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QUASI-MODAL OPERATORS ON DISTRIBUTIVE
NEARLATTICES

ISMAEL CALOMINO, SERGIO A. CELANI, AND LUCIANO J. GONZÁLEZ

Abstract. We introduce the notion of quasi-modal operator in the variety
of distributive nearlattices, which turns out to be a generalization of the ne-
cessity modal operator studied in [S. Celani and I. Calomino, Math. Slovaca
69 (2019), no. 1, 35–52]. We show that there is a one to one correspondence
between a particular class of quasi-modal operators on a distributive nearlat-
tice and the class of possibility modal operators on the distributive lattice of
its finitely generated filters. Finally, we consider the concept of quasi-modal
congruence, and we show that the lattice of quasi-modal congruences of a
quasi-modal distributive nearlattice is isomorphic to the lattice of congruences
of the lattice of finitely generated filters with a possibility modal operator.

1. Introduction and preliminaries

Implication algebras, also called Tarski algebras, were introduced and studied
by Abbott in [1, 2]. A natural generalization of implication algebras is the class
of nearlattices: join-semilattices with greatest element in which every principal
filter is a bounded lattice. These structures were studied by different authors in
[17, 21, 20, 12, 14, 15, 8, 9, 18, 19]. A particular class of nearlattices is the class of
distributive nearlattices, i.e., join-semilattices with greatest element in which every
principal filter is a bounded distributive lattice. Clearly, every bounded distributive
lattice is in particular a distributive nearlattice. Thus, distributive nearlattices are
generalizations both of implication algebras and distributive lattices. In [8] a full
duality is developed for distributive nearlattices and in [9] some applications are
given. Recently, distributive nearlattices were studied from the point of view of
algebraic logic. In [18, 19] a sentential logic was defined and studied in such a way
that its algebraic counterpart is the class of distributive nearlattices.

In the class of distributive nearlattices, a notion of necessity modal operator was
introduced and studied (see [10]) as a generalization of necessity modal operators on
bounded distributive lattices ([16, 22, 11]) and modal operators on Tarski algebras
([7]). On the other hand, there is a strong connection between a nearlattice and its
filters. To be more precise, Hickman and Cornish prove in [17] that a nearlattice is
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distributive if and only if the lattice of its finitely generated filters is distributive.
Motivated by this fact, we ask ourselves which operators on a distributive near-
lattice should correspond to the modal operators on the distributive lattice of its
finitely generated filters. Thus, we introduce the so-called quasi-modal operators in
the class of distributive nearlattices, and we show that these are a generalization of
the necessity modal operators given in [10]. The main aim of this article is to study
quasi-operators on distributive nearlattices, and prove that they are in one to one
correspondence with possibility modal operators on the distributive lattice of its
finitely generated filters. We define the notion of quasi-congruence in quasi-modal
distributive nearlattices and we give a representation theorem.

The paper is organized as follows. In the remaining part of this section we
review some definitions. In Section 2 we define quasi-modal operators and finite
quasi-modal operators on distributive nearlattices. We show a correspondence be-
tween finite quasi-modal operators on a distributive nearlattice A and possibility
modal operators on the distributive lattice of its finitely generated filters Fif(A).
We also give some characterizations and a representation theorem. In Section 3
we introduce the notion of qm-congruence, i.e., equivalence relations compatible
with the quasi-modal operator. We prove that there is an isomorphism between
qm-congruences of a quasi-modal distributive nearlattice and congruences of dis-
tributive lattice of its finitely generated filters with a possibility modal operator.

Let A = 〈A,∨, 1〉 be a join-semilattice with greatest element. A filter is a
subset F of A such that 1 ∈ F , if a ≤ b and a ∈ F then b ∈ F , and if a, b ∈ F then
a∧ b ∈ F , whenever a∧ b exists. If X is a subset of A, the least filter containing X
is called the filter generated by X and will be denoted by Fig(X). A filter G is said
to be finitely generated if G = Fig(X), for some finite subset X of A. If X = {a},
then Fig({a}) = [a) = {x ∈ A : a ≤ x}, called the principal filter of a. We denote
by Fi(A) and Fif(A) the sets of all filters and of all finitely generated filters of A,
respectively. A subset I of A is called an ideal if a ≤ b and b ∈ I implies a ∈ I,
and a, b ∈ I implies a ∨ b ∈ I. If X is a non-empty set, the least ideal containing
X is called the ideal generated by X and will be denoted by Idg(X). We shall say
that a non-empty proper ideal P is prime if for all a, b ∈ A, a∧ b ∈ I implies a ∈ I
or b ∈ I, whenever a∧ b exists. We denote by Id(A) and X(A) the sets of all ideals
and of all prime ideals of A, respectively.

Definition 1.1. Let A be a join-semilattice with greatest element. We say that
A is a nearlattice if each principal filter is a bounded lattice.

Let A be a nearlattice. For each a ∈ A, we will denote the meet operation of the
lattice [a) by ∧a. Thus, 〈[a),∨,∧a, a, 1〉 is a bounded lattice. Note that if x, y ∈ [a)
and b ≤ a, then x, y ∈ [b) and x∧a y = x∧b y. The nearlattices form a variety. This
fact was first proved in [21] and independently in [15]. In [3] the authors found a
smaller equational base.

Theorem 1.2 ([3]). Let A be a nearlattice. Let m : A3 → A be the ternary opera-
tion given by m(x, y, z) = (x ∨ z) ∧z (y ∨ z). The following identities are satisfied:
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(1) m(x, y, x) = x.
(2) m(m(x, y, z),m(y,m(u, x, z), z), w) = m(w,w,m(y,m(x, u, z), z)).
(3) m(x, x, 1) = 1.

