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D⊥-INVARIANT REAL HYPERSURFACES IN COMPLEX
GRASSMANNIANS OF RANK TWO

RUENN-HUAH LEE AND TEE-HOW LOO

Abstract. Let M be a real hypersurface in a complex Grassmannian of rank
two. Denote by J the quaternionic Kähler structure of the ambient space,
T M⊥ the normal bundle over M , and D⊥ = JT M⊥. The real hypersurface
M is said to be D⊥-invariant if D⊥ is invariant under the shape operator
of M . We show that if M is D⊥-invariant, then M is Hopf. This improves the
results of Berndt and Suh [Int. J. Math. 23 (2012) 1250103] and [Monatsh.
Math. 127 (1999), 1–14]. We also classify D⊥ real hypersurfaces in com-
plex Grassmannians of rank two of noncompact type with constant principal
curvatures.

1. Introduction

Denote by M̂m(c) the compact complex Grassmannian SUm+2/S(U2Um) of rank
two (resp. noncompact complex Grassmannian SU2,m/S(U2Um) of rank two) for
c > 0 (resp. c < 0), where c = max |K|/8 is a scaling factor for the Riemann-
ian metric g and K is the sectional curvature for M̂m(c). It is well known that
M̂m(c) is a Riemannian symmetric space equipped with a Kähler structure J and
a quaternionic Kähler structure J. A tangent vector X ∈ TxM̂m(c), x ∈ M̂m(c),
is said to be singular if either JX ∈ JX or JX ⊥ JX.

Let M be a connected real hypersurface in M̂m(c). Then the Kähler structure J
and the quaternionic Kähler structure J naturally induce two subbundles JTM⊥
and JTM⊥ in the tangent bundle TM over M . Denote by A the shape operator
on M . In [3] and [4], Berndt and Suh studied real hypersurfaces M in M̂m(c)
under the conditions:

(I) AJTM⊥ ⊂ JTM⊥;
(II) AJTM⊥ ⊂ JTM⊥.
Recall that a Hopf hypersurface is a real hypersurface which satisfies the condi-

tion (II). Let D⊥ = JTM⊥. A real hypersurface M is said to be D⊥-invariant if
it satisfies the condition (I). The following theorems provide a list of possible real
hypersurfaces satisfying these two conditions.
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Theorem 1.1 ([4]). Let M be a connected real hypersurface in SUm+2/S(U2Um),
m ≥ 3. Then M is Hopf and D⊥-invariant if and only if one of the following holds:

(A) M is an open part of a tube around a totally geodesic SUm+1/S(U2Um−1)
in SUm+2/S(U2Um), or

(B) M is an open part of a tube around a totally geodesic HPn = Spn+1/Sp1Spn
in SUm+2/S(U2Um), where m = 2n is even.

Theorem 1.2 ([3]). Let M be a connected real hypersurface in SU2,m/S(U2Um),
m ≥ 2. Then M is Hopf and D⊥-invariant if and only if one of the following holds:

(A) M is an open part of a tube around a totally geodesic SU2,m−1/S(U2Um−1)
in SU2,m/S(U2Um), or

(B) M is an open part of a tube around a totally geodesic HHn = Sp1,n/Sp1Spn
in SU2,m/S(U2Um), where m = 2n is even, or

(C1) M is an open part of a horosphere in SU2,m/S(U2Um) whose center at
infinity is singular and of type JX ∈ JX, or

(C2) M is an open part of a horosphere in SU2,m/S(U2Um) whose center at
infinity is singular and of type JX ⊥ JX, or

(D) the normal vector N of M at each point x ∈ M is singular of type JN ⊥
JN . Moreover, M has at least four distinct principal curvatures, three of
which are given by

α = 2
√
−c, γ = 0, β =

√
−c,

with corresponding principal curvature spaces
Tα = JTM⊥⊕JTM⊥, Tγ = JJTM⊥, and Tβ ⊥ JTM⊥⊕JTM⊥⊕JJTM⊥.

If µ is another (possibly nonconstant) principal curvature function, then
JTµ ⊂ Tβ and JTµ ⊂ Tβ.

Real hypersurfaces of type (A), (B), (C1), and (C2) in Theorem 1.2 and Theo-
rem 1.1 have been the main focus along this line in the past two decades. Finding
the simplest conditions characterizing real hypersurfaces in these theorems (or any
of its subclasses) has become a key step in the study of such real hypersurfaces.

