COMPLETE LIFTING OF DOUBLE-LINEAR SEMI-BASIC TANGENT VALUED FORMS TO WEIL LIKE FUNCTORS ON DOUBLE VECTOR BUNDLES

WŁODZIMIERZ M. MIKULSKI

ABSTRACT. Let F be a product preserving gauge bundle functor on double vector bundles. We introduce the complete lifting $\mathcal{F}\varphi:FK\to \wedge^pT^*FM\otimes TFK$ of a double-linear semi-basic tangent valued p-form $\varphi:K\to \wedge^pT^*M\otimes TK$ on a double vector bundle K with base M. We prove that this complete lifting preserves the Frolicher–Nijenhuis bracket. We apply the results obtained to double-linear connections.

1. Introduction

We assume that any manifold considered in the paper is Hausdorff, second countable, finite dimensional, without boundary and smooth (i.e. of class C^{∞}). All maps between manifolds are assumed to be smooth (of class C^{∞}).

Definition 1.1. An almost double vector bundle is a system $K = (K_r, K_l, E_r, E_l)$ of vector bundles $K_r = (K, \tau_r, E_r)$, $K_l = (K, \tau_l, E_l)$, $E_r = (E_r, \underline{\tau}_l, M)$ and $E_l = (E_l, \underline{\tau}_r, M)$ such that $\underline{\tau}_l \circ \tau_r = \underline{\tau}_r \circ \tau_l$ (this means that the respective diagram is commutative). We call M the basis of K.

If $K' = (K'_r, K'_l, E'_r, E'_l)$ is another almost double vector bundle, an almost double vector bundle map $K \to K'$ is a map $f: K \to K'$ such that there are maps $\underline{f}_r: E_r \to E'_r, \, \underline{f}_l: E_l \to E'_l$ and $\underline{f}: M \to M'$ such that $(f, \underline{f}_r): K_r \to K'_r, (f, \underline{f}_l): K_l \to K'_l, (\underline{f}_r, \underline{f}): E_r \to E'_r$ and $(\underline{f}_l, \underline{f}): E_l \to E'_l$ are vector bundle maps. We call $f: M \to M'$ the base map of f.

For example, we have the trivial almost double vector bundle $K = (K_r, K_l, E_r, E_l)$, where $K_l = (\mathbf{R}^{m_1} \times \mathbf{R}^{m_2} \times \mathbf{R}^{n_1} \times \mathbf{R}^{n_2}, \tau_l, \mathbf{R}^{m_1} \times \mathbf{R}^{n_1})$, $K_r = (\mathbf{R}^{m_1} \times \mathbf{R}^{m_2} \times \mathbf{R}^{n_1} \times \mathbf{R}^{n_2}, \tau_r, \mathbf{R}^{m_1} \times \mathbf{R}^{m_2})$, $E_r = (\mathbf{R}^{m_1} \times \mathbf{R}^{m_2}, \underline{\tau}_l, \mathbf{R}^{m_1})$ and $E_l = (\mathbf{R}^{m_1} \times \mathbf{R}^{n_1}, \underline{\tau}_r, \mathbf{R}^{m_1})$, and where τ_r , τ_l , $\underline{\tau}_r$, $\underline{\tau}_l$ are the obvious projections. We will denote this trivial almost double vector bundle by $\mathbf{R}^{m_1, m_2, n_1, n_2}$.

Definition 1.2. A double vector bundle is a locally trivial almost double vector bundle K. This means that there are nonnegative integers m_1, m_2, n_1, n_2 such

²⁰²⁰ Mathematics Subject Classification. 58A20, 53A55.

Key words and phrases. double vector bundle, double-linear semi-basic tangent valued p-form, complete lifting, product preserving gauge bundle functor.

that for any $x \in M$ there is an open neighborhood $\Omega \subset M$ of x such that $K_{|\Omega} = \mathbf{R}^{m_1, m_2, n_1, n_2}$ modulo an almost double vector bundle isomorphism.

The tangent bundle

$$TE = ((TE, \pi^{TE}, E), (TE, T\pi, TM), (E, \pi, M), (TM, \pi^{TM}, M))$$

of a vector bundle $E=(E,\pi,M)$ is an example of a double vector bundle.

Any manifold M can be treated as the double vector bundle M with basis M.

Definition 1.3. Let K be a double vector bundle as above. A *double-linear vector field* on K is a vector field Z on K such that the flow of Z is formed by (local) double vector bundle isomorphisms.

Any double linear vector field Z on K is projectable with respect to the (common) projection $K \to M$. Thus we have the underlying vector field \underline{Z} on M.

Definition 1.4. Let K be a double vector bundle as above with basis M. A double-linear semi-basic tangent valued p-form on K is a section $\varphi: K \to \wedge^p T^*M \otimes TK$ such that $\varphi(X_1, \ldots, X_p)$ is a double linear vector field on K for any vector fields X_1, \ldots, X_p on the basis M of K.

