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CHARACTERIZATION OF HYPERSURFACE SINGULARITIES
IN POSITIVE CHARACTERISTIC

AMIR SHEHZAD, MUHAMMAD AHSAN BINYAMIN, AND HASAN MAHMOOD

Abstract. The classification of right unimodal and bimodal hypersurface
singularities over a field of positive characteristic was given by H. D. Nguyen.
The classification is described in the style of Arnold and not in an algorithmic
way. This classification was characterized by M. A. Binyamin et al. [Bull.
Math. Soc. Sci. Math. Roumanie (N.S.) 61(109) (2018), no. 3, 333–343] for
the case when the corank of hypersurface singularities is ≤ 2. The aim of
this article is to characterize the right unimodal and bimodal hypersurface
singularities of corank 3 in an algorithmic way by means of easily computable
invariants such as the multiplicity, the Milnor number of the given equation,
and its blowing-up. On the basis of this characterization we implement an
algorithm to compute the type of the right unimodal and bimodal hypersurface
singularities without computing the normal form in the computer algebra
system Singular.

1. Introduction

Let K[[x1, . . . , xn]] be the local ring of formal power series in n variables, m
its maximal ideal, K an algebraically closed field of characteristic p > 0, and
R = AutK(K[[x1, . . . , xn]]), the set of all K-automorphisms of K[[x1, . . . , xn]]. Let
f and g ∈ m. f is said to be right equivalent to g, f ∼r g, if there exists an
automorphism φ ∈ R such that φ(f) = g. In case of two (resp. three) variables, we
will later useK[[x, y]] (resp.K[[x, y, z]]) instead ofK[[x1, x2]] (resp.K[[x1, x2, x3]]).

Arnold introduced in the seventies [2, 3, 4] the notion of modality in singu-
larity theory for real and complex singularities. He classified simple, unimodal,
and bimodal hypersurface singularities with respect to right equivalence. These
are also classifications with respect to contact equivalence. Simple hypersurface
singularities in charateristic p > 0 were classified by Greuel and Kröning [7] with
respect to contact equivalence. Greuel and Nguyen [8] classified the simple hyper-
surface singularities in characteristic p > 0 with respect to right equivalence. These
classifications are characterized in [1].
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Nguyen gave the classification of right unimodal and bimodal hypersurface sin-
gularities in positive characteristic [10]. In this article we use the results of [10]
in order to characterize this classification for unimodal and bimodal hypersurface
singularities of corank 3 in terms of certain invariants. We use the names of the sin-
gularities from [10], where normal forms are given. In some cases we use blowing-up
as a tool to differentiate certain types. We use the right-modality as defined in [8]
and used in [10]:

Given f ∈ K[[x1, . . . , xn]], the family fλ = f +
∑N
i=1 λimi, with {m1, . . . ,mN}

being a monomial basis of m/m( ∂f∂x1
, . . . , ∂f∂xn ), is a semi-universal unfolding of f ,

λ = (λ1, . . . , λN ). If the set of singularities fλ ∈ K[[x1, . . . , xn]], λ in some Zariski
neighbourhood of 0 ∈ KN , falls into finitely many families of right equivalence
classes depending on r parameters, then f is called right r-modal. If r = 1 (resp.
r = 2), then f is called unimodal (resp. bimodal).

Type Normal form modality
P8 = T3,3,3 x3 + y3 + z3 + axyz 1
Q10 x3 + y4 + yz2 + axy3 1
Q11 x3 + yz2 + xz3 + az5 1
Q12 x3 + y5 + yz2 + axy4 1
S11 x4 + y2z + xz2 + ax3z 1
S12 x2y + y2z + xz3 + az5 1
Tr,s,t xr + ys + zt + axyz 1
U12 x3 + xz2 + y4 + axyz2 1

Table 1: Unimodal hypersurface singularities of corank 3

2. Characterization of hypersurface singularities of corank 3

In this section we characterize all right unimodal and bimodal hypersurface
singularities of corank 3 in terms of multiplicity, Milnor number, and blowing-ups.
We have only to consider the cases m(f) = 2 and m(f) = 3, since f is not uni
or bimodal if m(f) ≥ 4 or corank(f) > 3 (see Theorems 120 and 121 in [10]).
Moreover, we only need to consider p ≥ 5, because for p = 2 and p = 3 there is no
unimodal or bimodal hypersurface singularity of corank 3 (see Theorem 136 and
Theorems 147 to 151 in [10]).