Observe that the unit normal vector field N for real hypersurfaces M appearing
in these theorems is singular. In this line of thought, for a real hypersurface M in
M̂m(c), Lee and Suh showed that if M is Hopf and N is singular of type JN ⊥ JN
everywhere, then it is D⊥-invariant (cf. [5, 9]). On the other hand, for the case
c > 0, it was shown in [7] that the condition (II) is necessary for the condition (I)
and JN ∈ JN everywhere.

In this paper, we show that the condition (II) is unnecessary in these two theo-
rems, as the following theorem asserts.

Theorem 1.3. Let M be a connected real hypersurface in M̂m(c), m ≥ 2. If M
is D⊥-invariant, then it satisfies the condition (II), that is, M is Hopf.

It is worthwhile to remark that there is no known example for Case (D) in
Theorem 1.2. In [3], Berndt and Suh conjectured that such a real hypersurface
does not exist. With the assumption of the principal curvatures being constant, we
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prove the nonexistence of such real hypersurfaces and this gives a partial answer
to the conjecture. More precisely, we have the following result.

Theorem 1.4. Let M be a connected real hypersurface in SU2,m/S(U2Um), m ≥ 2.
If M is D⊥-invariant and has constant principal curvatures, then one of the fol-
lowing holds:

(A) M is an open part of a tube around a totally geodesic SU2,m−1/S(U2Um−1)
in SU2,m/S(U2Um), or

(B) M is an open part of a tube around a totally geodesic HHn = Sp1,n/Sp1Spn
in SU2,m/S(U2Um), where m = 2n is even, or

(C1) M is an open part of a horosphere in SU2,m/S(U2Um) whose center at
infinity is singular and of type JX ∈ JX, or

(C2) M is an open part of a horosphere in SU2,m/S(U2Um) whose center at
infinity is singular and of type JX ⊥ JX.

Remark 1.1. Similar results on real hypersurfaces in quaternionic space forms
were obtained in [1].

2. Preliminaries

In this section, we recall some fundamental identities for real hypersurfaces in
complex Grassmannians of rank two, which were proved in [3, 4, 6, 8].

Let M̂m(c) be the compact complex Grassmannian SUm+2/S(U2Um) of rank
two (resp. noncompact complex Grassmannian SU2,m/S(U2Um) of rank two) for
c > 0 (resp. c < 0), where c = max |K|/8 is a scaling factor for the Riemannian
metric g and K is the sectional curvature for M̂m(c). The Riemannian geometry
of M̂m(c) was studied in [2, 3, 4]. Denote by J and J the Kähler structure J and
quaternionic Kähler structure on M̂m(c), respectively.

Let M be a connected, oriented real hypersurface isometrically immersed in
M̂m(c), m ≥ 2, and let N be a unit normal vector field on M . Denote by the same g
the Riemannian metric on M . The almost contact metric 3-structure (φa, ξa, ηa, g)
on M is given by

JaX = φaX + ηa(X)N, JaN = −ξa, ηa(X) = g(X, ξa),

for any X ∈ TM , where {J1, J2, J3} is a canonical local basis of J. It follows that

φaφa+1 − ξa ⊗ ηa+1 = φa+2,

φaξa+1 = ξa+2 = −φa+1ξa,

for a ∈ {1, 2, 3}. The indices in the preceding equations are taken modulo three.
The Kähler structure J induces on M an almost contact metric structure by

JX = φX + η(X)N, JN = −ξ, η(X) = g(X, ξ).

Let D be the orthogonal complement of D⊥ in TM . We define a local (1, 1)-tensor
field θa on M by

θa := φaφ− ξa ⊗ η.
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Denote by ∇ the Levi-Civita connection on M . Then there exist local 1-forms qa,
a ∈ {1, 2, 3}, such that

∇Xξ = φAX

∇Xξa = φaAX + qa+2(X)ξa+1 − qa+1(X)ξa+2

∇Xφξa = θaAX + ηa(ξ)AX + qa+2(X)φξa+1 − qa+1(X)φξa+2.

 (2.1)

The following identities are known.

Lemma 2.1 ([6]).
(a) θa is symmetric,
(b) φξa = φaξ,
(c) θaξ = −ξa, θaξa = −ξ, θaφξa = η(ξa)φξa,
(d) θaξa+1 = φξa+2 = −θa+1ξa,
(e) −θaφξa+1 + η(ξa+1)φξa = ξa+2 = θa+1φξa − η(ξa)φξa+1.