Conversely, let A = 〈A,m, 1〉 be an algebra of type (3, 0) satisfying the identities
(1)–(3). If we define x ∨ y = m(x, x, y), then A is a join-semilattice with greatest
element. Moreover, for each a ∈ A, [a) is a bounded lattice where for x, y ∈ [a),
x ∧a y = m(x, y, a). Hence, A is a nearlattice.

For each nearlattice A, m will denote the operation defined in Theorem 1.2. We
introduce the following notation. For each natural number n we define inductively,
for every a1, . . . , an, b ∈ A, the element mn−1(a1, . . . , an, b) as follows:

• m0(a1, b) = m(a1, a1, b);
• for n > 1, mn−1(a1, . . . , an, b) = m(mn−2(a1, . . . , an−1, b), an, b).

So, mn−1(a1, . . . , an, b) = (a1 ∨ b)∧b . . .∧b (an ∨ b), and, in particular, m0(a1, b) =
a1 ∨ b and m1(a1, a2, b) = m(a1, a2, b), where m(a1, a2, b) is given by Theorem 1.2.

Definition 1.3. Let A be a nearlattice. We say that A is distributive if each
principal filter is a bounded distributive lattice.

Example 1.4 ([1, 2]). If A = 〈A,→, 1〉 is an implication algebra, then it is known
that A = 〈A,∨, 1〉, where x∨y = (x→ y)→ y is a join-semilattice with greatest el-
ement such that each principal filter is a Boolean algebra. Hence, every implication
algebra is in particular a distributive nearlattice.

Let A be a nearlattice. Consider the latttice Fi(A) = 〈Fi(A),Y,Z, {1}, A〉,
where the least element is {1}, the greatest element is A, G Z H = G ∩ H, and
G YH = Fig(G∪H), for every G,H ∈ Fi(A). On the other hand, from the results
given in [17], we have the following characterization of the filter generated by a
subset X of A:

Fig(X) = {a ∈ A : ∃x1, . . . , xn ∈ [X)(a = x1 ∧ · · · ∧ xn)}.
In particular, if X = {a1, . . . , an}, then

Fig(X) = [a1) Y . . . Y [an) = {a ∈ A : a = mn−1(a1, . . . , an, a)}.
So, the structure Fif(A) = 〈Fif(A),Y〉 is a sub join-semilattice of Fi(A).

Theorem 1.5 ([17, 13]). Let A be a nearlattice. The following conditions are
equivalent:

(1) A is distributive.
(2) Fi(A) is a bounded distributive lattice.
(3) Fif(A) is a bounded distributive lattice.

Theorem 1.6 ([20]). Let A be a distributive nearlattice. Let I ∈ Id(A) and let
F ∈ Fi(A) be such that I ∩ F = ∅. Then there exists P ∈ X(A) such that I ⊆ P
and P ∩ F = ∅.

If A and B are two distributive nearlattices, then a map h : A→ B is a homo-
morphism if h(1) = 1, h(a∨b) = h(a)∨h(b), and h(a∧b) = h(a)∧h(b), whenever a∧b

Rev. Un. Mat. Argentina, Vol. 61, No. 2 (2020)



342 I. CALOMINO, S. A. CELANI, AND L. J. GONZÁLEZ

exists. In other words, h is a homomorphism if h(m(a, b, c)) = m(h(a), h(b), h(c)),
for every a, b, c ∈ A. Note that if a, b ∈ A such that a ∧ b exists, then h(a) ∧ h(b)
exists in B. We have the following representation theorem.
Theorem 1.7 ([20]). Let A be a distributive nearlattice and ϕA : A → Pd(X(A))
the map given by ϕA(a) = {P ∈ X(A) : a /∈ P}. Then ϕA is an embedding of A into
Pd(X(A)). Hence, A is isomorphic to the subalgebra ϕA[A] = {ϕA(a) : a ∈ A}.

2. Quasi-modal distributive nearlattices

In [5, 6], the author studies the class of quasi-modal algebras as a generalization
of modal algebras. A quasi-modal algebra is a Boolean algebra with a map be-
tween the algebra and the set of its ideals. This kind of maps are not operations in
the algebra, and the quasi-modal algebras are not algebras according to the stan-
dard terminology of universal algebra, but they have some properties similar to
those of modal operators. Following this line of research, in this section we study
quasi-modal operators on distributive nearlattices and their connection with modal
operators on the distributive lattice of its finitely generated filters.

2.1. Quasi-modal operators.
Definition 2.1. Let A be a distributive nearlattice. A quasi-modal operator de-
fined on A is a map ∇ : A→ Fi(A) that satisfies the following conditions:

(1) ∇1 = {1}.
(2) ∇(a ∧ b) = ∇a Y∇b, whenever a ∧ b exists.

A finite quasi-modal operator defined on A is a quasi-modal operator that satisfies
∇a ∈ Fif(A), for every a ∈ A. A pair 〈A,∇〉 is a quasi-modal distributive near-
lattice, or simply qm-distributive nearlattice, if A is a distributive nearlattice and
∇ is a quasi-modal operator defined on A. Analogously, a pair 〈A,∇〉 is a finite
quasi-modal distributive nearlattice, or simply fqm-distributive nearlattice, if A is a
distributive nearlattice and ∇ is a finite quasi-modal operator defined on A.

