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HYPONORMALITY OF TOEPLITZ OPERATORS ON THE
BERGMAN SPACE OF AN ANNULUS

HOUCINE SADRAOUI AND MOHAMMED GUEDIRI

Abstract. A bounded operator S on a Hilbert space is hyponormal if S∗S−
SS∗ is positive. In this work we find necessary conditions for the hyponor-
mality of the Toeplitz operator Tf+g on the Bergman space of the annulus
{1/2 < |z| < 1}, where f and g are analytic and f satisfies a smoothness
condition.

1. Introduction

A bounded operator S on a Hilbert space is hyponormal if S∗S − SS∗ is pos-
itive. Hyponormality of Toeplitz operators has been studied by many authors.
Hyponormality of these operators on the Hardy space was considered in [3, 4]. Hy-
ponormality of these operators with a symbol of the form g1 + g2 on the Bergman
space of the unit disk was first considered in [8]. Therein a necessary condition
was proved, which was later improved in [1]. Some special cases are treated in [7].
A sufficient condition when g1 is a monomial and g2 is a polynomial is proved
in [9]. An improvement of the necessary condition in the case when g1 and g2 are
binomials is given in [5]. Basic material on Toeplitz operators on the Bergman
space of the unit disk can be found in [2]. In this work we consider hyponormality
of Toeplitz operators on the Bergman space of an annulus.

We start with definitions and notations. Denote by A2
1/2 the space of holo-

morphic functions on the annulus C1/2 = {z ∈ C : 1/2 < |z| < 1} such that∫
|h|2 dm(z) < ∞, where dm(z) = (4/3π)dλ(z) and λ is the Lebesgue measure

on the annulus. If h ∈ A2
1/2 we write h = a0 +

∑∞
1 anz

n + a−nz
−n and we

have ‖h‖2 =
∑∞

0
4(1−(1/2)2n+2)

3(n+1) |an|2 + 8
3 ln 2 |a−1|2 +

∑∞
2

4(22n−2−1)
3(n−1) |a−n|

2. We de-
note by L2(C1/2) the space of measurable and square integrable functions with
respect to dm on C1/2. Toeplitz operators on A2

1/2 are defined by Tf (h) = P (hf),
where f is bounded and measurable on C1/2, P is the orthogonal projection on
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A2
1/2, and h is in A2

1/2. The Hankel operators on the space A2
1/2 are defined by

Hf (h) = (I−P )(hf). The space A2
1/2 has an orthonormal basis given by the union

of the sets {
en =

√
3(n+ 1)

2
√

(1− (1/2)2n+2
zn, n ≥ 0

}
,{

e−1 =
√

3√
8 ln 2z

}
, and{

e−n =
√

3(n− 1)
2
√

(22n−2 − 1)
1
zn
, n ≥ 2.

}
.

We consider hyponormality of Toeplitz operators with a symbol of the form f =
g1 + g2, where g1 and g2 are bounded analytic functions on C1/2. We begin by
recalling some known properties of Toeplitz operators.

2. Some basic properties

Lemma 2.1. Let f and g be bounded and measurable on C1/2. The following
properties hold:

a) Tf+g = Tf + Tg.
b) T ∗f = Tf .
c) TfTg = Tfg if g is analytic on C1/2 or f is conjugate analytic.
d) TfTf − TfTf = H∗

f
Hf if f is analytic.

The next proposition is easy to prove and its proof is omitted.

Proposition 2.2. Let g1and g2 be polynomials. The following are equivalent:
a) Tg1+g2 is hyponormal.
b) Tg2Tg2 − Tg2Tg2 ≤ Tg1Tg1 − Tg1Tg1 .
c) H∗g2

Hg2 ≤ H∗g1
Hg1 .

d) Hg2 = KHg1 , where K is an operator of norm less than one.

The following lemma provides computations that will be needed.

Lemma 2.3. The projection P on A2
1/2 satisfies the following relations:

1) P (zmzn) = (m− n+ 1)(1− (1/2)2m+2)
(m+ 1)(1− (1/2)2m−2n+2) z

m−n, if m ≥ n.

2) P (zmzn) = (n−m− 1)(1− (1/2)2m+2))
(m+ 1)(22n−2m−2 − 1)

1
zn−m

, if n ≥ m+ 2.

3) P (zmzm+1) = (1− (1/2)2m+2)
2 ln 2(m+ 1)

1
z

, if n = m+ 1.