Lemma 2.2 ([6]). If ξ ∈ D everywhere, then Aφξa = 0 for a ∈ {1, 2, 3}.

For each x ∈M , we define a subspace H⊥ of TxM by

H⊥ := span{ξ, ξ1, ξ2, ξ3, φξ1, φξ2, φξ3}.

Let H be the orthogonal complement of H⊥ in TxM . Then dimH = 4m− 4 (resp.
dimH = 4m−8) when ξ ∈ D⊥ (resp. ξ /∈ D⊥). Moreover, θa|H has two eigenvalues:
1 and −1. Denote by Ha(ε) the eigenspace corresponding to the eigenvalue ε of
θa|H. Then dimHa(1) = dimHa(−1) is even, and

φHa(ε) = φaHa(ε) = θaHa(ε) = Ha(ε),
φbHa(ε) = θbHa(ε) = Ha(−ε), (a 6= b).

The equations of Gauss and Codazzi are respectively given by

R(X,Y )Z = g(AY,Z)AX − g(AX,Z)AY + c{g(Y,Z)X − g(X,Z)Y
+ g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ}

+ c

3∑
a=1

{
g(φaY,Z)φaX − g(φaX,Z)φaY − 2g(φaX,Y )φaZ

+ g(θaY, Z)θaX − g(θaX,Z)θaY
}
,

(∇XA)Y − (∇YA)X = c{η(X)φY − η(Y )φX − 2g(φX, Y )ξ}

+ c

3∑
a=1

{
ηa(X)φaY − ηa(Y )φaX − 2g(φaX,Y )ξa

+ ηa(φX)θaY − ηa(φY )θaX
}
.
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3. Proof of Theorem 1.3

Under the assumption that AD⊥ ⊂ D⊥, after having a suitable choice of canon-
ical local basis {J1, J2, J3} for J, the (local) vector fields ξ1, ξ2, ξ3 are principal,
say Aξa = βaξa, for a ∈ {1, 2, 3}. By using the Codazzi equation of such real
hypersurfaces, we have (cf. [3, 4]):
βag((φaA+Aφa)X,Y )− 2g(AφaAX,Y )

− (βa − βa+1)qa+2(ξa){ηa(X)ηa+1(Y )− ηa+1(X)ηa(Y )}
− (βa − βa+2)qa+1(ξa){ηa+2(X)ηa(Y )− ηa(X)ηa+2(Y )}

= c
(
− 2η(ξa)g(φX, Y )− 2g(φaX,Y ) + 2η(X)ηa(φY )− 2η(Y )ηa(φX)

+ 2ηa+1(X)ηa+2(Y )− 2ηa+1(Y )ηa+2(X)
+ 2ηa+1(φX)ηa+2(φY )− 2ηa+1(φY )ηa+2(φX)
+ 2ηa(Y ) {2η(ξa)ηa(φX)− η(ξa+1)ηa+1(φX)− η(ξa+2)ηa+2(φX)}
− 2ηa(X) {2η(ξa)ηa(φY )− η(ξa+1)ηa+1(φY )− η(ξa+2)ηa+2(φY )}
− (βa − βa+1){qa+2(X)ηa+1(Y )− qa+2(Y )ηa+1(X)}
+ (βa − βa+2){qa+1(X)ηa+2(Y )− qa+1(Y )ηa+2(X)}

)

(3.1)

for all X,Y tangent to M .
We consider two cases: (i) ξ ∈ D⊥ everywhere, and (ii) ξ /∈ D⊥ at some points

of M .

Case (i): Suppose ξ ∈ D⊥ everywhere. For each x ∈ M , since D is invariant
under A, φ, and φa, from (3.1), we have

2c{η(ξa)φX + φaX}+ βa(φaA+Aφa)X − 2AφaAX
= −(βa − βa+1)qa+2(X)ξa+1 + (βa − βa+2)qa+1(X)ξa+2,

for all X ∈ D and a ∈ {1, 2, 3}. Since the left-hand side is in D and the right-hand
side is in D⊥, we have

2c{η(ξa)φX + φaX}+ βa(φaA+Aφa)X − 2AφaAX = 0 (3.2)
(βa − βa+1)qa+2(X) = 0,

for all X ∈ D and a ∈ {1, 2, 3}. Note that if X ∈ D, then φaX ∈ D. Next, applying
φa on both sides of (3.2) and replacing X by φaX in (3.2) give