Let us denote by DN∇ and DN∇f the classes of qm-distributive nearlattices
and fqm-distributive nearlattices, respectively. The classes DN∇ and DN∇f are
not varieties, because ∇ is not an operation on A. On the other hand, note that
∇ is a map that reverses the order.
Example 2.2. Let A be a distributive nearlattice. If we define ∇ : A → Fif(A)
by ∇a = [a), for every a ∈ A, then the structure 〈A,∇〉 is a fqm-distributive
nearlattice.
Example 2.3. In [10], a necessity modal operator on a distributive nearlattice A
was introduced as a map � : A → A such that �1 = 1 and �(a ∧ b) = �a ∧ �b,
whenever a ∧ b exists. It is easy to see that � induces a finite quasi-modal op-
erator ∇� if for each a ∈ A we put ∇�(a) = [�a). Conversely, if 〈A,∇〉 is a
fqm-distributive nearlattice such that for each a ∈ A the filter ∇a is principal,
then the map �∇ : A→ A given by �∇(a) = b if and only if ∇a = [b), defines a ne-
cessity modal operator on A. Therefore, finite quasi-modal operators are a natural
generalization of necessity modal operators in the class of distributive nearlattices.
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Example 2.4. LetX be a set andR ⊆ X×X. Consider the distributive nearlattice
〈P(X),∪, X〉 and take the map ∇R : P(X)→ Fi(P(X)) defined by

∇R(U) = {V ∈ P(X) : �R(U) ⊆ V },
where U ∈ P(X) and

�R(U) = {x ∈ X : R(x) ⊆ U}, (∗)
i.e., ∇R(U) = [�R(U)). It follows that ∇R is a quasi-modal operator on P(X).
Indeed, since �R(X) = X, we have ∇R(X) = {X}. If W ∈ ∇R(U ∩ V ), then
�R(U ∩ V ) = �R(U) ∩�R(V ) ⊆W and

W = (�R(U) ∪W ) ∩ (�R(V ) ∪W ),
where �R(U)∪W ∈ ∇R(U) and �R(V )∪W ∈ ∇R(V ). So, W ∈ ∇R(U) Y∇R(V )
and ∇R(U ∩V ) ⊆ ∇R(U)Y∇R(V ). On the other hand, since ∇R inverts the order,
we have ∇R(U) Y∇R(V ) ⊆ ∇R(U ∩ V ). Then ∇R(U ∩ V ) = ∇R(U) Y∇R(V ) and
〈P(X),∇R〉 is a qm-distributive nearlattice.

Let 〈A,∇〉 ∈ DN∇. Let D be a subset of A and
γ(D) = {a ∈ A : ∇a ∩D = ∅}.

Theorem 2.5. Let A be a distributive nearlattice and ∇ : A→ Fi(A) a map. The
following conditions are equivalent:

(1) ∇ is a quasi-modal operator on A.
(2) ∇ inverts the order and γ(P ) ∈ Fi(A), for every P ∈ X(A).

Proof. (1)⇒ (2) Let P ∈ X(A). As ∇1 = {1} and P is a proper ideal, ∇1∩P = ∅
and 1 ∈ γ(P ). Let a, b ∈ A be such that a ≤ b and a ∈ γ(P ). Since ∇ inverts the
order, ∇b ⊆ ∇a and ∇a∩P = ∅. So, ∇b∩P = ∅ and b ∈ γ(P ). If a, b ∈ γ(P ) such
that a∧ b exists, then ∇a∩P = ∅ and ∇b∩P = ∅. Suppose that ∇(a∧ b)∩P 6= ∅,
i.e., there is x ∈ A such that x ∈ (∇aY∇b)∩P 6= ∅. Thus, there exist x1, . . . , xn ∈
∇a ∪ ∇b such that x1 ∧ . . . ∧ xn exists and x = x1 ∧ . . . ∧ xn. Since x ∈ P and P
is prime, there exists i ∈ {1, . . . , n} such that xi ∈ P . It follows that xi ∈ ∇a ∩ P
or xi ∈ ∇b∩P , which is a contradiction. Then ∇(a∧ b)∩P = ∅ and a∧ b ∈ γ(P ).
Therefore, γ(P ) ∈ Fi(A), for every P ∈ X(A).

(2)⇒ (1) If ∇1 6= {1}, then there is x ∈ A such that x 6= 1 and x ∈ ∇1. So, by
Theorem 1.6, there exists P ∈ X(A) such that x ∈ P . It follows that x ∈ ∇1 ∩ P
and 1 /∈ γ(P ), which is a contradiction because γ(P ) is a filter. Then ∇1 = {1}.
Let a, b ∈ A be such that a∧b exists. Since ∇ inverts the order, ∇a ⊆ ∇(a∧b) and
∇b ⊆ ∇(a∧b). So, ∇aY∇b ⊆ ∇(a∧b). We show the other inclusion. Suppose there
is x ∈ ∇(a ∧ b) such that x /∈ ∇a Y ∇b. By Theorem 1.6, there exists P ∈ X(A)
such that x ∈ P and P ∩ (∇a Y ∇b) = ∅. Then ∇a ∩ P = ∅ and ∇b ∩ P = ∅,
i.e., a, b ∈ γ(P ). As γ(P ) is a filter, a ∧ b ∈ γ(P ) and ∇(a ∧ b) ∩ P = ∅. On
the other hand, x ∈ ∇(a ∧ b) ∩ P and a ∧ b /∈ γ(P ), which is a contradiction. So,
∇(a ∧ b) ⊆ ∇a Y∇b and ∇ is a quasi-modal operator on A. �

Proposition 2.6. Let 〈A,∇〉 ∈ DN∇. Let a ∈ A and P ∈ X(A). Then ∇a∩P 6= ∅
if and only if there exists Q ∈ X(A) such that γ(P ) ∩Q = ∅ and a ∈ Q.
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Proof. If ∇a ∩ P 6= ∅, then a /∈ γ(P ). So, by Theorems 2.5 and 1.6, there exists
Q ∈ X(A) such that γ(P ) ∩Q = ∅ and a ∈ Q. The reciprocal is immediate. �

2.2. Finite quasi-modal operators. Now, we will study the relationship be-
tween finite quasi-modal operators on a distributive nearlattice A and possibility
modal operators on the bounded distributive lattice Fif(A). Recall that a possi-
bility modal operator on a bounded distributive lattice L = 〈L,∨,∧, 0, 1〉 is a map
♦ : L→ L such that ♦ 0 = 0 and ♦(a ∨ b) = ♦ a ∨ ♦ b, for every a, b ∈ L.