Definition 1.5. Let K be as above. A double-linear connection in K is a double-linear semi-basic tangent valued 1-form $\Gamma: K \to T^*M \otimes TK$ on K such that the underlying vector field of $\Gamma(X)$ is equal to X for any vector field X on basis M.

Let \mathcal{DVB} denote the category of all double vector bundles and their almost double vector bundle maps, and let \mathcal{FM} denote the category of fibered manifolds and fibered maps. (In [14], the notation 2- \mathcal{VB} instead of \mathcal{DVB} is used.)

The general concept of (gauge) bundle functors can be found in [7]. We need the following particular case of it.

Definition 1.6. A gauge bundle functor on \mathcal{DVB} is a covariant functor $F: \mathcal{DVB} \to \mathcal{FM}$ sending any double vector bundle K with basis M into a fibered manifold $p_K: FK \to M$ over M and any double vector bundle map $f: K \to K'$ with the base map $\underline{f}: M \to M'$ into a fibered map $Ff: FK \to FK'$ over $\underline{f}: M \to M'$, and satisfying the following conditions:

- (i) Localization condition: For every double vector bundle K with basis M and any open subset $U \subset M$ the inclusion map $i_{K|U} : K|U \to K$ induces a diffeomorphism $Fi_{K|U} : F(K|U) \to p_K^{-1}(U)$.
- (ii) Regularity condition: F transforms smoothly parametrized families of \mathcal{DVB} maps into smoothly parametrized families of \mathcal{FM} -maps.

A gauge bundle functor F on \mathcal{DVB} is product preserving (ppgb-functor) if $F(K_1 \times K_2) = F(K_1) \times F(K_2)$ for any \mathcal{DVB} -objects K_1 and K_2 . Product preserving gauge bundle functors can be also called Weil like functors, because the product preserving bundle functors on manifolds are the usual Weil functors.

A simple example of a ppgb-functor on \mathcal{DVB} is the tangent functor T sending any \mathcal{DVB} -object K into the tangent bundle TK (over M) and any \mathcal{DVB} -map $f: K \to K'$ into the tangent map $Tf: TK \to TK'$.

By [14], the ppgb-functors F on \mathcal{DVB} are in bijection with the A^F -bilinear maps $\diamond^F: U^F \times V^F \to W^F$, where A^F are Weil algebras and U^F, V^F and W^F are finitely dimensional (over \mathbf{R}) A^F -modules. Moreover, the ppgb-functors F on \mathcal{DVB} have values in \mathcal{DVB} . For any such F, if K is a \mathcal{DVB} -object with basis M, then FK is a \mathcal{DVB} -object with basis $FM = T^{A^F}M$; see [14].

Let F be a ppgb-functor on \mathcal{DVB} and let $\diamond^F: U^F \times V^F \to W^F$ be the corresponding A^F -bilinear map. Let K be a \mathcal{DVB} -object. Then any double-linear vector field Z on K can be lifted to the double-linear vector field $\mathcal{F}Z$ on FK via F-prolongation of flow. By [14], for any $a \in A^F$ we have the affinor $\mathrm{af}(a): TFK \to TFK$ on FK. We have $\mathrm{af}(a_1a_2) = \mathrm{af}(a_1) \circ \mathrm{af}(a_2)$ and $\mathrm{af}(1)$ is the identity affinor. If $f: K \to K_1$ is a \mathcal{DVB} -map, then $TFf \circ \mathrm{af}(a) = \mathrm{af}(a) \circ TFf$. The main result of the paper is the following one (see Theorem 4.5):

Let F be a ppgb-functor on \mathcal{DVB} . Let $\varphi: K \to \wedge^p T^*M \otimes TK$ be a double-linear semi-basic tangent valued p-form on a double vector bundle K with basis M. Then there exists one and only one double-linear semi-basic tangent valued p-form

$$\mathcal{F}\varphi(\operatorname{af}(a_1)\circ\mathcal{F}X_1,\ldots,\operatorname{af}(a_p)\circ\mathcal{F}X_p)=\operatorname{af}(a_1\cdot\ldots\cdot a_p)\circ\mathcal{F}(\varphi(X_1,\ldots,X_p))$$
 for any vector fields X_1,\ldots,X_p on M and any $a_1,\ldots,a_p\in A^F$.

Definition 1.7. We call $\mathcal{F}\varphi$ (as above) the *complete lift* of φ to F.

 $\mathcal{F}\varphi: FK \to \wedge^p T^*FM \otimes TFK$ on FK such that

Next we study the complete lifting \mathcal{F} . We prove that \mathcal{F} commutes with the Frolicher–Nijenhuis bracket (see Theorem 5.1) and apply this fact to double-linear connections $\Gamma: K \to T^*M \otimes TK$ in K (see Theorem 6.3).