Proposition 2.1. Let f ∈ K[[x, y, z]] and m(f) = 2. Then f is right equivalent
to g(x, y) + z2 and the type of f is determined by g.

Proof. Using the splitting lemma, we obtain f ∼r g(x, y) + z2. The type of f can
be found in [9, Table 7] and can be determined by using the results of [5]. �

Proposition 2.2. Let f ∈ K[[x, y, z]] be such that m(f) = 3. Then j3(f) is right
equivalent to one of the types given in Table 3.
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Type Normal form modality
Q16 x3 + yz2 + y7 + axy5 + bxy6 2
Q17 x3 + yz2 + xy5 + ay8 + by9 2
Q18 x3 + yz2 + y8 + axy6 + bxy7 2
Q2,0 x3 + yz2 + ax2y2 + bx2y3 + xy4 2
Q2,q x3 + yz2 + x2y2 + ay6+q + by7+q 2
S16 x2z + yz2 + xy4 + ay6 + by7 2
S17 x2z + yz2 + y6 + azy4 + bzy5 2
S1,0 x2z + yz2 + y5 + azy3 + bzy4 2
S1,q x2z + yz2 + x2y2 + ay5+q + by6+q 2
S]1,2q−1 x2z + yz2 + zy3 + axy3+q + bxy4+q 2
S]1,2q x2z + yz2 + zy3 + ax2y2+q + bx2y3+q 2
Tr,s,t xr + ys + zt + axyz + bzp 2
U16 x3 + xz2 + y5 + ax2y2 + ax2y3 2
U1,0 x3 + xz2 + +xy3 + ay3z + by4z 2
U1,2q−1 x3 + xz2 + xy3 + ay1+qz2 + by2+qz2 2
U1,2q x3 + xz2 + xy3 + ay3+qz + by4+qz 2

Table 2: Bimodal hypersurface singularities of corank 3

Normal form of j3(f) Type
xyz I
x3 + xyz II
x3 + y3 + xyz III
x3 + y3 + z3 + axyz IV
x3 + yz2 V
x2z + yz2 VI
x3 + xz2 VII
x2y VIII
x3 IX

Table 3: Classification of three jet of f ∈ K[[x, y, z]]

Proof. The result follows from Theorems 74 to 119 in [10]. �
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Remark 2.3. From Theorem 118 and Theorem 119 in [10], it follows that if
j3(f) ∼r x2y or j3(f) ∼r x3 then rmod(f) ≥ 3. Therefore we only need to discuss
the rest of the seven possibilities (I–VII) of j3(f).

Lemma 2.4. Let g = xyz +
∑
t≥q atx

t +
∑
u≥r buy

u +
∑
v≥s cvz

v with q ≤ r ≤ s.
Then q, r, and s can be computed by using blowing-ups.

Proof. Consider the blowing-up in the first chart defined by x → x, y → xy, and
z → xz; then we have

g(x, xy, xz) = x3yz +
∑
t≥q

atx
t +

∑
u≥r

bu(xy)u +
∑
v≥s

cv(xz)v.

The strict transform is
g(x, xy, xz)

x3 = yz +
∑
t≥q

atx
t−3 +

∑
u≥r

bux
u−3yu +

∑
v≥s

cvx
v−3zv.

Then obviously the Milnor number of g(x,xy,xz)
x3 is q − 4. Similarly we obtain r− 4

and s− 4 from the other charts. �

Lemma 2.5. Let f ∈ K[[x, y, z]] be such that m(f) = 3. If the zero-set V (j3(f)) of
j3(f) is the intersection of three planes and has as singular locus the union of three
lines V (x, y)∪V (x, z)∪V (y, z), then f ∼r xyz+

∑
t≥q atx

t+
∑
u≥r buy

u+
∑
v≥s cvz

v

with q ≤ r ≤ s and aq 6= 0, br 6= 0, cs 6= 0. Moreover, the triple (q, r, s) modulo
permutation is an invariant under right equivalence for this type of singularities.

Proof. If the zero-set V (j3(f)) is the intersection of three planes∗ and has as sin-
gular locus the union of three lines V (x, y)∪V (x, z)∪V (y, z), then we can assume
that

f ∼r g = xyz +
∑

i+j+k≥4
ai,j,kx

iyjzk.