Definition 2.7. Let 〈A,∇〉 ∈ DN∇. For a subset X ⊆ A, we define

♦∇(X) = Fig
(⋃
{∇x : x ∈ X}

)
. (•)

Lemma 2.8. Let 〈A,∇〉 ∈ DN∇. Then ♦∇([a)) = ∇a, for every a ∈ A.

Proof. Let y ∈ ♦∇([a)) = Fig
(⋃
{∇x : x ∈ [a)}

)
. Then there are y1, . . . , yn ∈⋃

{∇x : x ∈ [a)} such that y1 ∧ . . .∧ yn exists and y = y1 ∧ . . .∧ yn. So, there exist
x1, . . . , xn ∈ A such that a ≤ xi and yi ∈ ∇xi, for all i ∈ {1, . . . , n}. Then ∇xi ⊆
∇a and yi ∈ ∇a, for all i ∈ {1, . . . , n}. Since ∇a is a filter, y1 ∧ . . .∧ yn = y ∈ ∇a.
The other inclusion is easy to follow. �

Proposition 2.9. Let 〈A,∇〉 ∈ DN∇f . Then the map ♦∇ : Fif(A)→ Fif(A) given
by (•) is a possibility modal operator on Fif(A), i.e., ♦∇ satisfies the following
conditions:

(1) ♦∇([1)) = [1).
(2) ♦∇(F YG) = ♦∇(F ) Y ♦∇(G), for every F,G ∈ Fif(A).

Proof. We prove that ♦∇ is well-defined. If F ∈ Fif(A), there exist a1, . . . , an ∈ A
such that F = [a1)Y. . .Y[an). Let us show that ♦∇(F ) = ♦∇([a1))Y. . .Y♦∇([an)). If
y ∈ ♦∇(F ), then there are y1, . . . , ym ∈ Fig

(⋃
{∇x : x ∈ F}

)
such that y1∧. . .∧ym

exists and y = y1∧. . .∧ym. So, there exist x1, . . . , xm ∈ F such that yi ∈ ∇xi, for all
i ∈ {1, . . . ,m}. As xi ∈ F = [a1)Y. . .Y[an), we have xi = (a1∨xi)∧xi . . .∧xi(an∨xi),
for all i ∈ {1, . . . ,m}. It follows that

∇xi = ∇(a1 ∨ xi) Y . . . Y∇(an ∨ xi),
for all i ∈ {1, . . . ,m}. Since aj ≤ aj ∨ xi, we have ∇(aj ∨ xi) ⊆ ∇(aj), for all
j ∈ {1, . . . , n}. Hence,

∇(a1 ∨ xi) Y . . . Y∇(an ∨ xi) ⊆ ∇a1 Y . . . Y∇an,
for all i ∈ {1, . . . ,m}. So, yi ∈ ∇xi ⊆ ∇a1 Y . . . Y∇an, for all i ∈ {1, . . . ,m} and
y ∈ ∇a1 Y . . . Y ∇an. Thus, by Lemma 2.8, ♦∇(F ) ⊆ ♦∇([a1)) Y . . . Y ♦∇([an)).
The other inclusion is immediate.

By definition, ♦∇([1)) = [1). Finally, we consider F,G ∈ Fif(A). Then there
exist a1, . . . , an, b1, . . . , bm ∈ A such that F = [a1)Y. . .Y[an) andG = [b1)Y. . .Y[bm).
Thus,
♦∇(F YG) = ♦∇([a1))Y . . .Y♦∇([an))Y♦∇([b1))Y . . .Y♦∇([bm)) = ♦∇(F )Y♦∇(G).
Therefore, ♦∇ is a possibility modal operator on Fif(A). �
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Proposition 2.10. Let A be a distributive nearlattice. If ♦ : Fif(A) → Fif(A) is
a possibility modal operator on Fif(A), then the map ∇♦ : A → Fif(A) given by
∇♦a = ♦([a)) is a finite quasi-modal operator on A.
Proof. It is clear that ∇♦1 = {1}. Let a, b ∈ A be such that a ∧ b exists. Then

∇♦(a ∧ b) = ♦([a ∧ b)) = ♦([a) Y [b)) = ♦([a)) Y ♦([b)) = ∇♦(a) Y∇♦(b),
and ∇♦ is a finite quasi-modal operator on A. �

Theorem 2.11. Let A be a distributive nearlattice. The following properties are
satisfied:

(1) If ∇ is a finite quasi-modal operator on A, then ∇ = ∇♦∇ .
(2) If ♦ is a possibility modal operator on Fif(A), then ♦ = ♦∇♦ .

Proof. (1) Let∇ be a finite quasi-modal operator on A and a ∈ A. By Lemma 2.8,
we have

∇♦∇a = ♦∇([a)) = ∇a.
(2) Let ♦ be a possibility modal operator on Fif(A). First we prove that

♦∇♦([a)) = ♦([a)), for every a ∈ A. By definition,

♦∇♦([a)) = Fig
(⋃
{∇♦x : x ∈ [a)}

)
= Fig

(⋃
{♦([x)) : a ≤ x}

)
.

Since a ≤ a, it follows that ♦([a)) ⊆ ♦∇♦([a)). On the other hand, for each a ≤ x,
we have [x) ⊆ [a) and ♦([x)) ⊆ ♦([a)). Thus, Fig

(⋃
{♦([x)) : a ≤ x}

)
⊆ ♦([a)).