4) P

(
1
zm

zn
)

= (m+ n− 1)(22m−2 − 1))
(22(m+n)−2 − 1)(m− 1)

1
zm+n , if m ≥ 2.
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5) P

(
1
z
zn
)

= 2n ln 2
(22n − 1)

1
zn+1 , if n ≥ 1.

6) P

(
1
zm

zn
)

= (m+ n+ 1)((1− (1/2)2n+2)
(n+ 1)(1− (1/2)2(m+n)+2)

zm+n.

7) P

(
1

zmzn

)
= ((m− n) + 1)(22n−2 − 1)

(n− 1)(1− (1/2)2(m−n)+2)
zm−n, if m ≥ n, n 6= 1.

8) P

(
1
zmz

)
= 2m ln 2

(1− (1/2)2m)z
m−1, if m ≥ 1.

9) P

(
1

zmzn

)
= (n−m− 1)(22n−2 − 1)

(n− 1)(22(n−m)−2 − 1)
1

zn−m
, if m ≥ 1, n−m > 1.

10) P

(
1

zmzm+1

)
= (22m − 1)

2m ln 2
1
z , if m ≥ 1.

3. First main result

We begin with a matrix computation.

Lemma 3.1. Let f =
∑∞

1 akz
k be bounded on C1/2. Then for i, j ≥ 1 we have〈

TfTf − TfTf (ej), ei
〉

=
∑
1≤k

1≤k+j−i

ak+j−iak

√
i+ 1

√
j + 1(1− (1/2)2(k+j)+2))√

1− (1/2)2i+2
√

1− (1/2)2j+2(k + j + 1)

−
∑

1≤k≤j
1≤k+i−j

akak+i−j
(j − k + 1)

√
1− (1/2)2i+2

√
1− (1/2)2j+2

(1− (1/2)2(j−k)+2)
√
i+ 1

√
j + 1

− aj+1ai+1

√
(1− (1/2)2i+2

√
(1− (1/2)2j+2

2 ln 2
√
i+ 1

√
j + 1

−
∑
j+2≤k

1≤k+i−j

akak+i−j
(k − i− 1)

√
(1− (1/2)2i+2

√
(1− (1/2)2j+2

√
i+ 1

√
j + 1

.

Proof. We have

〈
TfTf (ej), ei

〉
=

∞∑
k,l=1

alak

√
3(i+ 1)

2
√

(1− (1/2)2i+2

√
3(j + 1)

2
√

(1− (1/2)2j+2

〈
zk+j , zi+l

〉
=

∑
1≤k

1≤k+j−i

ak+j−iak(1− (1/2)2(k+j)+2))
√

(i+ 1) (j + 1)
(k + j + 1)

√
(1− (1/2)2i+2) (1− (1/2)2j+2)

.
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Similarly, we get〈
TfTf (ej), ei

〉
=

∑
1≤k+i−j
1≤k≤j

akak+i−j(j − k + 1)
√

1− (1/2)2i+2
√

1− (1/2)2j+2

(1− (1/2)2(j−k)+2)
√
i+ 1

√
j + 1

+ aj+1ai+1

√
(1− (1/2)2i+2

2 ln 2
√
i+ 1

√
(1− (1/2)2j+2
√
j + 1

+
∑
j+2≤k

1≤k+i−j

akak+i−j(k − j − 1)
√

1 (−(1/2)2i+2) (1− (1/2)2j+2)√
(i+ 1) (j + 1)

.

�

Set βi,j =
〈
TfTf − TfTf (ej), ei

〉
, i, j ≥ 1. By rewriting the expression for βi,j

we obtain

βi+p,i =
∑

1≤k≤i
1≤k+p

akak+p

√
i+ 1

√
i+ p+ 1(1− (1/2)2(k+p+i)+2))√

1− (1/2)2i+2
√

1− (1/2)2(i+p)+2(k + p+ i+ 1)

−
∑

1≤k≤i
1≤k+p

akak+p
(i− k + 1)

√
1− (1/2)2i+2

√
1− (1/2)2(i+p)+2

(1− (1/2)2(i−k)+2)
√
i+ 1

√
i+ p+ 1

+ ai+1ai+p+1

√
i+ 1

√
i+ p+ 1(1− (1/2)2(2i+1+p)+2))√

1− (1/2)2i+2
√

1− (1/2)2(i+p)+2(2(i+ 1) + p)

