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DL-INVARIANT REAL HYPERSURFACES IN COMPLEX
GRASSMANNIANS OF RANK TWO

RUENN-HUAH LEE AND TEE-HOW LOO

ABSTRACT. Let M be a real hypersurface in a complex Grassmannian of rank
two. Denote by J the quaternionic Kéahler structure of the ambient space,
TM+ the normal bundle over M, and ®+ = JTM~L. The real hypersurface
M is said to be DL-invariant if ©1 is invariant under the shape operator
of M. We show that if M is ©1-invariant, then M is Hopf. This improves the
results of Berndt and Suh [Int. J. Math. 23 (2012) 1250103] and [Monatsh.
Math. 127 (1999), 1-14]. We also classify D+ real hypersurfaces in com-
plex Grassmannians of rank two of noncompact type with constant principal
curvatures.

1. INTRODUCTION

Denote by M™(c) the compact complex Grassmannian SU,, /S (UsUp, ) of rank
two (resp. noncompact complex Grassmannian SUs ., /S(UsU,,) of rank two) for
¢ > 0 (resp. ¢ < 0), where ¢ = max|K]|/8 is a scaling factor for the Riemann-
ian metric g and K is the sectional curvature for M ™(¢). It is well known that
M ™(c) is a Riemannian symmetric space equipped with a Kéhler structure J and
a quaternionic Kéhler structure J. A tangent vector X € T,M™(c), z € M™(c),
is said to be singular if either JX € JX or JX L JX.

Let M be a connected real hypersurface in M ™(c). Then the Kéhler structure J
and the quaternionic Kéhler structure J naturally induce two subbundles JT M+
and JTM~ in the tangent bundle TM over M. Denote by A the shape operator
on M. In [3] and [4], Berndt and Suh studied real hypersurfaces M in M™(c)
under the conditions:

(I) AJTM+ C JTM+;

() AJTM+ C JTM*.

Recall that a Hopf hypersurface is a real hypersurface which satisfies the condi-
tion (II). Let ®+ = JTM*. A real hypersurface M is said to be D*-invariant if
it satisfies the condition (I). The following theorems provide a list of possible real
hypersurfaces satisfying these two conditions.
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Theorem 1.1 ([]). Let M be a connected real hypersurface in SUp,y2/S(UUy,),
m > 3. Then M is Hopf and D+ -invariant if and only if one of the following holds:

(A) M is an open part of a tube around a totally geodesic SU,,+1/S(UaUypm—1)
in SUpm42/S(U2Up,), or

(B) M is an open part of a tube around a totally geodesic HHP™ = Sp,,11/Sp1.Spn,
in SUp+2/S(UaU,y,), where m = 2n is even.

Theorem 1.2 ([3]). Let M be a connected real hypersurface in SUs ,/S(UaU,,),
m > 2. Then M is Hopf and D+ -invariant if and only if one of the following holds:

(A) M is an open part of a tube around a totally geodesic SUs ym—1/S(UaUpm—1)
in SUs 1 /S(UUp,), or

(B) M is an open part of a tube around a totally geodesic HH™ = Spy ,,/Sp1Spn
in SUs 1 /S(U2Up,), where m = 2n is even, or

(Cy) M is an open part of a horosphere in SUs 1, /S(UxUy,) whose center at
infinity is singular and of type JX € JX, or

(Cy) M is an open part of a horosphere in SUs p,/S(UsUy,) whose center at
infinity is singular and of type JX L JX, or

(D) the normal vector N of M at each point x € M is singular of type JN L
JN. Moreover, M has at least four distinct principal curvatures, three of
which are given by

O[:2v—C, 7207 ﬁ:\/_c7

with corresponding principal curvature spaces
T,=JTM*®3TM*, T,=3JTM*, and Ts L JTM*>®ITM*+aIJJTM*.

If 1 is another (possibly nonconstant) principal curvature function, then
JT,, CTg and JT),, C Tg.