Hence, ♦∇♦([a)) = ♦([a)), for all a ∈ A. Now, we show the general case. If
F ∈ Fif(A), then there exist a1, . . . , an ∈ A such that F = [a1) Y . . . Y [an). By
Propositions 2.9 and 2.10, we have

♦∇♦(F ) = ♦∇♦([a1) Y . . . Y [an))
= ♦∇♦([a1)) Y . . . Y ♦∇♦([an))
= ♦([a1)) Y . . . Y ♦([an))
= ♦([a1) Y . . . Y [an))
= ♦(F ). �

Then, by Theorem 2.11, we have that the finite quasi-modal operators on a
distributive nearlattice A are in one to one correspondence with possibility modal
operators on the distributive lattice of its finitely generated filters Fif(A).

2.3. Representation for qm-distributive nearlattices. Our next objective is
to give a representation theorem for qm-distributive nearlattices. Let 〈A,∇〉 ∈
DN∇. Let R∇ ⊆ X(A)×X(A) be the relation given by

(P,Q) ∈ R∇ ⇐⇒ γ(P ) ∩Q = ∅,
and for each F ∈ Fi(A), define the set

β(F ) = {P ∈ X(A) : P ∩ F = ∅}.
If follows that β(γ(P )) = R∇(P ), for every P ∈ X(A). We consider the pair
〈X(A), R∇〉 and the operator �R∇ of Example 2.4 given by (∗).
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Lemma 2.12. Let 〈A,∇〉 ∈ DN∇. Then �R∇(ϕA(a)) = β(∇a), for every a ∈ A.

Proof. Let a ∈ A and P ∈ X(A). By Proposition 2.6, we have
P /∈ �R∇(ϕA(a))⇐⇒ R∇(P ) 6⊆ ϕA(a)

⇐⇒ ∃Q ∈ X(A)[γ(P ) ∩Q = ∅ and a ∈ Q]
⇐⇒ a /∈ γ(P )
⇐⇒ P /∈ β(∇a).

So, �R∇(ϕA(a)) = β(∇a). �

Definition 2.13. Let 〈A,∇1〉, 〈B,∇2〉 ∈ DN∇. We say that a map h : A→ B is
a qm-homomorphism if it satisfies the following conditions:

(1) h is a homomorphism.
(2) FigB(h(∇1a)) = ∇2(h(a)), for every a ∈ A.

Moreover, if h is an isomorphism we say that h is a qm-isomorphism.

Lemma 2.14. Let 〈A,∇1〉, 〈B,∇2〉, 〈C,∇3〉 ∈ DN∇. Let h : A→ B and g : B →
C be two qm-homomorphisms. Then the composition g ◦h is a qm-homomorphism.

Proof. Since h : A→ B and g : B → C are two qm-homomorphisms, we have

FigB(h(∇1a)) = ∇2(h(a)),

for every a ∈ A, and
FigC(g(∇2b)) = ∇3(g(b)),

for every b ∈ B. We prove that FigC((g ◦ h)(∇1a)) = ∇3((g ◦ h)(a)), for every
a ∈ A. Note that

∇3((g ◦ h)(a)) = ∇3(g(h(a)))
= FigC(g(∇2h(a)))
= FigC(g(FigB(h(∇1a)))).

Since h(∇1a) ⊆ FigB(h(∇1a)), we have g(h(∇1a)) ⊆ g(FigB(h(∇1a))). Then
FigC(g(h(∇1a))) ⊆ FigC(g(FigB(h(∇1a)))), i.e., FigC((g ◦ h)(∇1a)) ⊆ ∇3((g ◦
h)(a)). In order to prove the inverse inclusion, let us show that g(FigB(h(∇1a))) ⊆
FigC((g ◦ h)(∇1a)). If y ∈ FigB(h(∇1a)), then there exist y1, . . . , yn ∈ [h(∇1a))
such that y1 ∧ . . . ∧ yn exists and y = y1 ∧ . . . ∧ yn. So, there are x1, . . . , xn ∈ ∇1a
such that h(xi) ≤ yi, for all i ∈ {1, . . . , n}. Then g(y) = g(y1) ∧ . . . ∧ g(yn) and
(g ◦h)(xi) ≤ g(yi), for all i ∈ {1, . . . , n}. Hence, g(y) ∈ FigC((g ◦h)(∇1a)) and the
inclusion is valid. Thus,

FigC(g(FigB(h(∇1a)))) ⊆ FigC((g ◦ h)(∇1a))

and∇3((g◦h)(∇1a)) ⊆ FigC((g◦h)(∇1a)). Therefore, g◦h is a qm-homomorphism.
�

By Lemma 2.14, we can conclude that we have the category whose objects are
qm-distributive nearlattices and whose morphisms are qm-homomorphisms.
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Theorem 2.15. Let 〈A,∇〉 ∈ DN∇. Then 〈ϕA[A],∇R∇〉 is a qm-distributive
nearlattice. Moreover, 〈A,∇〉 and 〈ϕA[A],∇R∇〉 are qm-isomorphic.
Proof. By Example 2.4, the structure 〈ϕA[A],∇R∇〉 is a qm-distributive nearlat-
tice. By Theorem 1.7, the map ϕA : A → ϕA[A] given by ϕA(a) = {P ∈ X(A) :
a /∈ P} is an isomorphism. Then, it is easy to see that ϕA(∇a) ∈ Fi(ϕA[A]), for
every a ∈ A. We have only to prove that ϕA(∇a) = ∇R∇(ϕA(a)). By Lemma 2.12,
Theorem 1.6, and Example 2.4, we have

ϕA(b) /∈ ϕA(∇a)⇐⇒ b /∈ ∇a
⇐⇒ ∃Q ∈ X(A)[∇a ∩Q = ∅ and b ∈ Q]
⇐⇒ ∃Q ∈ X(A)[Q ∈ β(∇a) and Q /∈ ϕA(b)]
⇐⇒ ∃Q ∈ X(A)[Q ∈ �R∇(ϕA(a)) and Q /∈ ϕA(b)]
⇐⇒ �R∇(ϕA(a)) 6⊆ ϕA(b)
⇐⇒ ϕA(b) /∈ ∇R∇(ϕA(a)).