− ai+1ai+p+1

√
(1− (1/2)2i+2

√
(1− (1/2)2(i+p)+2

2 ln 2
√
i+ 1

√
i+ p+ 1

+
∑
i+2≤k

akak+p

√
i+ 1

√
i+ p+ 1(1− (1/2)2(k+p+i)+2))√

1− (1/2)2i+2
√

1− (1/2)2(i+p)+2(k + p+ i+ 1)

−
∑
i+2≤k

akak+p
(k − i− 1)

√
(1− (1/2)2i+2

√
(1− (1/2)2(i+p)+2

√
i+ 1

√
i+ p+ 1

=
∑

1≤k≤i
1≤k+p

akak+pQi,k,p + ai+1ai+p+1Ri,p +
∑
i+2≤k

akak+pSi,k,p.

Lemma 3.2. We have limi→∞ i2βi+p,i = γi+p,i, where (γi,j) is the matrix of the
Hardy space Topelitz operator T|f ′|2 .

Proof. An elementary computation shows that limi→∞ i2Qi,k,p = k(k + p). Set
hi(k) = i2χ{1,...,i}(k) akak+pQi,k,p. The first sum in the above expression of βi+p,i
can be written as

∫
hi(k) dµ(k), where dµ is the counting measure. It is easy to

see that for i sufficiently large, |hi(k)| ≤ 2|akak+p| ≤ k2|ak|2 + (k + p)2|ak+p|2 =
M(k). Since f ′ ∈ H2, the function M(k) is integrable with respect to the counting
measure.
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By the dominated convergence theorem we obtain:

lim
i→∞

i2
∑

1≤k≤i
1≤k+p

akak+pQi,k,p =
∑

k(k + p)akak+p.

Also, for i large, there exists a constant C such that

|i2 ai+1ai+p+1Ri,p| ≤ C
(
(i+ 1)2|ai+1|2 + (i+ p+ 1)2|ai+p+1|2

)
.

Thus limi→∞ i2 ai+1ai+p+1Ri,p = 0. Finally, it is not difficult to see that
i2|Si,k,p| ≤ k(k + p). Using the dominated convergence theorem we obtain

lim
i→∞

i2
∑
i+2≤k

akak+pSi,k,p = 0.

We deduce that limi→∞ i2βi+p,i =
∑
k(k + p)akak+p and recognize this last

limit as being equal to γi+p,i, where (γi,j) is the matrix of the Hardy space Toeplitz
operator T|f ′|2 . �

We are led to the following necessary condition for hyponormality.

Theorem 3.3. Let f =
∑∞

1 akz
k and g =

∑∞
1 bkz

k be bounded on C1/2. Assume
that f ′ ∈ H2. If Tf+g is hyponormal then g′ ∈ H2 and |g′| ≤ |f ′| a.e. on the unit
circle.

Proof. If (θi,j) denotes the matrix of TfTf −TfTf −TgTg−TgTg and (σi,j) denotes
the matrix of TgTg − TgTg, then the inequality σi,i ≤ βi,i leads to∑

1≤k≤i
|bk|2Qi,k,0 + |bi+1|2Ri,0 +

∑
i+2≤k

|bk|2Si,k,0

≤
∑

1≤k≤i
|ak|2Qi,k,0 + |ai+1|2Ri,0 +

∑
i+2≤k

|ak|2Si,k,0.

We deduce that
∑

1≤k≤i, i
2|bk|2Qi,k,0 ≤ i2βi,i. Since limi→∞ i2Qi,k,0 = k2, writing

the left hand side of this last inequality as an integral with respect to the counting
measure and using Fatou’s lemma we get

∑
k2|bk|2 ≤

∑
k2|ak| and g′ ∈ H2. From

the previous lemma, limi→∞ i2 θi+p,i = λi+p,i, where (λi,j) denotes the matrix of
the Hardy space Toeplitz operator T|f ′|2−|g′|2 . Hyponormality and a property of
Toeplitz matrices [6] lead to |g′| ≤ |f ′| a.e. on the unit circle. �

Corollary 3.4. Let f =
∑∞

1 akz
k and g =

∑∞
1 bkz

k be analytic and univalent in
an open set containing C1/2. Then Tf+g is normal if and only if g = cf , where c
is a constant with |c| = 1.