To prove the statement we use induction on m. We write g = xyz+α1(x)+β1(y)+
γ1(z) + g0(x, y, z) mod mm+1, where m(α), m(β), m(γ) ≥ 4 and g0 is a homoge-
neous polynomial of degree m ≥ 4 with g0(x, 0, 0) = g0(0, 0, z) = g0(0, y, 0) = 0.

Write g0(x, y, z) = yzh0(y, z) +xzh1(x, z) +xyh2(x, y, z). After using the trans-
formations

x→ x− h0, y → y − h1, z → z − h2

we get f ∼r xyz + α(x) + β(y) + γ(z) mod mm+1. Iterating this we obtain

f ∼r xyz +
∑
t≥q

atx
t +

∑
u≥r

buy
u +

∑
v≥s

cvz
v

with q ≤ r ≤ s.
To prove the invariance of (q, r, s) modulo permutation, we assume that f =

xyz + terms of order ≥ 4∼r g = xyz + terms of order ≥ 4, i.e. there exists an
automorphism ϕ : K[[x, y, z]] → K[[x, y, z]] such that ϕ(f) = g. This implies
that ϕ(xyz) = xyz mod (x, y, z)4, i.e. the linear part of ϕ is a permutation of the

∗This means that, after a suitable linear coordinate change, j3(f) = xyz.
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variables. Since we have to prove the invariance of (q, r, s) modulo permutation,
we may assume that ϕ = id mod (x, y, z)4. This implies that in the charts the
Milnor number of the blowing-up of f and g is the same. Using Lemma 2.4, the
result follows. �

Proposition 2.6. Let f ∈ K[[x, y, z]] be such that m(f) = 3. If the zero-set
V (j3(f)) is the intersection of three planes and has as singular locus the intersection
of three lines V (x, y) ∪ V (x, z) ∪ V (y, z), then

(1) if s < p then f is unimodal of type Tq,r,s;
(2) if r < p ≤ s < 2p then f is bimodal of type Tq,r,s;
(3) if s ≥ 2p then rmod(f) ≥ 3,

where (q, r, s) is defined as in Lemma 2.5.

Proof. If the zero-set V (j3(f)) is the intersection of three planes and has as a
singular locus the intersection of three lines V (x, y) ∪ V (x, z) ∪ V (y, z), then by
Lemma 2.5

f ∼r g = xyz +
∑
t≥q

atx
t +

∑
u≥r

buy
u +

∑
v≥s

cvz
v,

with q ≤ r ≤ s. Moreover, by using Lemma 2.4 we can compute q, r, s and hence
the type of f . �

Lemma 2.7. Let f ∈ K[[x, y, z]] be such that m(f) = 3. If the zero-set V (j3(f))
is the intersection of a plane and a node and has as singular locus the union of
the lines V (x, y) ∪ V (x, z) and the point V (x, y, z) as embedded point, then f ∼r
xyz + x3 +

∑
u≥r buy

u +
∑
v≥s cvz

v, with 4 ≤ r ≤ s and br 6= 0, cs 6= 0. Moreover,
the pair (r, s) modulo permutation is an invariant under right equivalence for this
type of singularities.

Proof. Since the zero-set V (j3(f)) is the intersection of a plane and a node and has
as singular locus the union of the lines V (x, y)∪V (x, z) and the point V (x, y, z) as
embedded point, we can assume that f ∼r g = xyz + x3 +

∑
i+j+k≥4 ai,j,kx

iyjzk.
Similarly to the previous case, we use induction on m. We write g = xyz+x3 +

α(x) +β(y) + γ(z) + g0(x, y, z) mod mm+1, where m(α),m(β),m(γ) ≥ 4 and g0 is
a homogeneous polynomial of degree m ≥ 4 with g0(0, 0, z) = 0 = g0(0, y, 0).

Write g0(x, y, z) = yzh0(y, z) + k(x, y, z). After using the transformation

x→ x− h0 −
am,0,0

3 xm−2, y → y, z → z

we get g(x−h0− am,0,03 xm−2, y, z) = xyz+x3+β1(y)+γ1(z)+g1(x, y, z) mod mm+1,
where g1 is either zero or homogeneous of degree m with g0(0, y, z). If g1 6= 0 then
write

g1(x, y, z) = xzh1(x, z) + xyh2(x, y, z).
Now by using the transformation

x→ x, y → y − h1, z → h2
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we get f ∼r xyz + x3 + β1(y) + γ1(z) mod mm+1. Using induction we obtain

f ∼r xyz + x3 +
∑
u≥r

buy
u +

∑
v≥s

cvz
v

with 4 ≤ r ≤ s.
The proof of invariance of (r, s) is similar to the corresponding proof of Lemma 2.5.