Then, ϕA(∇a) = ∇R∇(ϕA(a)) and ϕA is a qm-isomorphism. �

By Theorem 2.15, we can identify the operator ∇ with ∇R∇ of Example 2.4.

3. Quasi-modal congruences

In this section, we study a particular class of congruences compatible with quasi-
modal operators. Given a distributive nearlattice A, let us denote by Con(A) =
〈Con(A),∨,∧,∆,Ω〉 the bounded distributive lattice of congruences of A.
Definition 3.1. Let 〈A,∇〉 ∈ DN∇ and θ ∈ Con(A). We say that θ is a qm-
congruence of A if for each (a, b) ∈ θ the following condition holds:

∀x ∈ ∇a, ∃y ∈ ∇b : (x, y) ∈ θ.
This condition together with symmetry of θ implies

∀x ∈ ∇b, ∃y ∈ ∇a : (x, y) ∈ θ.
We denote by Conqm(A) the set of all qm-congruences of 〈A,∇〉.

Example 3.2. Let 〈A,∇1〉, 〈B,∇2〉 ∈ DN∇. If h : A→ B is a qm-homomorphism,
then Kerh ∈ Conqm(A). Indeed, let (a, b) ∈ Kerh and x ∈ ∇1a. Then h(x) ∈
h(∇1a) ⊆ FigB(h(∇1a)) and, since h is a qm-homomorphism, FigB(h(∇1a)) =
∇2(h(a)). So, h(x) ∈ ∇2(h(b)) = FigB(h(∇1b)), i.e., there exist y1, . . . , yn ∈
[h(∇1b)) such that y1∧ . . .∧yn exists and h(x) = y1∧ . . .∧yn. It follows that there
are x1, . . . , xn ∈ ∇1b such that h(xi) ≤ yi, for all i ∈ {1, . . . , n}. As ∇1b is a filter,
mn−1(x1, . . . , xn, x) ∈ ∇1b. On the other hand,

h(mn−1(x1, . . . , xn, x)) = mn−1(h(x1), . . . , h(xn), h(x))
= [h(x1) ∨ h(x)] ∧h(x) . . . ∧h(x) [h(xn) ∨ h(x)]
≤ [y1 ∨ h(x)] ∧h(x) . . . ∧h(x) [yn ∨ h(x)]
= [y1 ∧ . . . ∧ yn] ∨ h(x)
= h(x).
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So, h(mn−1(x1, . . . , xn, x)) ≤ h(x). Since h(x) ≤ h(mn−1(x1, . . . , xn, x)) is always
valid, we have (x,mn−1(x1, . . . , xn, x)) ∈ Kerh. Therefore, Kerh ∈ Conqm(A).

Consider Conqm(A) = 〈Conqm(A),∨,∧,∆,Ω〉. We have the following result.

Lemma 3.3. Let 〈A,∇〉 ∈ DN∇. Then Conqm(A) is a sublattice of Con(A).

Proof. Let θ1, θ2 ∈ Conqm(A). We prove that θ1 ∧ θ2, θ1 ∨ θ2 ∈ Conqm(A). Let
(a, b) ∈ θ1∧θ2 and x ∈ ∇a. As θ1 and θ2 are qm-congruences, there exist y, z ∈ ∇b
such that (x, y) ∈ θ1 and (x, z) ∈ θ2. Since [x) is a bounded distributive lattice,
there exist (y ∨ x) ∧x (z ∨ x), x ∧ (y ∨ x), and x ∧ (z ∨ x). Thus,

(x ∧ (z ∨ x), (y ∨ x) ∧x (z ∨ x)) = (x,m(y, z, x)) ∈ θ1

and
(x ∧ (y ∨ x), (y ∨ x) ∧x (z ∨ x)) = (x,m(y, z, x)) ∈ θ2,

i.e., (x,m(y, z, x)) ∈ θ1 ∧ θ2. Besides, since ∇b is a filter, we have m(y, z, x) ∈ ∇b.
It follows that θ1 ∧ θ2 ∈ Conqm(A).

Let (a, b) ∈ θ1 ∨ θ2 and x ∈ ∇a. Then there exist a = c0, c1, . . . , cn = b ∈ A
such that (ci, ci+1) ∈ θ1 ∪ θ2, for all i ∈ {0, . . . , n− 1}. So, x ∈ ∇c0 and (c0, c1) ∈
θ1 ∪ θ2. Since θ1 and θ2 are qm-congruences, there exists y1 ∈ ∇c1 such that
(x, y1) ∈ θ1 ∪ θ2. Then y1 ∈ ∇c1 and (c1, c2) ∈ θ1 ∪ θ2. Again, since θ1 and
θ2 are qm-congruences, there exists y2 ∈ ∇c2 such that (y1, y2) ∈ θ1 ∪ θ2. By
induction, there are y1, . . . , yn ∈ A such that yj ∈ ∇cj , for all j ∈ {1, . . . , n},
and (x, y1), (yk, yk+1) ∈ θ1 ∪ θ2, for all k ∈ {1, . . . , n − 1}. Therefore, there is
yn ∈ ∇cn = ∇b such that (x, yn) ∈ θ1 ∨ θ2. So, θ1 ∨ θ2 is a qm-congruence. �

If 〈A,∇〉 ∈ DN∇ and θ ∈ Conqm(A), we define the quotient algebra as a pair
〈A/θ,∇θ〉 where A/θ is the quotient distributive nearlattice of A by θ and ∇θ is
defined as follows:

∇θ[a]θ = {[b]θ : b ∈ ∇a},

for every a ∈ A. Since θ is a qm-congruence, the definition of ∇θ is independent of
the choice of the representative of the equivalence class. Let πθ : A → A/θ be the
canonical homomorphism, i.e., πθ(a) = [a]θ. We have the following result.