Proof. Only the necessary condition needs to be shown. Normality implies that
|g′| = |f ′| on the unit circle. Thus f ′ and g′ have the same finite number of zeros
(if any) with the same multiplicity. We thus have |f

′|
|g′| = |g′|

|f ′| = 1 on the unit circle.
By the maximum principle, g′ = cf ′ with |c| = 1. We get g = cf . �
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Lemma 3.5. Let f =
∑∞

1 akz
k be bounded on C1/2. Then for i ≥ 3, j ≥ 3 we

have 〈
TfTf − TfTf (e−j), e−i

〉
=

∑
1≤k<j−1
1≤k+i−j

ak+i−jak

√
(i− 1)√

(22i−2 − 1)

√
(j − 1)√

(22j−2 − 1)
(22(j−k)−2 − 1)

(j − k − 1)

+ 2 ln 2 ai−1aj−1

√
i− 1√

22i−2 − 1

√
j − 1√

22j−2 − 1

+
∑
j≤k

ak+i−jak

√
(i− 1)√

(22i−2 − 1)

√
(j − 1)√

(22j−2 − 1)
(1− (1/2)2(k−j)+2)

k − j + 1

−
∑
1≤k

1≤k+j−i

akak+j−i
(k + j − 1)

√
(22i−2 − 1)

√
22j−2 − 1

(22(j+k)−2 − 1)
√
i− 1

√
j − 1

.

Proof. We have

〈
TfTf (e−j), e−i

〉
=

∑
1≤k<j−1
1≤k+i−j

ak+i−jak

√
i− 1√

22i−2 − 1

√
j − 1√

22j−2 − 1
(22(j−k)−2 − 1)

(j − k − 1)

+ 2 ln 2 ai−1aj−1

√
i− 1√

22i−2 − 1

√
j − 1√

22j−2 − 1

+
∑
j≤k

ak+i−jak

√
(i− 1)√

(22i−2 − 1)

√
(j − 1)√

(22j−2 − 1)
(1− (1/2)2(k−j)+2)

k − j + 1 .

Similarly,

〈
TfTf (e−j), e−i

〉
=

∞∑
k,l=1

akal

√
3(i− 1)

2
√

(22i−2 − 1)

√
3(j − 1)

2
√

(22j−2 − 1)

〈
P

(
zk

1
zj

)
, P (zl 1

zi
)
〉

=
∑
1≤k

1≤k+j−i

akak+j−i
(k + j − 1)

√
22i−2 − 1

√
22j−2 − 1

(22(j+k)−2 − 1)
√
i− 1

√
j − 1

.

�

Let β−i,−j =
〈
(TfTf − TfTf )(e−j), e−i

〉
and denote by (ζi,j) the matrix of the

Toeplitz operator T|f ′1/2|
2 on the Hardy space of the unit disk, where f1/2(z) =∑

ak
zk

2k .
We can show the following lemma.
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Lemma 3.6. We have limi→∞ i2β−i−p,−i = ζi+p,i.

Proof.
β−i−p,−i

=
∑

1≤k<i−1
1≤k+p

ak+pak

√
(i− 1)√

(22i−2 − 1)

√
(i+ p− 1)√

(22(i+p)−2 − 1)
(22(i−k)−2 − 1)

(i− k − 1)

+ 2 ln 2ai+p−1ai−1

√
i+ p− 1√

22(i+p)−2 − 1

√
i− 1√

22i−2 − 1

+
∑
i≤k

ak+pak

√
i− 1√

(22i−2 − 1)

√
i+ p− 1√

(22(i+p)−2 − 1)
(1− (1/2)2(k−i)+2)

k − i+ 1

−
∑
1≤k

1≤k+p

ak+pak

(k + p+ i− 1)
√

(22i−2 − 1)
√

22(i+p)−2 − 1
(22(i+k+p)−2 − 1)

√
i− 1

√
i+ p− 1

=
∑

1≤k<i−1
1≤k+p

ak+pak(i− 1)(i+ p− 1)(22(i−k)−2 − 1)(22(i+k+p)−2 − 1)√
(22i−2 − 1)(22(i+p)−2 − 1)

√
(i− 1)(i+ p− 1)(i− k − 1)(22(i+k+p)−2 − 1)

−
∑

1≤k<i−1
1≤k+p

ak+pak(k + p+ i− 1)(i− k − 1)(22i−2 − 1)(22(i+p)−2 − 1)√
(22i−2 − 1)(22(i+p)−2 − 1)

√
(i− 1)(i+ p− 1)(i− k − 1)(22(i+k+p)−2 − 1)

+ ai+p−1ai−1

(
2 ln 2

√
i− 1√

22i−2 − 1

√
i+ p− 1√

22(i+p)−2 − 1

−
(2i− 2 + p)