�

Lemma 2.8. Let g = xyz + x3 +
∑
u≥r buy

u +
∑
v≥s cvz

v with 4 ≤ r ≤ s. Then r
and s can be computed by using blowing-ups.

Proof. The proof is similar to that of Lemma 2.4. �

Proposition 2.9. Let f ∈ K[[x, y, z]] be such that m(f) = 3. If the zero-set
V (j3(f)) is the intersection of a plane and a node and has as singular locus the
union of the lines V (x, y)∪V (x, z) and the point V (x, y, z) as embedded point, then

(1) if s < p then f is unimodal of type T3,r,s;
(2) if if r < p ≤ s < 2p then f is bimodal of type T3,r,s;
(3) if s ≥ 2p then rmod(f) ≥ 3,

where (r, s) is defined as in Lemma 2.7.

Proof. Since the zero-set V (j3(f)) is the intersection of a plane and a node and has
as singular locus the union of the lines V (x, y) ∪ V (x, z) and the point V (x, y, z)
as embedded point, we have by Lemma 2.7 that

f ∼r g = xyz + x3 +
∑
u≥r

buy
u +

∑
v≥s

cvz
v

with 4 ≤ r ≤ s. Moreover, by using Lemma 2.8 we can compute r, s and hence the
type of f . �

Lemma 2.10. If the zero-set V (j3(f)) is irreducible and has in the singular locus
a fat point of multiplicity 6, then f ∼r xyz + x3 + y3 +

∑
v≥s cvz

v with 4 ≤ s and
cs 6= 0.

Proof. Since the zero-set V (j3(f)) is irreducible and has in the singular locus a fat
point of multiplicity 6, we have f ∼r g = xyz + x3 + y3 +

∑
i+j+k≥4 ai,j,kx

iyjzk.
We write g = xyz+x3 +y3 +α(x) +β(y) +γ(z) + g0(x, y, z) mod mm+1, where

m(α), m(β), m(γ) ≥ 4 and g0 is a homogeneous polynomial of degree m ≥ 4 with
g0(x, 0, 0) = g0(0, 0, z) = g0(0, y, 0) = 0.

Write g0(x, y, z) = yzh0(y, z) +xzh1(x, z) + g1(x, y, z). After using the transfor-
mation

x→ x− h0 −
am,0,0

3 xm−2 + 3a1,0,m−1yz
m−3,

y → y − h1 −
a0,m,0

3 ym−2 + 3a0,1,m−1xz
m−3,

z → z,
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g transforms into xyz+x3 + y3 + γ1(z) + g2(x, y, z) mod mm+1, where g2 is either
zero or homogeneous of degree m. If g2 6= 0 then write

g2(x, y, z) = xyk2(x, y, z).

After using the transformation

x→ x, y → y, z → z − k2

we get f ∼r xyz + x3 + y3 + γ1(z) mod mm+1. Using induction on m we obtain

f ∼r xyz + x3 + y3 +
∑
v≥s

cvz
v

with 4 ≤ s. �

Lemma 2.11. Let g = xyz + x3 + y3 +
∑
v≥s cvz

v. Then s can be computed by
using blowing-ups.

Proof. The proof is similar to that of Lemma 2.4. �

Proposition 2.12. Let f ∈ K[[x, y, z]] be such that m(f) = 3. If the zero-set
V (j3(f)) is irreducible and has in the singular locus a fat point of multiplicity 6,
then

(1) if s < p then f is unimodal of type T3,3,s;
(2) if p ≤ s < 2p then f is bimodal of type T3,3,s;
(3) if s ≥ 2p then rmod(f) ≥ 3,

where s is the smallest exponent of z, as appeared in Lemma 2.10.

Proof. Since the zero-set V (j3(f)) is irreducible and has in the singular locus a fat
point of multiplicity 6, we have by Lemma 2.7

f ∼r g = xyz + x3 + y3 +
∑
v≥s

cvz
v

with 4 ≤ s. Moreover, by using the Lemma 2.11 we can compute s and hence the
type of f . �

Proposition 2.13. Let f ∈ K[[x, y, z]] be such that m(f) = 3. If µ(j3(f)) = 8
then f is of type T3,3,3.