Real hypersurfaces of type (A), (B), (C1), and (Cz) in Theorem and Theo-
rem have been the main focus along this line in the past two decades. Finding
the simplest conditions characterizing real hypersurfaces in these theorems (or any
of its subclasses) has become a key step in the study of such real hypersurfaces.

Observe that the unit normal vector field N for real hypersurfaces M appearing
in these theorems is singular. In this line of thought, for a real hypersurface M in
Mm(c), Lee and Suh showed that if M is Hopf and N is singular of type JN L JN
everywhere, then it is ®1-invariant (cf. [5, @]). On the other hand, for the case
¢ > 0, it was shown in [7] that the condition (II) is necessary for the condition (I)
and JN € JN everywhere.

In this paper, we show that the condition (IT) is unnecessary in these two theo-
rems, as the following theorem asserts.

Theorem 1.3. Let M be a connected real hypersurface in Mm(c), m>2. IfM
is ®L-invariant, then it satisfies the condition (II), that is, M is Hopf.

It is worthwhile to remark that there is no known example for Case (D) in
Theorem In 3], Berndt and Suh conjectured that such a real hypersurface
does not exist. With the assumption of the principal curvatures being constant, we
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prove the nonexistence of such real hypersurfaces and this gives a partial answer
to the conjecture. More precisely, we have the following result.

Theorem 1.4. Let M be a connected real hypersurface in SUs 1 /S(UUy,), m > 2.
If M is ®*-invariant and has constant principal curvatures, then one of the fol-
lowing holds:
(A) M is an open part of a tube around a totally geodesic SUs 1m—1/S(UaUp—1)
mn SU27m/S(U2Um), or
(B) M is an open part of a tube around a totally geodesic HH™ = Sp1 ,,/Sp1SDn
in SUs 1, /S(U2Uy,), where m = 2n is even, or
(C1) M is an open part of a horosphere in SUs ., /S(UaUy,) whose center at
infinity is singular and of type JX € JX, or
(Cy) M is an open part of a horosphere in SUs p,/S(UsUy,) whose center at
infinity is singular and of type JX 1L JX.

Remark 1.1. Similar results on real hypersurfaces in quaternionic space forms
were obtained in [1].

2. PRELIMINARIES

In this section, we recall some fundamental identities for real hypersurfaces in
complex Grassmannians of rank two, which were proved in [3] 4} 6] []].

Let M ™(c) be the compact complex Grassmannian SU,,;2/S(UsU,,) of rank
two (resp. noncompact complex Grassmannian SUs ., /S(U2U,,) of rank two) for
¢ > 0 (resp. ¢ < 0), where ¢ = max |K|/8 is a scaling factor for the Riemannian
metric g and K is the sectional curvature for M ™(c). The Riemannian geometry
of M™(c¢) was studied in [2, B} @]. Denote by .J and J the Kéhler structure .J and
quaternionic Kéahler structure on M ™(¢), respectively.

Let M be a connected, oriented real hypersurface isometrically immersed in
Mm(c), m > 2, and let N be a unit normal vector field on M. Denote by the same g
the Riemannian metric on M. The almost contact metric 3-structure (¢a, £as Ma, g)
on M is given by

JoX = 0o X + 0o (X)N,  JoN = —8a, 1a(X) = 9(X, &),
for any X € TM, where {J1, J2, J3} is a canonical local basis of J. It follows that

¢a¢a+1 - ga ® Na+1 = ¢a+27
Palat1 = a2 = —Pat1&as

for a € {1,2,3}. The indices in the preceding equations are taken modulo three.
The Kahler structure J induces on M an almost contact metric structure by

JX =¢X +n(X)N, JN=-¢ n(X)=yg(X,E).