√
(22i−2 − 1)

√
22(i+p)−2 − 1

(22(2i−1+p)−2 − 1)
√
i− 1

√
i+ p− 1

)

+
∑
i≤k

ak+pak

( √
i− 1√

(22i−2 − 1)

√
i+ p− 1√

(22(i+p)−2 − 1)
(1− (1/2)2(k−i)+2)

k − i+ 1

)

−
∑
i≤k

ak+pak

(
(k + p+ i− 1)

√
(22i−2 − 1)

√
22(i+p)−2 − 1

(22(i+k+p)−2 − 1)
√
i− 1

√
i+ p− 1

)
=

∑
1≤k<i−1

1≤k+p

ak+pakQ
′
i,p,k + ai+p−1ai−1R

′
i,p +

∑
i≤k

ak+pakS
′
i,k,p.

A computation shows that lim
i→∞

i2Q′i,p,k = 1
22k+p . As in the proof of the previous

theorem we can show that

lim
i→∞

i2
∑

1≤k<i−1
1≤k+p

ak+pakQ
′
i,p,k =

∑
1≤k

1≤k+p

k(k + p)ak2k
ak+p

2k+p .

We see that this last limit is equal to ζi,i+p. We also show that
lim
i→∞

i2 ai+p−1ai−1R
′
i,p = 0
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and

lim
i→∞

i2
∑
i≤k

ak+pakS
′
i,k,p = 0.

We deduce that

lim
i→∞

i2β−i−p,−i = ζi+p,i.

If f =
∑∞

1 akz
k is bounded analytic on C1/2, then clearly

∑
k2

22k |ak|2 < ∞. We
can also see that |g′1/2| ≤ |f ′1/2| a.e. on the unit circle is equivalent to |g′| ≤ |f ′|
a.e. on {z : |z| = 1/2}. �

Theorem 3.7. Let f =
∑∞

1 akz
k and g =

∑∞
1 bkz

k be bounded on C1/2. If Tf+g
is hyponormal then |g′| ≤ |f ′| a.e. on {z : |z| = 1/2}.

The proof is similar to the proof of the previous theorem and is omitted. Com-
bining the previous two theorems we get our first main result.

Theorem 3.8. Let f =
∑∞

1 akz
k and g =

∑∞
1 bkz

k be bounded on C1/2 and
assume that f ′ ∈ H2. If Tf+g is hyponormal then g′ ∈ H2 and |g′| ≤ |f ′| a.e. on
{z : |z| = 1} ∪ {z : |z| = 1/2}.

4. Second main result

We now put f =
∑∞

1 ak
1
zk and g =

∑∞
1 bk

1
zk and assume that f and g are

bounded on C1/2. We need the following computation.

Lemma 4.1. For i ≥ 1, j ≥ 1 we have〈
TfTf − TfTf (ej), ei

〉
=

∑
1≤k,k+i−j

ak+i−jak

√
(i+ 1)

√
(j + 1)(1− (1/2)2(j−k)+2)√

(1− (1/2)2i+2
√

(1− (1/2)2j+2(j − k + 1)

−
∑

1≤k,k+j−i
akak+j−i

√
(1− (1/2)2i+2)

√
(1− (1/2)2j+2(j + k + 1)√

i+ 1
√
j + 1(1− (1/2)2(j+k)+2)

.

Proof. We have

〈
TfTf (ej), ei

〉
=

∞∑
k,l=1

alak

√
3(i+ 1)

2
√

(1− (1/2)2i+2

√
3(j + 1)

2
√

(1− (1/2)2j+2

〈
zj−k, zi−l

〉
=

∞∑
1≤k,k+i−j

ak+i−jak

√
(i+ 1)√

(1− (1/2)2i+2

√
(j + 1)√

(1− (1/2)2j+2

(1− (1/2)2(j−k)+2

j − k + 1
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and〈
TfTf (ej), ei

〉
=

∞∑
k,l=1

akal

√
3(i+ 1)

2
√

(1− (1/2)2i+2

√
3(j + 1)

2
√

(1− (1/2)2j+2

×
〈
P

(
1
zk
zj
)
, P

(
1
zl
zi
)〉

=
∞∑

1≤k,k+j−i
akak+j−i

√
(1− (1/2)2i+2)

√
(1− (1/2)2j+2(j + k + 1)√

i+ 1
√
j + 1(1− (1/2)2(j+k)+2)

.