Proof. The result follows from step 75 in the singularity determinator of [10]. �

Definition 2.14. Let {αi} be a system of n points defining an affine hyperplane H
in Rn and let v : Rn → R be the linear form defining H with v(αi) = 1 for all i.
The quasijet of f determined by {Xαi}, denoted by j{Xαi}(f), is the image of f in
K[[X]] modulo the ideal generated by Xα, v(α) > 1.

Proposition 2.15. Let f ∈ K[[x, y, z]] be such that m(f) = 3. Then rmod(f) ≥ 3
in the following cases:

(1) the zero-set V (j3(f)) is irreducible and has in the singular locus a fat point
of multiplicity 4 and jx3,yz2,y6(f) = x3 + yz2 + x2y2 and µ(f) ≥ p+ 5;
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(2) the zero-set V (j3(f)) is the intersection of a plane and a node and has as
singular locus the line V (x, z) and jx2y,yz2,y5(f) = x2z + yz2 + x2y2 and
µ(f) ≥ p+ 9;

(3) the zero-set V (j3(f)) is the intersection of a plane and a node and has as
singular locus the line V (x, z) and jx2y,yz2,y5(f) = x2z + yz2 + zy3 and
µ(f) ≥ p+ 9;

(4) the zero-set V (j3(f)) is the intersection of a plane and a node and has as
singular locus the line V (x, z) and jx2y,yz2,y6(f) = x2z + yz2;

(5) the zero-set V (j3(f)) is the intersection of three planes and has as singular
locus the line V (x, z) and jx3,z3,xy3(f) = x3 +xz2 +xy3 and µ(f) ≥ p+13;

(6) the zero-set V (j3(f)) is the intersection of three planes and has as singular
locus the line V (x, z) and jx3,z3,xy3(f) = x3 + xz2;

(7) j3(f) has two linear factors, one of multiplicity 1 and one of multiplicity 2;
(8) j3(f) has only one linear factor of multiplicity 3.

Proof. (1) is a consequence of step 90; (2) is a consequence of step 99; (3) is a
consequence of step 101; (4) is a consequence of step 105; (5) is a consequence of
step 113; (6) is a consequence of step 117; (7) is a consequence of step 118; and (8)
is a consequence of step 119 in the singularity determinator of [10]. �

Notation. Consider the charts of the blowing-up given by
1 : x→ x, y → xy, z → xz,

2 : x→ xy, y → y, z → yz,

3 : x→ xz, y → yz, z → z.

By jk(fi,n) we denote the k-th jet of the strict transformation of the n-th blowing-
up corresponding to the i-th chart.

Proposition 2.16. Let f ∈ K[[x, y, z]] be such that m(f) = 3. If the zero-set
V (j3(f)) is irreducible and has in the singular locus a fat point of multiplicity 4,
then

(1) if 10 ≤ µ(f) ≤ 12 then f is unimodal of type Qµ(f);
(2) if µ(f) = 14, 15 then f is bimodal of type Q2,µ(f)−14;
(3) if 16 ≤ µ(f) ≤ 18 then f is bimodal of type Qµ(f) or Q2,µ(f)−14;
(4) if 19 ≤ µ(f) then f is bimodal of type Q2,µ(f)−14.

Proof. We may assume that f = x3 + yz2 +
∑
i+j+k≥4 ai,j,kx

iyjzk. The analysis
of Theorem 81 to Theorem 89 in [10] gives that f is unimodal of type Qµ(f) if
10 ≤ µ(f) ≤ 12, f is bimodal of type Q2,µ(f)−14 if µ(f) = 14, 15 or 19 ≤ µ(f), and
if 16 ≤ µ(f) ≤ 18 then f is bimodal of type Qµ(f) or Q2,µ(f)−14. These three cases
can be differentiated by using blowing-ups as follows.