Let ® be the orthogonal complement of D+ in TM. We define a local (1, 1)-tensor
field 6, on M by

0o := ¢a¢_£a Q.
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Denote by V the Levi-Civita connection on M. Then there exist local 1-forms g,
a € {1,2,3}, such that

Vx&=9pAX
vXga = ¢aAX + Qa+2(X)§a+1 - QQ-&-I(X)ga-&-Q (21)
Vxpla = 00AX +1q(§)AX + qay2(X)PCat1 — qat1(X)Paro.

The following identities are known.

Lemma 2.1 ([6]).

(a) 0, is symmetric,

(b) ¢£a = ¢>a§;

(C) eaf = —&q, 0a§a ==, 0a¢§a = 77(5a)¢§a,

(d) 9a§a+1 = ¢€a+2 = _9a+1§a:

(e) =0utSat1+n(€at1)P€a = Eata = Our10€a — 1(€a) PEart1-

Lemma 2.2 ([6]). If £ € © everywhere, then A¢E, =0 for a € {1,2,3}.
For each € M, we define a subspace H* of T, M by
HL = Span{fa 517 527 537 ¢£17 ¢£27 ¢€3}

Let H be the orthogonal complement of H+ in T, M. Then dim H = 4m — 4 (resp.
dim H = 4m—8) when £ € D+ (resp. £ ¢ D). Moreover, 6,3 has two eigenvalues:
1 and —1. Denote by H,(e) the eigenspace corresponding to the eigenvalue e of
Oajp- Then dimH,(1) = dim Hq(—1) is even, and

¢Ha(5) = ¢aHa(5) = eaHa(E) = ’Ha({;‘)’
dvHa(e) = OHale) = Hal—€), (a#Db).

The equations of Gauss and Codazzi are respectively given by

R(X,Y)Z = g(AY, Z)AX — g(AX, 2)AY + c{g(Y, Z)X — g(X,2)Y
+9(¢Y, Z)pX — g(¢X, Z)pY —29(¢X,Y )9 Z}

3
+eY {9(6aY, 2)6aX — 9(6a X, Z)daY —29(6aX,Y) b Z

a=1

+9(0.Y, 2)0, X — g(0.X,2)0,Y },
(VxA)Y = (Vy A)X = c{n(X)oY —n(Y)pX —29(¢ X, Y)}
3
+ CZ {na(X)d)aY - na(Y)¢aX - 29(¢aX7 Y)ga
a=1

+ 1a(¢X)0Y — 10 (4Y )0 X }.
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3. PROOF OF THEOREM [L.3]

Under the assumption that AD+ C ©+, after having a suitable choice of canon-
ical local basis {Ji, Ja, J3} for J, the (local) vector fields &1, &2, &3 are principal,
say A, = Bala, for a € {1,2,3}. By using the Codazzi equation of such real
hypersurfaces, we have (cf. [3], 4]):

Bag((Pa A+ Aga)X,Y) — 29(Ag,AX,Y)
= (Ba = Bat1)da+2(Ea) {1 (X)Mat1(Y) — N1 (X)na(Y)}
= (Ba = Ba+2)da+1(Ea){Na+2(X)Na(Y) = 10 (X)Mar2(Y) }
= (= 2n(£a)9(6X,Y) = 29(4a X, Y) + 20(X )14 (¢Y) — 20(Y )10 (¢ X)
+ 20041 (X)Na+2(Y) = 20041 (Y )Nat2(X)
+ 20041 (0 X)Nat2(Y) — 21a41(9Y )Nat2(dX)
+ 212 (Y) {21(€a)a(6X) = n(Eat1)Mar 1 (9X) — n(€at2)Nar2(pX)}
)

— 214 (X) {277(511)7711(¢Y = N(at1)Mat1(AY) = n(at2)Ma (¢Y)}
— (Ba = Bar1){Gar2(X)Mas1(Y) = qag2(Y)Nar1(X)}
+ (Ba = Bat2){das1(X)Nas2(Y) = qas1(Y)nas2(X)})

for all X,Y tangent to M.
We consider two cases: (i) £ € D+ everywhere, and (ii) ¢ ¢ D1 at some points
of M.