2c{η(ξa)θaX −X} − βaAX + βaφaAφaX − 2φaAφaAX = 0 (3.3)

and
2c{η(ξa)θaX −X}+ βaφaAφaX − βaAX − 2AφaAφaX = 0,

respectively. Hence,

(φaAφa)AX = A(φaAφa)X, a ∈ {1, 2, 3}, (3.4)

for all X ∈ D. With the assumption that ξ ∈ D⊥, we have D = H and AH ⊂ H.
By (3.4), there exist common orthonormal eigenvectors X1, . . . , X4m−4 ∈ H of A
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and φ1Aφ1. It follows that AXj = λjXj and Aφ1Xj = µjφ1Xj . Using these in
(3.3), we have

2cη(ξ1)θ1Xj − (2c+ λjβ1 + µjβ1 − 2λjµj)Xj = 0.
Since ξ ∈ D⊥, we suppose η(ξ1) 6= 0 without loss of generality. Then

θ1Xj − εXj = 0,
where ε = (2c+ β1(λj +µj)− 2λjµj)/2cη(ξ1). This implies that ε is an eigenvalue
of θ1. Hence ε ∈ {1,−1}. Without loss of generality, we can assume that

X1, . . . , X2m−2 ∈ H1(1) and X2m−1, . . . , X4m−4 ∈ H1(−1).
Consequently, AH1(1) ⊂ H1(1) and hence φ2Aφ2H1(1) ⊂ H1(1). Thus, if we take
a = 2 in (3.4), then there exist orthonormal vectors X̃1, . . . , X̃2m−2 ∈ H1(1) such
that AX̃j = λ̃jX̃j and Aφ2X̃j = µ̃jφ2X̃j . From (3.3), we have

2cη(ξ2)θ2X̃j − (2c+ λ̃jβ2 + µ̃jβ2 − 2λ̃j µ̃j)X̃j = 0.
Since X̃j ∈ H1(1) and θ2X̃j ∈ H1(−1), we have η(ξ2) = 0. In a similar manner,
we obtain η(ξ3) = 0. Thus, we have η(ξ1) = ±1 or ξ = ±ξ1. As a result, we have
shown that Aξ = β1ξ at each x ∈M . Hence M is Hopf.

Case (ii): Suppose that ξ /∈ D⊥ at a point x ∈ M . Since D is invariant under
A and φa, after letting Y ∈ D and X = ξa+1 in (3.1), we have

(βa − βa+1)qa+2(Y ) = cg
(
2ηa+1(ξ)φξa + 4ηa(ξ)φξa+1 + 2ηa+2(ξ)ξ, Y

)
. (3.5)

Similarly, if we let Y ∈ D and X = ξa+2 in (3.1), then
(βa+2 − βa)qa+1(Y ) = cg

(
4ηa(ξ)φξa+2 + 2ηa+2(ξ)φξa − 2ηa+1(ξ)ξ, Y

)
.

Raising the index of this equation by one gives
(βa − βa+1)qa+2(Y ) = cg

(
4ηa+1(ξ)φξa + 2ηa(ξ)φξa+1 − 2ηa+2(ξ)ξ, Y

)
. (3.6)

Denote by P the orthogonal projection from TxM onto D. Since Y is an arbitrary
vector in D, by (3.5) and (3.6) we obtain

P (2ηa+2(ξ)ξ − ηa+1(ξ)φξa + ηa(ξ)φξa+1) = 0,
which implies that

2ηa+2(ξ)ξ − ηa+1(ξ)φξa + ηa(ξ)φξa+1

−
3∑
b=1

g
(
2ηa+2(ξ)ξ − ηa+1(ξ)φξa + ηa(ξ)φξa+1, ξb

)
ξb = 0.

Since ξ, ξ1, ξ2, ξ3, φξ1, φξ2, φξ3 are linearly independent, we obtain that ηa(ξ) = 0
for a ∈ {1, 2, 3}. This means that ξ ∈ D at x ∈M . Hence, we conclude that ξ ∈ D

everywhere by the connectedness of M and the continuity of
∑3
a=1 ηa(ξ)2.