If µ(f) = 16, then if V (j2(f2,2)) is the intersection of two planes then f is of type
Q16 and if V (j2(f2,2)) is a double plane then f is of type Q2,2. If µ(f) = 17, then if
f2,3 is a smooth curve then f is of type Q17 and if V (j2(f2,3)) is the intersection of
two planes then f is of type Q2,3. If µ(f) = 18, then if f2,3 is a smooth curve then
f is of type Q18 and if V (j2(f2,3)) is a double plane then f is of type Q2,4. �
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Proposition 2.17. Let f ∈ K[[x, y, z]] be such that m(f) = 3. If the zero-set
V (j3(f)) is the intersection of a plane and a node and has as singular locus the
line V (x, z), then

(1) if µ(f) = 11, 12 then f is unimodal of type Sµ(f);
(2) if µ(f) = 14 then f is bimodal of type S1,0;
(3) if µ(f) = 15 then f is bimodal of type S1,1 or S]1,1;
(4) if µ(f) = 16 then f is bimodal of type S16 or S1,2 or S]1,2;
(5) if µ(f) = 17 then f is bimodal of type S17 or S1,3 or S]1,3;
(6) if 16 < µ(f) < 2p+ 8 and µ(f) is even then f is bimodal of type S1,µ(f)−14

or S]1,µ(f)−13;
(7) if 19 ≤ µ(f) < 2p+ 11 and µ(f) is odd then f is bimodal of type S1,µ(f)−14

or S]1,µ(f)−14.

Proof. We may assume that f = x2z + yz2 +
∑
i+j+k≥4 ai,j,kx

iyjzk. The analysis
of Theorem 92 to Theorem 105 in [10] gives that if µ(f) = 11, 12 then f is unimodal
of type Sµ(f) and if µ(f) = 14 then f is bimodal of type S1,0. If µ(f) = 15, then
if V (j2(f2,1)) is a double plane then f is of type S1,1 and if V (j2(f2,1)) is the
intersection of two planes then f is of type S]1,1. If µ(f) = 16, then if V (j2(f2,1)) is
the intersection of two planes then f is of type S]1,2 and if V (j2(f2,1)) is a double
plane and V (j2(f2,2)) is the intersection of two planes then f is bimodal of type
S1,2 and if V (j2(f2,1)) is a double plane and V (j2(f2,2)) is a smooth curve then f
is bimodal of type S16. If µ(f) = 17, then if V (j2(f2,1)) is the intersection of two
planes then f is of type S]1,3 and if V (j2(f2,1)) and V (j2(f2,2)) is a double plane
then f is bimodal of type S1,3 and if V (j2(f2,1)) is a double plane and f2,2 is a
smooth curve then f is bimodal of type S17. Now if 16 < µ(f) < 2p+ 8 and µ(f)
is even, then if V (j2(f2,1)) is a double plane then f is bimodal of type S1,µ(f)−14

and if V (j2(f2,1)) is the intersection of two planes then f is of type S]1,µ(f)−13.
Similarly, if 19 ≤ µ(f) < 2p + 11 and µ(f) is odd, then if V (j2(f2,1)) is a double
plane then f is bimodal of type S1,µ(f)−14 and if V (j2(f2,1)) is the intersection of
two planes then f is of type S]1,µ(f)−14. �

Proposition 2.18. Let f ∈ K[[x, y, z]] be such that m(f) = 3. If the zero-set
V (j3(f)) is the intersection of three planes and has as singular locus the line
V (x, z), then

(1) if µ(f) = 12 then f is unimodal of type U12;
(2) if µ(f) = 14 then f is bimodal of type U1,0;
(3) if µ(f) = 16 then f is bimodal of type U16 or U1,1;
(4) if 15 ≤ µ(f) < 2p+11 and µ(f) is odd then f is bimodal of type U1,µ(f)−13

2
;

(5) if 16 < µ(f) < 2p+8 and µ(f) is even then f is bimodal of type U1,µ(f)−14
2

.

Proof. We may assume that f = x3 + xz2 +
∑
i+j+k≥4 ai,j,kx

iyjzk. The analysis
of Theorem 107 to Theorem 112 in [10] gives that f is unimodal of type U12 if
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µ(f) = 12; f is bimodal of type U1,0 if µ(f) = 14; f is bimodal of type U1,µ(f)−13
2

if 15 ≤ µ(f) < 2p + 11 and µ(f) is odd; f is bimodal of type U1,µ(f)−14
2

if 16 <

µ(f) < 2p+ 8 and µ(f) is even; and f is bimodal of type U16 or U1,1 if µ(f) = 16.
U16 and U1,1 can be differentiated by using blowing-ups such that if V (j2(f2,1)) is
the intersection of two planes then f is of type U1,1 and if V (j2(f2,1)) is a double
plane then f is of type U16. �

3. Short description of the classifier

In this section we give the description of our classifier and its implementation
in Singular. This classifier is used for computing the type of the unimodal and
bimodal hypersurface singularities in characteristic p > 0 with respect to right
equivalence. Our classifier is based on the algorithm classiFy(f), which classifies
hypersurface singularities of modality one and two of corank 3 with respect to right
equivalence.