By the local description of double vector bundles, presented in [8], the notion of double vector bundles in the sense of the present paper is equivalent to the one in the book [11]. Product preserving (gauge) bundle functors are studied in [1, 6, 7, 9, 10, 12, 13, 14, 16, 17, 18]. Liftings of vector fields to product preserving (gauge) bundle functors are studied in [5, 10, 14]. Complete lifting of general connections on fibered manifolds to Weil functors is studied in [7]. Complete lifting of semi-basic tangent valued p-forms on fibered manifolds to Weil functors is studied in [2, 3]. Complete lifting of linear semi-basic tangent valued forms to product preserving gauge bundle functors on vector bundles is studied in [15]. The Frolicher-Nijenhuis bracket on projectable tangent valued forms is studied in [4].

2. Preliminaries

Let K be a double vector bundle. Let M be the basis of K and $\pi:K\to M$ be the projection.

Lemma 2.1. Let Z, Z_1 be double-linear vector fields on K, α a real number and $f: M \to \mathbf{R}$ a map. Then $Z + Z_1$, αZ , $f \circ \pi \cdot Z$ and $[Z, Z_1]$ are double linear vector fields on K.

Proof. Using \mathcal{DVB} -charts, we may assume $K = \mathbf{R}^{m_1, m_2, n_1, n_2}$. Let x^1, \ldots, x^{m_1} , $u^1, \ldots, u^{m_2}, v^1, \ldots, v^{n_1}, w^1, \ldots, w^{n_2}$ be the usual coordinates. A map $f: K \to K$

is a \mathcal{DVB} -map if and only if it is of the form

$$x^{i} \circ f = \alpha^{i}(x), \quad i = 1, \dots, m_{1},$$

$$u^{j} \circ f = \sum_{j_{1}=1}^{m_{2}} \beta_{j_{1}}^{j}(x)u^{j_{1}}, \quad j = 1, \dots, m_{2},$$

$$v^{k} \circ f = \sum_{k_{1}=1}^{n_{1}} \gamma_{k_{1}}^{k}(x)v^{k_{1}}, \quad k = 1, \dots, n_{1},$$

$$w^{l} \circ f = \sum_{l_{1}=1}^{n_{2}} \gamma_{l_{1}}^{l}(x)w^{l_{1}} + \sum_{j_{1}=1}^{m_{2}} \sum_{k_{1}=1}^{n_{1}} \sigma_{j_{1}k_{1}}^{l}(x)u^{j_{1}}v^{k_{1}}, \quad l = 1, \dots, n_{2},$$

where $x = (x^1, \dots, x^{m_1})$. Consequently, a vector field Z on K is double linear if and only if it is of the form

$$Z = \sum_{i=1}^{m_1} a^i(x) \frac{\partial}{\partial x^i} + \sum_{j,j=1}^{m_2} b_j^{j_1}(x) u^j \frac{\partial}{\partial u^{j_1}} + \sum_{k,k_1=1}^{n_1} c_k^{k_1}(x) v^k \frac{\partial}{\partial v^{k_1}} + \sum_{l,l=1}^{n_2} e_l^{l_1}(x) w^l \frac{\partial}{\partial w^{l_1}} + \sum_{j_2=1}^{m_2} \sum_{k_2=1}^{n_1} \sum_{l_2=1}^{n_2} f_{j_2 k_2}^{l_2}(x) u^{j_2} v^{k_2} \frac{\partial}{\partial w^{l_2}}.$$

$$(2.1)$$

The lemma is now clear.

Now, we treat K as a fibered manifold over M or (generally) let $\pi:K\to M$ be an arbitrary fibered manifold.

Definition 2.2. A projectable semi-basic tangent valued p-form on K is a section $\varphi: K \to \wedge^p T^*M \otimes TK$ such that $\varphi(X_1, \ldots, X_p)$ is a projectable vector field on K.

Given a projectable semi-basic tangent valued p-form $\varphi: K \to \wedge^p T^*M \otimes TK$ we have the underlying tangent valued p-form $\varphi: M \to \wedge^p T^*M \otimes TM$ on M such that $\underline{\varphi}(X_1, \ldots, X_p)$ is the underlying vector field of the projectable vector field $\varphi(X_1, \ldots, X_p)$ for any vector fields X_1, \ldots, X_p on M.

The following fact is well known; see e.g. [3, 4].