Since ηa(ξ) = 0 for a ∈ {1, 2, 3}, equations (3.1) and (3.5) give

βa(φaA+Aφa)X − 2AφaAX = 2c{−φaX − η(X)φaξ − η(φaX)ξ
− ηa+1(φX)φξa+2 + ηa+2(φX)φξa+1}
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for all X ∈ D. First acting by φa on both sides of the preceding equation and next
replacing X by φaX in that equation we get
βa(−A+ φaAφa)X − 2φaAφaAX = 2c{X + η(X)ξ − η(φaX)φaξ

+ η(φa+1X)φa+1ξ + η(φa+2X)φa+2ξ}
(3.7)

and
βa(φaAφa −A)X − 2AφaAφaX = 2c{X − η(φaX)φaξ + η(X)ξ

+ η(φa+2X)φa+2ξ + η(φa+1X)φa+1ξ}

for all X ∈ D. Hence (φaAφa)AX = A(φaAφa)X for X ∈ D. Since AD ⊂ D and
φaAφaD ⊂ D, there exists an orthonormal basis {X1, . . . , X4m−4} for D such that
AXj = λjXj and AφaXj = µjφaXj . Taking an arbitrary j ∈ {1, 2, . . . , 4m − 4}
and substituting X = Xj in (3.7), we obtain

{2λjµj − βa(λj + µj)}Xj = 2c{Xj + η(Xj)ξ − η(φaXj)φaξ
+ η(φa+1Xj)φa+1ξ + η(φa+2Xj)φa+2ξ}.

Let XH
j be the H-component of Xj . Then the H- and ξ-components of the pre-

ceding equations are given respectively by

0 = {2λjµj − βa(λj + µj)− 2c}XH
j ,

0 = {2λjµj − βa(λj + µj)− 4c}η(Xj).

For each j ∈ {1, 2, . . . , 4m−4} with XH
j 6= 0, the former of these equations implies

that 2λjµj − βa(λj + µj) = 2c. This, together with the latter equation, gives
η(Xj) = 0. This means that Aξ ⊥ H. Since Aφξa = 0 for a ∈ {1, 2, 3} by
Lemma 2.2, we obtain that ξ is principal on M . This completes the proof.

4. Proof of Theorem 1.4

It is clear that we only need to consider the case ξ ∈ D everywhere. Denote the
spectrum of A|H by Spec(H). For each λ ∈ Spec(H), denote by Tλ the subbundle of
H foliated by eigenspaces of A|H corresponding to λ. We will use Cartan’s method
to prove the result, and begin with some fundamental identities.

Lemma 4.1. For any λ, µ ∈ Spec(H), if λ 6= µ then
(a) (λ− µ)g(∇XY, V ) = g((∇XA)Y, V )
(b) ∇Y Z ⊥ Tµ
(c) g(∇[Y,V ]Y, V ) = g(∇Y V,∇V Y )

+ c
(
g(φY, V )2 +

∑3
a=1{g(φaY, V )2 + g(θaY, V )2}

)
for all vector fields Y,Z tangent to Tλ, V tangent to Tµ, and X ∈ TM .

Proof. Statement (a) is trivial. Next, by the Codazzi equation and (a), we have

0 = g((∇YA)V,Z)− g((∇VA)Y, Z)
= (λ− µ)g(∇Y Z, V ).
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This gives Statement (b). Similarly, with the help of the Codazzi equation and
(2.1), we compute

(µ− λ)g(∇[Y,V ]V, Y )
= g((∇[Y,V ]A)V, Y )
= g((∇∇Y VA)V, Y )− g((∇∇V YA)Y, V )
= g((∇VA)Y,∇Y V )− g((∇YA)V,∇V Y )

+ c

(
η(∇Y V )g(φV, Y ) +

3∑
a=1
{ηa(∇Y V )g(φaV, Y ) + η(φa∇Y V )g(θaV, Y )}

)

− c
(
η(∇V Y )g(φY, V ) +

3∑
a=1
{ηa(∇V Y )g(φaY, V ) + η(φa∇V Y )g(θaY, V )}

)
= (λ− µ)g(∇V Y,∇Y V )

+ (λ− µ)c
(
g(φY, V )2 +

3∑
a=1
{g(φaY, V )2 + g(θaY, V )2}

)
.

Hence we obtain Statement (c). �

If
√
−c /∈ Spec(H), then M is an open part of a real hypersurface of type A, B

or C1 in view of [6, Theorem 3.4]. Next, consider the case
√
−c ∈ Spec(H). We

claim that Spec(H) = {
√
−c}. Suppose to the contrary that Spec(H) 6= {

√
−c}.