�

We get, using the same notations as before,

βi+p,i =
∑

1≤k−p
1≤k

akak−p

√
(i+ 1)

√
(i+ p+ 1)(1− (1/2)2(i−k+p)+2)√

(1− (1/2)2i+2
√

(1− (1/2)2(i+p)+2i− k + p+ 1

−
∑
1≤k

1≤k−p

akak−p

√
(1− (1/2)2i+2)

√
(1− (1/2)2(i+p)+2(i+ k + 1)√

i+ 1
√
i+ p+ 1(1− (1/2)2(i+k)+2)

=
∑
1≤k

1≤k−p

akak−pUi,k,p.

A computation shows that

lim
i→∞

i2βi+p,i =
∑

1≤k,k−p
akak−pk(k − p).

We recognize the general element ξm+p,m of the matrix of the Toeplitz operator T|f̃ ′|
on the Hardy space of the unit disk with f̃ defined by f̃(z) =

∑∞
1 akz

k. Obviously
the condition |g̃′(eiθ)| ≤ |f̃ ′(eiθ)| a.e. on the unit circle is the same as |g′| ≤ |f ′|
a.e. on the unit circle. The condition f̃ ′ ∈ H2 is equivalent to

∑
k2|ak|2 <∞ and

this is satisfied if f =
∑∞

1 ak
1
zk is bounded on C1/2. Using similar methods we

obtain the following theorem.

Theorem 4.2. Let f =
∑∞

1 ak
1
zk and g =

∑∞
1 bk

1
zk be analytic and bounded on

C1/2. If Tf+g is hyponormal then |g′| ≤ |f ′| a.e. on the unit circle.

If we set f2(z) =
∑

2kakzk, then f ′2 ∈ H2 is equivalent to
∑
k222k|ak|2 < ∞.

In this case, |g′2| ≤ |f ′2| a.e. on the unit circle is equivalent to |g′| ≤ |f ′| a.e. on
{z : |z| = 1/2}. Let (ρi,j) denote the matrix of the Hardy space Toeplitz operator
T|f ′2|2 . Using the same notations we can show the following lemma, the proof of
which is omitted.

Lemma 4.3. lim
i→∞

i2β−i−p,−i = ρi+p,i.

We obtain our second main result.
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Theorem 4.4. Let f =
∑∞

1 ak
1
zk and g =

∑∞
1 bk

1
zk be bounded on C1/2, with∑

k222k|ak|2 < ∞. If Tf+g is hyponormal then
∑
k222k|bk|2 < ∞ and |g′| ≤ |f ′|

a.e. on {z : |z| = 1} ∪ {z : |z| = 1/2}.

An application of the maximum modulus principle allows us to describe the
normality of Tf+g under the condition of univalence.

Corollary 4.5. Let f =
∑∞

1 ak
1
zk and g =

∑∞
1 bk

1
zk be analytic and univalent in

an open set containing C1/2. Then Tf+g is normal if and only if g = cf , where c
is a constant with |c| = 1.

We list two more results which are shown using methods similar to the ones used
for the previous theorems.

Theorem 4.6. Let f =
∑∞

1 akz
k and g =

∑∞
1 bk

1
zk be bounded on C1/2. Assume

that
∑
k2|ak|2 < ∞. If Tf+g is hyponormal then

∑
k2|bk|2 < ∞ and |g′(eiθ)| ≤

|f ′(eiθ)| a.e. on the unit circle.

Corollary 4.7. Let f =
∑∞

1 akz
k and g =

∑∞
1 bk

1
zk be bounded on C1/2. Assume

that f and g̃ are univalent in an open set containig C1/2. Then Tf+g is normal if
and only if g̃ = cf for some constant c with |c| = 1.

Theorem 4.8. Let f =
∑∞

1 akz
k and g =

∑∞
1 bk

1
zk be bounded on C1/2. If Tf+g

is hyponormal then
∑
k222k|bk|2 <∞ and |g′( 1

2e
iθ)| ≤ |f ′( 1

2e
iθ)| for almost all θ.

Corollary 4.9. Let f =
∑∞

1 akz
k and g =

∑∞
1 bk

1
zk be bounded on C1/2 and

assume that Tf+g is hyponormal. The following holds:
i)
∑
k222k|bk|2 <∞ and |g′( 1

2e
iθ)| ≤ |f ′( 1

2e
iθ)| for almost all θ.

ii) If f ′ ∈ H2 then |g′(eiθ)| ≤ |f ′(eiθ)| a.e. on the unit circle.
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