Lemma 2.3. Given a projectable semi-basic tangent-valued p-form $\varphi: K \to \wedge^p T^*M \otimes TK$ on K and a projectable semi-basic tangent valued q-form $\psi: K \to \wedge^q T^*M \otimes TK$ on K there exists a (unique) projectable semi-basic tangent valued

$$\begin{split} &(p+q)\text{-}form\ [[\varphi,\psi]]:K\to \wedge^{p+q}T^*M\otimes TK\ on\ K\ such\ that\\ &[[\varphi,\psi]](X_1,\ldots,X_{p+q})\\ &=\frac{1}{p!q!}\sum_{\sigma}\operatorname{sgn}\sigma\cdot[\varphi(X_{\sigma 1},\ldots,X_{\sigma p}),\psi(X_{\sigma(p+1)},\ldots,X_{\sigma(p+q)})]\\ &+\frac{-1}{p!(q-1)!}\sum_{\sigma}\operatorname{sgn}\sigma\cdot\psi([\underline{\varphi}(X_{\sigma 1},\ldots,X_{\sigma p}),X_{\sigma(p+1)}],X_{\sigma(p+2)},\ldots)\\ &+\frac{(-1)^{pq}}{(p-1)!q!}\sum_{\sigma}\operatorname{sgn}\sigma\cdot\varphi([\underline{\psi}(X_{\sigma 1},\ldots,X_{\sigma q}),X_{\sigma(q+1)}],X_{\sigma(q+2)},\ldots)\\ &+\frac{(-1)^{p-1}}{(p-1)!(q-1)!2!}\sum_{\sigma}\operatorname{sgn}\sigma\cdot\psi(\underline{\varphi}([X_{\sigma 1},X_{\sigma 2}],X_{\sigma 3},\ldots),X_{\sigma(p+2)},\ldots)\\ &+\frac{(-1)^{(p-1)q}}{(p-1)!(q-1)!2!}\sum_{\sigma}\operatorname{sgn}\sigma\cdot\varphi(\underline{\psi}([X_{\sigma 1},X_{\sigma 2}],X_{\sigma 3},\ldots),X_{\sigma(q+2)},\ldots) \end{split}$$

for any vector fields X_1, \ldots, X_{p+q} on M, where sums are over all permutations $\sigma: \{1, \ldots, p+q\} \to \{1, \ldots, p+q\}$ and $\operatorname{sgn} \sigma$ is the signum of σ .

The underlying tangent valued (p+q)-form of $[[\varphi,\psi]]$ is $[[\varphi,\psi]]$.

Definition 2.4. The bracket [[-,-]] is called the Frolicher-Nijenhuis bracket.

Proposition 2.5. Let K be a double vector bundle with basis M. Let $\varphi: K \to \wedge^p T^*M \otimes TK$ be a double-linear (then projectable) semi-basic tangent valued p-form on K and let $\psi: K \to \wedge^q T^*M \otimes TK$ be a double-linear semi-basic tangent valued q-form on K. Then the Frolicher-Nijenhuis bracket $[[\varphi, \psi]]: K \to \wedge^{p+q} T^*M \otimes TK$ is a double-linear semi-basic tangent valued (p+q)-form on K.

Proof. It follows from formula (2.2), Lemma 2.1 and Definition 1.4.

We end this section with the \mathcal{DVB} -version of the well-known fact of the simplicity of vector fields.

Lemma 2.6. Let Z be a double linear vector field on a double vector bundle K such that the underlying vector field \underline{Z} on basis M is nonzero at a point $x_o \in M$. Then there exists a local \mathcal{DVB} -coordinate system (x^1, \ldots) on K with centrum x_o such that $Z = \frac{\partial}{\partial x^1}$.

Proof. The proof is quite similar to that of the manifold case. We may assume that $K = \mathbf{R}^{m_1, m_2, n_1, n_2}$, $x_o = 0$ and $\underline{Z}_{|0} = \frac{\partial}{\partial x^1}_{|0}$. Let $\{\varphi_t\}$ be the flow of Z. Then $\Phi : K \to K$ given by $\Phi(x^1, \dots) = \varphi_{x_1}(0, x^2, \dots)$ is a local \mathcal{DVB} -isomorphism sending $\frac{\partial}{\partial x^1}$ to Z.

3. On the complete lifting of double-linear vector fields to ppgb-functors on double vector bundles

Let $F: \mathcal{DVB} \to \mathcal{FM}$ be a ppgb-functor. We know that $F: \mathcal{DVB} \to \mathcal{DVB}$. Let Z be a double-linear vector field on a double vector bundle K.

Definition 3.1. The *complete lift* of Z to F is the double-linear vector field $\mathcal{F}Z$ on FK corresponding to the flow $\{F\varphi_t\}$, where $\{\varphi_t\}$ is the flow of Z.

Lemma 3.2. If $\varphi : K \to K_1$ is a (locally defined) \mathcal{DVB} -isomorphism, then $\mathcal{F}(\varphi_*Z) = (F\varphi)_*\mathcal{F}Z$.