Case (i): Suppose ¢ € DL everywhere. For each x € M, since D is invariant
under A, ¢, and ¢,, from (3.1)), we have

2¢{n(€a) X + ¢ X} + Ba(Pad + Ada) X — 240, AX

_(Ba - ﬂa+1)Qa+2(X)§a+l + (6(1 - Ba+2)Qa+1(X)£a+27
for all X € © and a € {1,2,3}. Since the left-hand side is in ® and the right-hand
side is in ©*, we have
2e{n(§a)dX + pa X} + Ba(PpaA + Ada) X — 24, AX =0 (32)
(611 - ﬂa+1)qa+2(X) =0,

forall X € ® and a € {1,2,3}. Note that if X € D, then ¢, X € ©. Next, applying
¢q on both sides of (3.2) and replacing X by ¢,X in (3.2) give

2e{n(&0)0.X — X} — BoAX + BadaAdaX — 20, Apg AX =0 (3.3)
and
2e{n(§a)0aX — X} + BubaAdaX — BuAX — 240, A X =0,
respectively. Hence,
(e Aga)AX = A(¢aAda)X, a€{1,2,3}, (3.4)

for all X € ®. With the assumption that £ € D+, we have ® = H and AH C H.
By (3.4)), there exist common orthonormal eigenvectors X1, ..., X4m-4 € H of A
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and ¢1A¢;. It follows that AX; = A\;X; and Ap1X; = p;¢1X;. Using these in
, we have
2en(61)01 X5 — (2¢+ A1 + ;B — 2Xj15) X = 0.
Since ¢ € D1, we suppose 1(¢1) # 0 without loss of generality. Then
01 X; —eX; =0,
where € = (2¢+ 1(A\j + £4j) — 2A; ;) /2en(€1). This implies that € is an eigenvalue
of 6;. Hence € € {1,—1}. Without loss of generality, we can assume that
X1,y Xom—2 € H1(1) and Xom—1y--+, Xam—g € H1(—1).
Consequently, AH;(1) C H1(1) and hence ¢paApoH1(1) C H1(1). Thus, if we take

a =2 in (3.4), then there exist orthonormal vectors X1,..., Xom—2 € H1(1) such
that AXJ = )\ij and A¢2Xj = ﬂj¢2Xj. From " we have

2e(€2)02X; — (2¢+ Nj B2 + fij B2 — 2Xjj1;) X = 0.
Since X; € Hy(1) and 62X, € Hy(—1), we have n(&2) = 0. In a similar manner,

we obtain 1(£3) = 0. Thus, we have 1n(£;) = £1 or £ = +£;. As a result, we have
shown that A¢ = 1€ at each z € M. Hence M is Hopf.

Case (ii): Suppose that ¢ ¢ D at a point x € M. Since D is invariant under
A and ¢, after letting Y € © and X = &,41 in (3.1), we have

(5a - 5a+1)qa+2(y) = 09(277a+1(§)¢§a + 477a(€)¢5a+1 + 277a+2(£)f’ Y)' (35)
Similarly, if we let Y € © and X = £,42 in (3.1), then
(Bava — ﬁa)Qa-‘rl(Y) =cg (4na(§)¢§a+2 + 2na42(§)P8a — 2na+1(§)£7 Y)
Raising the index of this equation by one gives
(Ba = Bat+1)qas2(Y) = cg (477a+1 (§)PEa + 204 (&) PEar1 — 2Mar2(E)E, Y)~ (3.6)
Denote by P the orthogonal projection from 7, M onto ®. Since Y is an arbitrary

vector in D, by (3.5)) and (3.6)) we obtain
P (277a+2 (6)€ = Nat1(§)Pa + 00 (&) PEar1) = 0,
which implies that

277a+2 (5)5 - 77a+1(£)¢£a + Ta (£)¢fa+1
3
= 9(2n012(9)€ = Mat1 ()P + Ma(§)Dbat1, &) & = 0.

b=1
Since &, &1, &o, &3, 91, P, P53 are linearly independent, we obtain that 7,(£) = 0

for a € {1,2,3}. This means that £ € D at x € M. Hence, we conclude that £ € ©

everywhere by the connectedness of M and the continuity of 22:1 Na(€)2.