Lemma 3.4. Let 〈A,∇〉 ∈ DN∇ and θ ∈ Con(A). The following conditions are
equivalent:

(1) θ ∈ Conqm(A).
(2) FigA/θ(πθ(∇a)) = ∇θ(πθ(a)), for every a ∈ A.

Proof. (1) ⇒ (2) It is easy to see that ∇θ(πθ(a)) ⊆ FigA/θ(πθ(∇a)). We prove
the other inclusion. Let [b]θ ∈ FigA/θ(πθ(∇a)). Then there are [x1]θ, . . . , [xn]θ ∈
[πθ(∇a)) such that [x1]θ ∧ . . . ∧ [xn]θ exists and [b]θ = [x1]θ ∧ . . . ∧ [xn]θ. Thus,
there exist y1, . . . , yn ∈ ∇a such that [yi]θ ≤ [xi]θ, for all i ∈ {1, . . . , n}. We take
the element mn−1(y1, . . . , yn, b) ∈ A. As ∇a is a filter, mn−1(y1, . . . , yn, b) ∈ ∇a
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and [mn−1(y1, . . . , yn, b)]θ ∈ ∇θ(πθ(a)). It follows that

[mn−1(y1, . . . , yn, b)]θ = ([y1]θ ∨ [b]θ) ∧[b]θ . . . ∧[b]θ ([yn]θ ∨ [b]θ)
≤ ([x1]θ ∨ [b]θ) ∧[b]θ . . . ∧[b]θ ([xn]θ ∨ [b]θ)
= ([x1]θ ∧ . . . ∧ [xn]θ) ∨ [b]θ
= [b]θ.

Then [mn−1(y1, . . . , yn, b)]θ ≤ [b]θ. On the other hand, by the monotonicity of πθ
it follows that [b]θ ≤ [mn−1(y1, . . . , yn, b)]θ. Thus, [b]θ = [mn−1(y1, . . . , yn, b)]θ and
[b]θ ∈ ∇θ(πθ(a)). We conclude that FigA/θ(πθ(∇a)) = ∇θ(πθ(a)).

(2) ⇒ (1) Let a, b ∈ A be such that (a, b) ∈ θ and x ∈ ∇a. Then [x]θ ∈
πθ(∇a) ⊆ FigA/θ(πθ(∇a)). Since FigA/θ(πθ(∇a)) = ∇θ(πθ(a)) and πθ(a) = πθ(b),
we have [x]θ ∈ ∇θ(πθ(b)) = FigA/θ(πθ(∇b)), i.e., [x]θ ∈ FigA/θ(πθ(∇b)). Thus,
there exist [x1]θ, . . . , [xn]θ ∈ [πθ(∇b)) such that [x1]θ ∧ . . .∧ [xn]θ exists and [x]θ =
[x1]θ ∧ . . . ∧ [xn]θ. As πθ : A → A/θ is an onto homomorphism and ∇b is a filter,
it follows that πθ(∇b) ∈ Fi(A/θ) and [πθ(∇b)) = πθ(∇b). So, [x1]θ, . . . , [xn]θ ∈
πθ(∇b) and [x]θ = [x1]θ ∧ . . . ∧ [xn]θ ∈ πθ(∇b). Then, there is y ∈ ∇b such that
[x]θ = [y]θ and (x, y) ∈ θ. Therefore, θ is a qm-congruence. �

Theorem 3.5. Let 〈A,∇〉 ∈ DN∇ and θ ∈ Conqm(A). Then 〈A/θ,∇θ〉 is a
qm-distributive nearlattice and πθ a qm-homomorphism from A onto A/θ.

Proof. The result follows by Lemma 3.4. �

Theorem 3.6. Let 〈A,∇1〉, 〈B,∇2〉 ∈ DN∇. Let h : A → B be an onto qm-
homomorphism. Then there exists a qm-isomorphism f : A/Kerh → B such that
h = f ◦ πK .

Proof. By Example 3.2, Kerh is a qm-congruence. Then 〈A/Kerh,∇K〉 is a qm-
distributive nearlattice. By results of universal algebra (see [4]), there exists an
isomorphism f : A/Kerh → B such that h = f ◦ πK . We prove that f is a qm-
homomorphism, i.e.,

FigB(f(∇K [a]K)) = ∇2(f([a]K)),

for every [a]K ∈ A/Kerh. Since ∇K [a]K is a filter of A/Kerh and f is an iso-
morphism, we have that f(∇K [a]K) is a filter of B. We show that f(∇K [a]K) =
∇2(f([a]K)). Using that πK is a qm-homomorphism and that πK(∇1(a)) is a filter
of A/Kerh, we have

f(∇K [a]K) = f(∇KπK(a)) = f(FigA/Kerh(πK(∇1a)))
= f(πK(∇1a)) = h(∇1a)
= FigB(h(∇1a)) = ∇2(h(a))
= ∇2(f(πK(a))) = ∇2(f([a]K)).

Then f is a qm-isomorphism from A/Kerh on B. �

Rev. Un. Mat. Argentina, Vol. 61, No. 2 (2020)



350 I. CALOMINO, S. A. CELANI, AND L. J. GONZÁLEZ

Let A be a distributive nearlattice and define the map f : Con(Fif(A)) →
Con(A) via

(a, b) ∈ f(θ)⇐⇒ ([a), [b)) ∈ θ, (�)

for every θ ∈ Con(Fif(A)). In [17] (see also [13]), the authors show that f is an
isomorphism. We extend this result to the class of finite quasi-modal distributive
nearlattices.

