖xn+1 − x∗‖2 = 〈βnτg(xn) + (I − βnD)yn − x∗, xn+1 − x∗〉
= βn〈τg(xn)−Dx∗, xn+1 − x∗〉+ 〈(I − βnD)(yn − x∗), xn+1 − x∗〉
≤ βnτ〈g(xn)− g(x∗), xn+1 − x∗〉+ βn〈τg(x∗)−Dx∗, xn+1 − x∗〉

+ (1− βnτ) ‖yn − x∗‖ ‖xn+1 − x∗‖
≤ βnτµ ‖xn − x∗‖ ‖xn+1 − x∗‖+ βn〈τg(x∗)−Dx∗, xn+1 − x∗〉

+ (1− βnτ) ‖xn − x∗‖ ‖xn+1 − x∗‖
= [1− (τ − τµ)βn] ‖xn − x∗‖ ‖xn+1 − x∗‖

+ βn〈τg(x∗)−Dx∗, xn+1 − x∗〉

≤ 1− (τ − τµ)βn
2

(
‖xn − x∗‖2 + ‖xn+1 − x∗‖2

)
+ βn〈τg(x∗)−Dx∗, xn+1 − x∗〉

≤ 1− (τ − τµ)βn
2 ‖xn − x∗‖2 + 1

2 ‖xn+1 − x∗‖2

+ βn〈τg(x∗)−Dx∗, xn+1 − x∗〉.

Then, it follows that

‖xn+1 − x∗‖2 ≤ [1−(τ−τµ)βn] ‖xn − x∗‖2+βn(τ−τµ)2〈τg(x∗)−Dx∗, xn+1 − x∗〉
(τ − τµ) .

By conditions (i) and (ii) of Lemma 3.2, we obtain limn→∞ ‖xn − x∗‖ = 0 using
Lemma 2.7.
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Case 2: Assume that {‖xn − p‖} is not a monotonically increasing sequence. Set
Θn = ‖xn − p‖2 and let σ : N→ N be a mapping for all n ≥ n0 (for some n0 large
enough) defined by

σ(n) := max{k ∈ N : k ≤ n, Θk ≤ n, Θk ≤ Θk+1}.

Clearly, σ is a non-decreasing sequence such that σ(n)→ 0 as n→∞ and Θσ(n) ≤
Θσ(n)+1, for n ≥ n0. It follows from (3.22) that

ασ(n)(1− ασ(n))(1− βσ(n)τ)2 ∥∥Kuσ(n) − uσ(n)
∥∥2

≤ (1− βτ(n)τ)2 ∥∥xσ(n) − p
∥∥2 −

∥∥xσ(n)+1 − p
∥∥2

+ βσ(n)
∥∥τg(xσ(n))−Dp

∥∥2

+ 2βσ(n)(1− βσ(n)τ)
∥∥τg(xσ(n))−Dp

∥∥∥∥yσ(n) − p
∥∥.

Therefore, since limn→∞ βσ(n) = 0, we obtain

lim
n→∞

∥∥Kuσ(n) − uσ
∥∥ = 0.

Following the same argument as in Case 1, we conclude that {xσ}, {yσ}, and {uσ}
converge weakly to p ∈ F (K) ∩ Ω. Now, for all n ≥ n0, we have

0 ≤
∥∥xσ(n)+1 − x∗

∥∥2 −
∥∥xσ(n) − x∗

∥∥2

≤ (1− βσ(n)τ)
∥∥xσ(n) − x∗

∥∥2 + β2
σ(n) ‖τg(xσ)−Dx∗‖2

+ 2βσ(n)(1− βσ(n))σ
∥∥τg(xσ(n))−Dx∗

∥∥∥∥xσ(n) − x∗ ‖−‖xσ(n) − x∗
∥∥2

= −βσ(n)σ
∥∥xτ(n) − x∗

∥∥2 + β2
σ(n)

∥∥τg(xσ(n))−Dx∗
∥∥2

+ 2βσ(n)(1− βσ(n)σ)
〈
τg(xτ(n))−Dx∗, xσ(n)+1 − x∗

〉
.

Thus, ∥∥xσ(n) − x∗
∥∥2 ≤

βσ(n)

σ

∥∥τg(xσ(n))−Dx∗
∥∥2

+
2(1− βσ(n)σ)

σ

〈
τg(xσ(n))−Dx∗, xσ(n)+1 − x∗

〉
.

Since βσ(n) → 0 as n → ∞ and lim supn→∞〈τg(xσ(n)) − Dx∗, xσ(n)+1 − x∗〉 ≤ 0,
we conclude that {xσ} converges to x∗. �

Corollary 3.4. Let C and Q be nonempty closed convex subsets of real Hilbert
spaces H1 and H2 respectively. Let A : H1 → H2 be a bounded linear operator and
T : H1 → H2 be a nonexpansive mapping. Let F1 : C × C → R, F2 : Q ×Q → R
be bifunctions satisfying (A1)–(A4), and let D be a strongly positive bounded
linear operator on H1 with coefficient τ > 0. Let f1 : H1 → H1 be a ρ1-inverse
strongly monotone mapping and f2 : H2 → H2 be a ρ2-inverse strongly monotone
mapping. Assume that Γ := F (T ) ∩ Ω 6= ∅ and that g is a contraction mapping
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with coefficient µ ∈ (0, 1). Let the sequences {un}, {yn}, and {xn} be generated
for arbitrary x1 ∈ H by

un = TF1
rn (I − rnf1)(xn + γnA

∗(TF2
sn (I − snf2)− I)Axn),

yn = αnun + (1− αn)Tun,
xn+1 = βnτg(xn) + (I − βnD)yn, n ≥ 1,

where 0 < r ≤ rn < 2ρ1, 0 < s ≤ sn < 2ρ2, αn ∈ (0, 1), and the step size γn is
chosen in such a way that for some ε > 0,

γn ∈

ε, ∥∥(TF2
sn (I − snf2)− I)Axn

∥∥2∥∥∥A∗(TF2
sn (I − snf2)− I)Axn

∥∥∥2 − ε

,
for all TF2

sn (I − snf2)Axn 6= Axn, and γn = γ otherwise (γ being any nonnegative
real number), with the sequence {βn}, {ξn}, {ηn} satisfying the following condi-
tions:

(i) βn ∈ (0, 1), limn→∞ βn = 0, and
∑∞
n=1 βn =∞;

(ii) 0 < τ < τ
µ ;

(iii) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1.
Then, the sequence {xn} generated by (3.1) converges strongly to x∗ ∈ Γ which
solves the variational inequality

〈(D − τg)x∗, x∗ − x〉 ≤ 0, ∀x ∈ Γ.

4. A numerical example

We consider a numerical example of our algorithm in R2.
Let H1 = H2 = R2. Then for z = (z1, z2), y = (y1, y2), (u1, u2), (v1, v2), and

(x1, x2), define Fi(z, y) = −3iz2 + 2iyz + 4iy2, i = 1, 2. Then, Lemma 2.3 ensures
that we can find x ∈ R2 such that

Fi(z, y) + 1
rn
〈y − z, z − x〉 ≥ 0, ∀ y ∈ R2, i = 1, 2

⇐⇒ −3iz2 + 2iyz + 4iy2 + 1
rn

(yz − xy − z2 + xz) ≥ 0

⇐⇒ −3irnz2 + 2irnyz + 4irny2 + yz − xy − z2 + zx.

Let P (y) = 4irny2 + (2irnz + z − x)y − 3irnz2 − z2 + zx. Then P is a quadratic
equation in y. Thus, we obtain the determinant as follows:

∆ = b2 − 4ac
= (2irnz + z − x)2 − 4irn(−3irnz2 − z2 + zx)
= 16i2r2

nz
2 + 8irnz2 − 8irnxz − 2xz + z2 + x2

= x2 − 2(4irnz + z)x+ (4irnz + z)2

= (x− (4irn + 1)z)2

≥ 0.
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Since P (y) ≥ 0 for all y ∈ R, it has at most one solution in R, and then ∆ ≤ 0. So
we have that z = x

4irn+1 . Hence,

TF1
rn (x) =

(
x1

4irn + 1 ,
x2

4irn + 1

)
, i = 1, 2. (4.1)

Let fi = x
2i , i = 1, 2. Then fi is ρi-inverse strongly monotone with ρi = 2i, i = 1, 2.

Let A(x) = (4x1 + 3x2, 3x1 + 2x2) and D(x) = 2x and g(x) = x
3 . Then, τ = 2 and

µ = 1
3 . Thus, we can take τ = 2 and condition (iii) of Theorem 3.3 is satisfied.

From (4.1) we get that TF1
rn (x) =

(
x1

4rn+1 ,
x2

4rn+1

)
and TF2

sn (x) =
(

x1
8rn+1 ,

x2
8rn+1

)
.

Thus, we take rn = 3n
2n+1 and sn = 7n−1

3n+4 for all n ≥ 1.
Now we define T : R2 → R2 by

T (x1, x2) = −
(

2α+ 1
2

)
(x1, x2), ∀α > 1

2 .

Then T is an L-Lipschitzian and quasi-pseudocontractive mapping, with L =( 2α+1
2
)2

> 1, ∀α > 1
2 . We now take βn = 1

n+2 , αn = n
2n+3 , ηn = 1

2+( 2α+1
2 )4 ,

and ξn = 8
(2α+1)4 ∀n ≥ 1, α > 1

2 . Then conditions (i) and (ii) of Lemma 3.2 are
satisfied. Hence, for x1 ∈ R2, Algorithm 3.1 becomes

un = TF1
rn (I − rnf1)(xn + γnA

∗(TF2
sn (I − snf2)− I)Axn),

yn = n

2n+ 3un + n+ 3
2n+ 3((1− ξn)I + ξnT ((1− ηn))I + ηnT ))un,

xn+1 = 2
3(n+ 2)xn +

(
1− 2

n+ 1

)
yn.

These three cases are displayed in Figure 1 on the next page:

Case 1: x0 = (0.1, 0.5)T and α = 2.
Case 2: x0 = (0.1, 0.5)T and α = 1.
Case 3: x0 = (1,−2)T and α = 2.
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Figure 1. Errors vs Number of iterations (n): Case 1 (top);
Case 2 (middle); Case 3 (bottom).
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