Proof. The flow of φ_*Z is $\{\varphi \circ \varphi_t \circ \varphi^{-1}\}$. Then the flow of $\mathcal{F}(\varphi_*Z)$ is $\{F\varphi \circ F\varphi_t \circ (F\varphi)^{-1}\}$. The last flow is the one of $(F\varphi)_*\mathcal{F}Z$.

Lemma 3.3. If α is a real number, then $\mathcal{F}(\alpha Z) = \alpha \mathcal{F}Z$. Consequently, $\mathcal{F}(\alpha Z + \alpha_1 Z_1) = \alpha \mathcal{F}Z + \alpha_1 \mathcal{F}Z_1$ for any real numbers α and α_1 and any double linear vector fields Z and Z_1 on K.

Proof. If $\{\varphi_t\}$ is the flow of Z, then $\{\varphi_{\alpha t}\}$ is the flow of αZ . So, $\{F\varphi_{\alpha t}\}$ is the flow of $\mathcal{F}(\alpha Z)$ and of $\alpha \mathcal{F}Z$. Hence, \mathcal{F} is **R**-linear because of the homogeneous function theorem and the nonlinear Peetre theorem [7].

Let $\diamond^F: U^F \times V^F \to W^F$ be the A^F -bilinear map corresponding to F.

Lemma 3.4. Let Z be a double linear vector field on a double vector bundle K with basis M and let $a \in A^F$. Then $af(a) \circ \mathcal{F}Z$ is a double linear vector field on FK.

Proof. We may assume that the underlying vector field \underline{Z} is nowhere vanishing. Then using \mathcal{DVB} -charts and Lemma 2.6 we may assume that $Z = \frac{\partial}{\partial x^1}$ and $K = \mathbf{R}^{m_1, m_2, n_1, n_2}$. Then $FK = (A^F)^{m_1} \times (U^F)^{m_2} \times (V^F)^{n_1} \times (W^F)^{n_2}$ and $\mathrm{af}(a) \circ \mathcal{F}Z$ can be treated as a vector field on $(A^F)^{m_1}$ (and consequently as a double linear vector field on FK).

By Lemma 2.1, if Z and Z_1 are double linear vector fields on K then so is $[Z, Z_1]$.

Proposition 3.5. For any double linear vector fields Z and Z_1 on K and any $a, a_1 \in A^F$ we have

$$[\operatorname{af}(a) \circ \mathcal{F}Z, \operatorname{af}(a_1) \circ \mathcal{F}Z_1] = \operatorname{af}(aa_1) \circ \mathcal{F}([Z, Z_1]). \tag{3.1}$$

Proof. We may assume that $K = \mathbf{R}^{m_1, m_2, n_1, n_2}$, $Z = \frac{\partial}{\partial x^1}$ and $Z_1 = f(x^1, \dots, x^{m_1})Z_2$, where $Z_2 \in \left\{ \frac{\partial}{\partial x^i}, u^j \frac{\partial}{\partial u^{j_1}}, v^k \frac{\partial}{\partial v^{k_1}}, w^l \frac{\partial}{\partial w^l}, u^j v^k \frac{\partial}{\partial w^l} \right\}$.

If $Z_2 = \frac{\partial}{\partial x^i}$, then the formula is the well-know one for usual Weil functors on manifolds. For other values of Z_2 , using formula (3.2) (below) and the known formula $a\mathcal{F}Z(a_1Ff) = aa_1F(Z(f))$ for usual Weil functors on manifolds, we get $[af(a) \circ \mathcal{F}Z, af(a_1) \circ \mathcal{F}(fZ_2)] = [a \cdot \mathcal{F}Z, a_1Ff \cdot \mathcal{F}Z_2] = a\mathcal{F}Z(a_1Ff) \cdot \mathcal{F}Z_2 = aa_1F(Z(f)) \cdot \mathcal{F}Z_2 = aa_1 \cdot \mathcal{F}(Z(f)Z_2) = af(aa_1) \circ \mathcal{F}([Z,Z_1])$.

Lemma 3.6. Let Z be a double linear vector field on K and let $f: M \to \mathbf{R}$ be a map. Then

$$\mathcal{F}(f \circ \pi \cdot Z) = Ff \circ F\pi \cdot \mathcal{F}Z, \tag{3.2}$$

where $\pi: K \to M$ is the projection (we treat M as a \mathcal{DVB} -object and π as a \mathcal{DVB} -map in the obvious way) and $Ff: FM \to F\mathbf{R} = A^F$. Here (in the right of the formula) $a \cdot y := \mathrm{af}(a)(y)$ for $a \in A^F$ and $y \in TFK$.