Theorem 3.7. Let A be a distributive nearlattice. Let ♦ be a possibility modal
operator on Fif(A). Then f : Con(〈Fif(A),♦〉)→ Conqm(〈A,∇♦〉) given by (�) is
an isomorphism.

Proof. We prove that f is well-defined and f−1(ψ) ∈ Con(〈Fif(A),♦〉), for every
ψ ∈ Conqm(〈A,∇♦〉).

Let θ ∈ Con(〈Fif(A),♦〉). Let (a, b) ∈ f(θ) and x ∈ ∇♦a = ♦([a)). Then
([a), [b)) ∈ θ and (♦([a)),♦([b))) ∈ θ. Since ♦([a)),♦([b)) ∈ Fif(A), there exist
a1, . . . , an, b1, . . . , bk ∈ A such that ♦([a)) = [a1) Y . . . Y [an) and ♦([b)) = [b1) Y
. . . Y [bk). So, ([a1) Y . . . Y [an), [b1) Y . . . Y [bk)) ∈ θ. As [x) ⊆ [a1) Y . . . Y [an), we
have

([x), [x) ∩ ([b1) Y . . . Y [bk))) = ([x), [(b1 ∨ x) ∧ . . . ∧ (bk ∨ x)))
= ([x), [mk−1(b1, . . . , bk, x))) ∈ θ,

where mk−1(b1, . . . , bk, x) ∈ ♦([b)). Therefore, f is well-defined.
Let ψ ∈ Conqm(〈A,∇♦〉) and let θ ∈ Con(Fif(A)) be such that f(θ) = ψ.

We prove that θ ∈ Con(〈Fif(A),♦〉). First, we show that if ([a), [b)) ∈ θ, then
(♦([a)),♦([b))) ∈ θ, for every a, b ∈ A. If ([a), [b)) ∈ θ, then by definition of f we
have (a, b) ∈ ψ. Since ♦([a)),♦([b)) ∈ Fif(A), there exist a1, . . . , an, b1, . . . , bk ∈ A
such that ♦([a)) = [a1) Y . . . Y [an) and ♦([b)) = [b1) Y . . . Y [bk). As ψ is a qm-
congruence, (a, b) ∈ ψ and ai ∈ ♦([a)) = ∇♦a, for all i ∈ {1, . . . , n}. It follows that
there are y1, . . . , yn ∈ A such that yi ∈ ∇♦b = ♦([b)) and (ai, yi) ∈ ψ = f(θ), i.e.,
([ai), [yi)) ∈ θ, for all i ∈ {1, . . . , n}. Then

([a1) Y . . . Y [an), [y1) Y . . . Y [yn)) = (♦([a)), [y1) Y . . . Y [yn)) ∈ θ.

On the other hand, as yi ∈ ♦([b)) for all i ∈ {1, . . . , n}, [y1) Y . . . Y [yn) ⊆ ♦([b))
and (♦([a)) ∩ ♦([b)), [y1) Y . . . Y [yn)) ∈ θ. Thus, by transivity of θ, we have
(♦([a)),♦([a)) ∩ ♦([b))) ∈ θ. Analogously, we can prove that (♦([b)),♦([a)) ∩
♦([b))) ∈ θ. Hence, (♦([a)),♦([b))) ∈ θ.

Now, we prove the general case. Let F,G ∈ Fif(A) be such that (F,G) ∈ θ.
Then there exist a1, . . . , an, b1, . . . , bk ∈ A such that F = [a1) Y . . . Y [an) and
G = [b1) Y . . . Y [bk). So, ([ai), G ∩ [ai)) ∈ θ, for all i ∈ {1, . . . , n}. Note that

G ∩ [ai) = ([b1) Y . . . Y [bk)) ∩ [ai)
= [(b1 ∨ ai) ∧ai . . . ∧ai (bk ∨ ai))
= [mk−1(b1, . . . , bk, ai)).
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Thus, ([ai), [mk−1(b1, . . . , bk, ai))) ∈ θ and (♦([ai)),♦([mk−1(b1, . . . , bk, ai)))) ∈ θ,
for all i ∈ {1, . . . , n}. It follows that

(♦([a1))Y. . .Y♦([an)),♦([mk−1(b1, . . . , bk, a1)))Y. . .Y♦([mk−1(b1, . . . , bk, an)))) ∈ θ.

Since ♦([a1)) Y . . . Y ♦([an)) = ♦([a1) Y . . . Y [an)) = ♦(F ) and

♦([mk−1(b1, . . . , bk, a1))) Y . . . Y ♦([mk−1(b1, . . . , bk, an)))
= ♦(G ∩ [a1)) Y . . . Y ♦(G ∩ [an)) = ♦((G ∩ [a1)) Y . . . Y (G ∩ [an)))
= ♦(G ∩ ([a1) Y . . . Y [an))) = ♦(G ∩ F ),

we have (♦(F ),♦(G ∩ F )) ∈ θ. Similarly, we can show that (♦(G),♦(G ∩ F )) ∈ θ.
Therefore, θ ∈ Con(〈Fif(A),♦〉) and f is an isomorphism. �
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[20] R. Halaš, Subdirectly irreducible distributive nearlattices, Miskolc Math. Notes 7 (2006),
no. 2, 141–146 (2007). MR 2310273.

[21] R. Hickman, Join algebras, Comm. Algebra 8 (1980), no. 17, 1653–1685. MR 0585925.
[22] A. Petrovich, Distributive lattices with an operator, Studia Logica 56 (1996), no. 1-2, 205–

224. MR 1382174.

Ismael CalominoB
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