We consider p ≥ 5, n = number of variables = 3, and corank(f) = 3. If µ(f),
the Milnor number of f , is finite, then our classifier checks the multiplicity of f . If
m(f) = 2 then the classifier transforms f into g(x, y) + z2 (by using the splitting
lemma). At this stage our classifier determines the type of g† and then returns the
corresponding type of f .

Now if m(f) = 3 the classifier computes µ(j3(f)); if µ(j3(f)) = 8 then it
gives the type T3,3,3, otherwise the classifier makes some coordinate change and
transforms j3(f) into one of xyz, xyz + x3, xyz + x3 + y3, x3 + yz2, x2z + yz2, or
x3 + xz2.

If j3(f) = xyz, the classifier makes some coordinate change and transforms f
into xyz+

∑
t≥q atx

t+
∑
u≥r buy

u+
∑
v≥s cvz

v. At this step the classifier performs
blow-ups of f at the origin to compute q, r, s and then gives Tq,r,s.

If j3(f) = xyz+x3, the classifier makes some coordinate change and transforms
f into xyz + x3 +

∑
u≥r buy

u +
∑
v≥s cvz

v. At this step the classifier performs
blow-ups of f at the origin to compute r, s and then gives T3,r,s.

If j3(f) = xyz + x3 + y3, the classifier makes some coordinate change and
transforms f into xyz + x3 + y3 +

∑
v≥s cvz

v. At this step the classifier performs
blow-ups of f at the origin to compute s and then gives T3,3,s.

If j3(f) = x3 + yz2, the classifier gives that f is of type Qµ(f) or Q2,µ(f)−14.
The classifier differentiates these types as explained in Proposition 2.16. Now if
j3(f) = x2z + yz2, then the classifier gives f is of type Sµ(f) or S1,µ(f)−14 or
S]1,µ(f)−13 or S]1,µ(f)−14. The classifier differentiates these types as explained in
Proposition 2.17. And if j3(f) = x3+xz2, then the classifier gives f is of type Uµ(f)
or U1,µ(f)−13

2
or U1,µ(f)−14

2
. The classifier differentiates these types as explained in

Proposition 2.18.

†The type of g(x, y) can be determined by using the procedure uniBimodalReq(f), imple-
mented in [5]
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3.1. Singular examples. We have implemented the algorithm in the computer
algebra system Singular [6], using version 4-1-2. Code can be downloaded from
mathcity.org/junaid. We give some examples:

ring R=11,(x,y,z),ds;
> poly f=-5x3+xy2-2y3-5x2z+3xyz-3y2z+2xz2+3yz2+z3+3x5-x4y-4x3y2

-x2y3+3xy4+x4z-5x3yz-2x2y2z+4xy3z+2y4z-x3z2-x2yz2+5xy2z2
-3y3z2-xyz3+y2z3-5xz4-3yz4+2z5;

> classiFy(f);
f is unimodal of type Q12

ring R=7,(x,y,z),ds;
> poly f=-x3-xy2+2y3-2xyz-y2z-2yz2+z3-3x5+3x4y+3x3y2-2x2y3+3xy4+y5

+2x4z-3x3yz+3x2y2z+xy3z+y4z-x3z2+2x2yz2+xy2z2-y3z2+2x2z3
+2xyz3-3y2z3-2xz4-yz4-2z5+x6+x5y+x4y2+x3y3+x2y4+xy5+y6+x5z
+2x4yz+3x3y2z-3x2y3z-2xy4z-y5z+x4z2+3x3yz2-x2y2z2+3xy3z2
+y4z2+x3z3-3x2yz3+3xy2z3-y3z3+x2z4-2xyz4+y2z4+xz5-yz5+z6
-x9-x8y-2x7y2+3x2y7+3xy8-y9+x8z-3x7yz-3xy7z+2y8z-2x7z2
-y7z2-3x2z7-3xyz7+y2z7+3xz8-2yz8+z9;

> classiFy(f);
f is bimodal of type T5,6,9
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