Proof. By Lemma 2.1, $f \circ \pi \cdot Z$ is double linear. So, both sides of (3.2) make sense. By the linearity of \mathcal{F} , we may assume that Z is not π -vertical. Then by Lemma 2.6 we may assume that $K = \mathbf{R}^{m_1, m_2, n_1, n_2}$ and $Z = \frac{\partial}{\partial x^1}$. Then we may additional assume that K = M is a manifold, Z is a vector field on M and F is a Weil functor on manifolds. Then our lemma is the (well known for Weil functors on manifolds) formula $\mathcal{F}(fZ) = Ff \cdot \mathcal{F}Z$.

4. On the complete lifting of double-linear semi-basic tangent valued p-forms to ppgb-functors on double vector bundles

For a moment, let F be a ppgb-functor (Weil functor) on manifolds. Let $\omega \in \Omega^p(M)$ be a p-form on a manifold M. Then $\omega : TM \times_M \ldots \times_M TM \to \mathbf{R}$ is a fiber skew p-linear map. Applying F, we get the fibre skew p-linear (over A^F) map $F\omega : FTM \times_{FM} \ldots \times_{FM} FTM \to A^F$ (this is a well-known fact for Weil functors on manifolds). Then applying the exchange isomorphism $\eta_M : TFM \to FTM$, which is a vector bundle isomorphism (this is also a well-known fact for Weil functors on manifolds), we obtain the A^F -valued p-form

$$\mathcal{F}\omega := F\omega \circ (\eta_M \times \ldots \times \eta_M) : TFM \times_{FM} \ldots \times_{FM} TFM \to A^F$$
 over FM .

Lemma 4.1. $\mathcal{F}\omega$ is the unique A^F -valued p-form on FM such that

$$\mathcal{F}\omega(\operatorname{af}(a_1) \circ \mathcal{F}X_1, \dots, \operatorname{af}(a_p) \circ \mathcal{F}X_p) = a_1 \cdot \dots \cdot a_p \cdot F(\omega(X_1, \dots, X_p))$$
 (4.1)
for any vector fields X_1, \dots, X_p on M and any $a_1, \dots, a_p \in A^F$.

Proof. The uniqueness is a consequence of the well-known fact for Weil functors on manifolds that the vector fields $\operatorname{af}(a) \circ \mathcal{F}X$ generate over $C^{\infty}(M)$ the vector space $\mathcal{X}(FM)$. Formula (4.1) follows from the well-known (for Weil functors on manifolds) equalities $\mathcal{F}X = \eta_M^{-1} \circ FX$ and $\eta_M \circ \operatorname{af}(a) = a \cdot \eta_M$.

Definition 4.2. The A^F -valued p-form on FM satisfying (4.1) is called the *complete lift* of ω to F.

For the rest of this section, let $F: \mathcal{DVB} \to \mathcal{FM}$ be a ppgb-functor.

Let $x^1, \ldots, x^{m_1}, u^1, \ldots, u^{m_2}, v^1, \ldots, v^{n_1}, w^1, \ldots, w^{n_2}$ be the usual coordinates on $\mathbf{R}^{m_1, m_2, n_1, n_2}$.

Because of the local expression (2.1) of double-linear vector fields and of the Definition 1.4 of double-linear semi-basic tangent valued p-forms, any double-linear semi-basic tangent valued p-form φ on $\mathbf{R}^{m_1,m_2,n_1,n_2}$ is of the form

$$\varphi = \sum_{i=1}^{m_1} \varphi^i \otimes_{\mathbf{R}} \frac{\partial}{\partial x^i} + \sum_{j,j_1=1}^{m_2} \psi^j_{j_1} \otimes_{\mathbf{R}} u^{j_1} \frac{\partial}{\partial u^j}$$

$$+ \sum_{k,k_1=1}^{n_1} \chi^k_{k_1} \otimes_{\mathbf{R}} v^{k_1} \frac{\partial}{\partial v^k} + \sum_{l,l_1=1}^{n_2} \xi^l_{l_1} \otimes_{\mathbf{R}} w^{l_1} \frac{\partial}{\partial w^l}$$

$$+ \sum_{i=1}^{m_2} \sum_{k=1}^{n_1} \sum_{l=1}^{n_2} \rho^l_{jk} \otimes_{\mathbf{R}} u^j v^k \frac{\partial}{\partial w^l}$$

for unique *p*-forms φ^i , $\psi^j_{j_1}$, $\chi^k_{k_1}$, $\xi^l_{l_1}$, ρ^l_{jk} on \mathbf{R}^m , where $(\omega \otimes_{\mathbf{R}} Z)(X_1, \ldots, X_p) := \omega(X_1, \ldots, X_p) \circ \pi \cdot Z$.