Since 14(§) = 0 for a € {1, 2, 3}, equations (3.1]) and (3.5) give

Ba(PaA + Apa) X — 240, AX = 2¢{—do X — n(X)Pa& — n(PaX)E
— a1 (0 X)Pay2 + Nata(dX)PEat1}
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for all X € ®. First acting by ¢, on both sides of the preceding equation and next
replacing X by ¢, X in that equation we get

Ba(_A + ¢aA¢a)X - 2¢aA¢aAX = 2C{X + 77(X)f - n(¢aX)¢a€

3.7
(Gt X)b0st€ + 1(Gas2X)busac} O

and
ﬁa(¢aA¢a - A)X - 2A¢aA¢aX = QC{X - n(¢ax)¢a§ + U(X)§
+ 0(Patr2X)Par28 + 1(Par1X)Patr16}

for all X € ®©. Hence (¢gA¢a)AX = A(paApy)X for X € ©. Since AD C ® and
Do AP,D C D, there exists an orthonormal basis { X1, ..., X4m—4} for © such that
AX; = N\ X and Ago X = pj¢,X;. Taking an arbitrary j € {1,2,...,4m — 4}
and substituting X = X in (3.7)), we obtain
{2Xj15 = Ba(Aj 4 15) 1 X = 2e{ X + 1(X;)€ — n(daXj)Pal
+ 77(¢a+1Xj)¢a+1£ + n(¢a+2Xj)¢a+2§}~

Let X ]H be the H-component of X;. Then the H- and {-components of the pre-
ceding equations are given respectively by

0= {2X\jp; — Ba(Nj + py) — 2c}X 1,

0 ={2Xjn5 — Ba(Xj + py) — 4cin(X;).
For each j € {1,2,...,4m —4} with X]H # 0, the former of these equations implies
that 2X\;u; — Ba(A; + 1) = 2c. This, together with the latter equation, gives

n(X;) = 0. This means that A{ L H. Since A¢¢, = 0 for a € {1,2,3} by
Lemma we obtain that £ is principal on M. This completes the proof.

4. PROOF OF THEOREM [ 4]

It is clear that we only need to consider the case £ € © everywhere. Denote the
spectrum of Ay by Spec(#). For each A € Spec(H), denote by T the subbundle of
H foliated by eigenspaces of A}y corresponding to A. We will use Cartan’s method
to prove the result, and begin with some fundamental identities.

Lemma 4.1. For any A\, u € Spec(H), if X # u then

(a) A= u)g(VxY, V) =g((VxA)Y,V)
(b) VvZ L T,
(c) 9(Viy)Y, V) =g(VyV,VyY)

+c(9(8Y,V)? + Zasi{9(0aY: V) + 9(0aY,V)*)
for all vector fields Y, Z tangent to Tx, V tangent to T),, and X € TM.
Proof. Statement (a) is trivial. Next, by the Codazzi equation and (a), we have
0=9((VyA)V,Z) —g((VvA)Y, Z)
= A =ng(VyZ,V).
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This gives Statement (b). Similarly, with the help of the Codazzi equation and

(2.1), we compute

(1t =ANg(VynV.Y)

9((V[YV )V Y)

9(Vo,v AVY) = g((Vy, vy A)Y, V)
9(VvA)Y, VyV) = g((Vy AV, VvY)

3
+e(ATYVIOVY) 4 3 (T3 V)0V, Y) 4 16,75 Vg(0,1. )} )

a=1

3
= (TN V) + DT 0¥, V) 4 16,7 (0,7 V) )

a=1

=A=pwy(VvY,VyV)