Let dimT√−c = 4m − 8 − p, p > 0, and let {X1, . . . , Xp} be a local orthonormal
frame on H with AXj = λjXj , where λj 6=

√
−c for each j ∈ {1, . . . , p}. Taking a

unit vector field E tangent to T√−c, we have

c
(

3g(φE,Xj)2 +
3∑
a=1
{3g(φaE,Xj)2 − g(θaE,Xj)2 + g(θaE,E)g(θaXj , Xj)}

)
+ c+ λj

√
−c

= g(R(Xj , E)E,Xj)
= g(∇Xj

∇EE,Xj)− g(∇E∇Xj
E,Xj)− g(∇[Xj ,E]E,Xj)

= −g(∇EE,∇Xj
Xj) + g(∇Xj

E,∇EXj)− g(∇[Xj ,E]E,Xj)

= −λ
√
−c

3∑
a=1

g(θaE,E)g(θaXj , Xj) + 2g(∇XjE,∇EXj)

+ c
(
g(φE,Xj)2 +

3∑
a=1
{g(φaE,Xj)2 + g(θaE,Xj)2}

)
= −λ

√
−c

3∑
a=1

g(θaE,E)g(θaXj , Xj) + 2
p∑
k=1
λk 6=λj

g(∇Xj
E,Xk)g(∇EXj , Xk)
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− 2λ
√
−c
(
g(φE,Xj)2 +

3∑
a=1
{g(φaE,Xj)2 − g(θaE,Xj)2}

)
+ c
(
g(φE,Xj)2 +

3∑
a=1
{g(φaE,Xj)2 + g(θaE,Xj)2}

)
.

It follows that

(c+λj
√
−c)

(
1 + 2g(φE,Xj)2

+
3∑
a=1
{2g(φaE,Xj)2 − 2g(θaE,Xj)2 + g(θaE,E)g(θaXj , Xj)}

)
= 2

p∑
k=1
λk 6=λj

g(∇XjE,Xk)g(∇EXj , Xk)

= 2
p∑
k=1
λk 6=λj

g((∇Xj
A)E,Xk)

√
−c− λk

g((∇EA)Xj , Xk)
λj − λk

= 2
p∑
k=1
λk 6=λj

g((∇Xk
A)E,Xj)2

(
√
−c− λk)(λj − λk)

.

By applying the Codazzi equation and the preceding equation, we have

0 = 2
p∑
j=1

p∑
k=1
λk 6=λj

g((∇Xk
A)E,Xj)2

(λj −
√
−c)(
√
−c− λk)(λj − λk)

=
p∑
j=1

c+ λj
√
−c

λj −
√
−c

(
1 + 2g(φE,Xj)2

+
3∑
a=1
{2g(φaE,Xj)2 − 2g(θaE,Xj)2 + g(θaE,E)g(θaXj , Xj)}

)
=

p∑
j=1

(
1 + 2g(φE,Xj)2

+
3∑
a=1
{2g(φaE,Xj)2 − 2g(θaE,Xj)2 + g(θaE,E)g(θaXj , Xj)}

)
.

(4.1)

By Theorem 1.2, we know that φTλj
⊂ T√−c and φaTλj ⊂ T√−c. If we take

E = φX1, then θaE = −φaX1 is tangent to T√−c. Hence, equation (4.1) reduces
to

0 = p+ 2 +
p∑
j=1

3∑
a=1

{
2g(θaX1, Xj)2 + g(θaX1, X1)g(θaXj , Xj)

}
. (4.2)
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For fixed b ∈ {1, 2, 3}, by substituting E = φbX1 in (4.1) we obtain

0 = p+ 2 +
p∑
j=1

{
2g(θbX1, Xj)2 − 2g(θb+1X1, Xj)2 − 2g(θb+2X1, Xj)2

+ g(θbX1, X1)g(θbXj , Xj)− g(θb+1X1, X1)g(θb+1Xj , Xj)
− g(θb+2X1, X1)g(θb+2Xj , Xj)

}
.

By summing over b, we obtain

0 = 3p+ 6−
p∑
j=1

3∑
b=1

{
2g(θbX1, Xj)2 + g(θbX1, X1)g(θbXj , Xj)

}
. (4.3)

Adding (4.2) and (4.3) gives 4p+ 8 = 0; a contradiction. Accordingly, Spec(H) =
{
√
−c} and hence M is an open part of a real hypersurface of type C2.
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