For any such φ we define its complete lift $\mathcal{F}\varphi$ by

$$\mathcal{F}\varphi := \sum_{i=1}^{m_1} \mathcal{F}\varphi^i \otimes_{A^F} \mathcal{F}\frac{\partial}{\partial x^i} + \sum_{j,j_1=1}^{m_2} \mathcal{F}\psi^j_{j_1} \otimes_{A^F} \mathcal{F}\left(u^{j_1}\frac{\partial}{\partial u^j}\right)$$

$$+ \sum_{k,k_1=1}^{n_1} \mathcal{F}\chi^k_{k_1} \otimes_{A^F} \mathcal{F}\left(v^{k_1}\frac{\partial}{\partial v^k}\right) + \sum_{l,l_1=1}^{n_2} \mathcal{F}\xi^l_{l_1} \otimes_{A^F} \mathcal{F}\left(w^{l_1}\frac{\partial}{\partial w^l}\right)$$

$$+ \sum_{i=1}^{m_2} \sum_{k=1}^{n_1} \sum_{l=1}^{n_2} \mathcal{F}\rho^l_{jk} \otimes_{A^F} \mathcal{F}\left(u^j v^k \frac{\partial}{\partial w^l}\right),$$

$$(4.2)$$

where $(\mathcal{F}\omega \otimes_{A^F} \mathcal{F}Z)(Y_1,\ldots,Y_p) := \mathcal{F}\omega(Y_1,\ldots,Y_p) \circ F\pi \cdot \mathcal{F}Z$ for $Y_1,\ldots,Y_p \in \mathcal{X}(F\mathbf{R}^{m_1})$.

Proposition 4.3. The complete lift $\mathcal{F}\varphi$ as in (4.2) is the unique double-linear semi-basic tangent valued p-form on $F\mathbf{R}^{m_1,m_2,n_1,n_2}$ such that

$$\mathcal{F}\varphi(\operatorname{af}(a_1)\circ\mathcal{F}X_1,\ldots,\operatorname{af}(a_p)\circ\mathcal{F}X_p) = \operatorname{af}(a_1\cdot\ldots\cdot a_p)\circ\mathcal{F}(\varphi(X_1,\ldots,X_p)) \quad (4.3)$$

for any $a_1, \ldots, a_p \in A^F$ and any $X_1, \ldots, X_p \in \mathcal{X}(\mathbf{R}^{m_1})$.

Proof. The uniqueness is clear because the vector fields $\operatorname{af}(a) \circ \mathcal{F}X$ for $a \in A^F$ and $X \in \mathcal{X}(\mathbf{R}^{m_1})$ generate (over $C^{\infty}(F\mathbf{R}^{m_1})$) the vector space $\mathcal{X}(F\mathbf{R}^{m_1})$. This is a well-known fact for Weil functors on manifolds.

Now, we prove (4.3). Since both sides of (4.3) are linear in φ , we may assume that $\varphi = \omega \otimes_{\mathbf{R}} Z$, where $\omega \in \Omega^p(\mathbf{R}^{m_1})$ and $Z \in \left\{ \frac{\partial}{\partial x^i}, u^{j_1} \frac{\partial}{\partial u^j}, v^{k_1} \frac{\partial}{\partial v^k}, w^{l_1} \frac{\partial}{\partial w^l}, u^j v^k \frac{\partial}{\partial w^l} \right\}$. Then by (4.2), (4.1) and (3.2) we have

$$\mathcal{F}\varphi(\operatorname{af}(a_{1}) \circ \mathcal{F}X_{1}, \dots, \operatorname{af}(a_{p}) \circ \mathcal{F}X_{p})$$

$$= \mathcal{F}(\omega \otimes_{\mathbf{R}} Z)(\operatorname{af}(a_{1}) \circ \mathcal{F}X_{1}, \dots, \operatorname{af}(a_{p}) \circ \mathcal{F}X_{p})$$

$$= (\mathcal{F}\omega \otimes_{A^{F}} \mathcal{F}Z)(\operatorname{af}(a_{1}) \circ \mathcal{F}X_{1}, \dots, \operatorname{af}(a_{p}) \circ \mathcal{F}X_{p})$$

$$= \mathcal{F}\omega(\operatorname{af}(a_{1}) \circ \mathcal{F}X_{1}, \dots, \operatorname{af}(a_{p}) \circ \mathcal{F}X_{p}) \circ \mathcal{F}\pi \cdot \mathcal{F}Z$$

$$= a_{1} \cdot \dots \cdot a_{p} \cdot \mathcal{F}(\omega(X_{1}, \dots, X_{p})) \circ \mathcal{F}\pi \cdot \mathcal{F}Z$$

$$= a_{1} \cdot \dots \cdot a_{p} \cdot \mathcal{F}(\omega(X_{1}, \dots, X_{p}) \circ \pi \cdot Z)$$

$$= a_{1} \cdot \dots \cdot a_{p} \cdot \mathcal{F}((\omega \otimes_{\mathbf{R}} Z)(X_{1}, \dots, X_{p}))$$

$$= \operatorname{af}(a_{1} \cdot \dots \cdot a_{p}) \circ \mathcal{F}(\varphi(X_{1}, \dots, X_{p})).$$

Lemma 4.4. For any (local) double vector bundle isomorphism $f: \mathbf{R}^{m_1, m_2, n_1, n_2} \to \mathbf{R}^{m_1, m_2, n_1, n_2}$ and any double-linear semi-basic tangent valued p-form φ on the double vector bundle $\mathbf{R}^{m_1, m_2, n_1, n_2}$, we have $(Ff)_* \mathcal{F} \varphi = \mathcal{F}(f_* \varphi)$.