3
. u)c(gw VP 43 ((0aY V) + (6., v>2}) |

a=1

Hence we obtain Statement (c). g

If /—c ¢ Spec(H), then M is an open part of a real hypersurface of type A, B
or C; in view of [6] Theorem 3.4]. Next, consider the case v/—c € Spec(H). We

claim that Spec(H) = {v/—c}. Suppose to the contrary that Spec(H) # {v/—c}.
Let dim T /— = 4m — 8 —p, p > 0, and let {X1,...,X,} be a local orthonormal

frame on H with AX; = \; X, where \; # \/—c for each j € {1,...,p}. Taking a
unit vector field £ tangent to T’ —;, we have

3
c(3g(¢E7Xj>2 +Y {39(¢aF, X;)* — 9(6aE, X;)* + g(0 F, E)g(ean,X»})
a=1

+c+AvV—c
= g(R(X;, E)E, X;)
=9(Vx,VEE, X;) = 9(VEVx,E, X;) — 9(Vix, .51 E, X;)
=—g9(VEE,Vx,;X;) +9(Vx,E,VEX;) — 9(Vix, 51 E, X;)

3
= -MW=¢Y_ g(0.E, E)g(0aX;, X;) +29(Vx, E, VEX;)

a=1

3
+ (908, X,)2 + 3 {9(0a B, X,) + 9(6.F, X;)°})

a=1

3 p
=AW= 9(0.E, E)g(0.X;, X;) +2 > 9(Vx, B, Xx)g(VeX;, Xi)
k=1
ARFEN;
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3
— 2=e(9(0F, X2 + > {9(6aF. X;)* — g(6a E, X)?})
a=1

3
+(9(6B, X2 + Y {9(6aB, X;)? + 9(0a B, X))} ).
a=1
It follows that

(c+25v/=0) (1 +29(0 B, X;)°

3 2060, X, 29(0,, X, + 4(0F, E)g(0.X, X;)})

a=1

p
=2 Y g(Vx,E X)g(VeX;, X)

k=1
AREN;

_ zp: 9(Vx,A)E, Xk) g(VEA)X;, X})
2 e N — M
AFENj

o - g((VXkA)E,Xj)Q
=2 Z Ve 0y A

BRI 9(Vx, A)E, X;)°
V=2 X T w0 )
AR#EN;
- c+ Ajv/—c 9
= . _g<1+2g(¢E,Xj)

+ 2{29(%& X2 = 20,5, X, + 9(0uE, E)g(0.X,, X)) (4D

=> (1+2g(¢E X;)?

J

Il
-

+

e

(200605, X)) - 20(6.E. X,)" + g(0.E, E)g(0.X, X;)}).

By Theorem @ we know that ¢Ty, C T /= and ¢, Tn, C T —. If we take

E = ¢X3, then 0, F = —¢, X7 is tangent to T —;. Hence, equation (4.1)) reduces
to

0 —p+2+22{2g 9 X1, X +g(9 Xl,Xl) (Qan7Xj)}. (42)

j=la=1
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For fixed b € {1,2,3}, by substituting £ = ¢, X; in (4.1) we obtain

p
0=p+2+ Y {29(6:X1, X;)* — 290041 X1, X;)* — 29(0p42X1, X;)°
=1
+ 9(0p X1, X1)9(00 X5, X)) — 9(Op11 X1, X1)9(0p11 X5, X;)

— 9(Op12X1, X1)g(0b12X;, X;) }.

By summing over b, we obtain

3

p
0=3p+6—>_ > {20(0,X1, X;)* + g(0sX1, X1)g(0X;, X;) }. (4.3)
j=1b=1

Adding (4.2) and (4.3) gives 4p + 8 = 0; a contradiction. Accordingly, Spec(H) =
{v/—c} and hence M is an open part of a real hypersurface of type Cs.
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