Proof. We have

$$(Ff)_*\mathcal{F}\varphi(\operatorname{af}(a_1)\circ\mathcal{F}X_1,\ldots,\operatorname{af}(a_p)\mathcal{F}X_p)$$

$$=\mathcal{F}\varphi(Ff_*^{-1}(\operatorname{af}(a_1)\circ\mathcal{F}X_1),\ldots,Ff_*^{-1}(\operatorname{af}(a_p)\circ\mathcal{F}X_p))$$

$$=\mathcal{F}\varphi(\operatorname{af}(a_1)\circ\mathcal{F}(f_*^{-1}X_1),\ldots,\operatorname{af}(a_p)\circ\mathcal{F}(f_*^{-1}X_p))$$

$$=\operatorname{af}(a_1\cdot\ldots\cdot a_p)\circ\mathcal{F}\varphi(\mathcal{F}(f_*^{-1}X_1),\ldots,\mathcal{F}(f_*^{-1}X_p))$$

$$=\operatorname{af}(a_1\cdot\ldots\cdot a_p)\circ\mathcal{F}(\varphi(f_*^{-1}X_1,\ldots,f_*^{-1}X_p))$$

$$=\operatorname{af}(a_1\cdot\ldots\cdot a_p)\circ\mathcal{F}((f_*\varphi)(X_1,\ldots,X_p))$$

$$=\mathcal{F}(f_*\varphi)(\operatorname{af}(a_1)\cdot\mathcal{F}X_1,\ldots,\operatorname{af}(a_p)\cdot\mathcal{F}X_p).$$

Now, applying the uniqueness case of Proposition 4.3 (or, better, the sentence of the proof of the uniqueness case of Proposition 4.3) we end the proof. \Box

We are now in a position to prove the following result.

Theorem 4.5. Let F be a ppgb-functor on \mathcal{DVB} . Let $\varphi: K \to \wedge^p T^*M \otimes TK$ be a double-linear semi-basic tangent valued p-form on a double vector bundle K with basis M. Then there exists one and only one double-linear semi-basic tangent valued p-form $\mathcal{F}\varphi: FK \to \wedge^p T^*FM \otimes TFK$ on FK such that

$$\mathcal{F}\varphi(\operatorname{af}(a_1)\circ\mathcal{F}X_1,\ldots,\operatorname{af}(a_p)\circ\mathcal{F}X_p) = \operatorname{af}(a_1\cdot\ldots\cdot a_p)\circ\mathcal{F}(\varphi(X_1,\ldots,X_p))$$
 (4.4)

for any vector fields X_1, \ldots, X_p on M and any $a_1, \ldots, a_p \in A^F$.

Proof. Using \mathcal{DVB} -charts on K, we spread the complete lifting of double-linear semi-basic tangent valued p-forms on $\mathbf{R}^{m_1,m_2,n_1,n_2}$ to the one on K. This is possible because of Lemma 4.4.

5. The complete lifting of double-linear semi-basic tangent valued p-forms preserves the Frolicher-Nijenhuis bracket

Let F be a ppgb-functor on \mathcal{DVB} . Then $F: \mathcal{DVB} \to \mathcal{DVB}$.

Let $\varphi: K \to \wedge^p T^*M \otimes TK$ be a double-linear semi-basic tangent valued p-form on K and let $\psi: K \to \wedge^q T^*M \otimes TK$ be a double-linear semi-basic tangent valued q-form on K. We can lift φ and ψ to FK and obtain a double-linear semi-basic tangent valued p-form $\mathcal{F}\varphi$ on FK and a double-linear semi-basic tangent valued q-form $\mathcal{F}\psi$ on FK. Then we can produce the Frolicher–Nijenhuis bracket $[[\mathcal{F}\varphi,\mathcal{F}\psi]]$. By Proposition 2.5, this bracket is a double-linear semi-basic tangent valued (p+q)-form on FK.

On the other hand, by Proposition 2.5, the Frolicher–Nijenhuis bracket $[[\varphi, \psi]]$ is a double-linear semi-basic tangent valued (p+q)-form on K. So, we can lift it and obtain a double-linear semi-basic tangent valued (p+q)-form $\mathcal{F}([[\varphi, \psi]])$ on FK.

Theorem 5.1. We have

$$\mathcal{F}([[\varphi,\psi]]) = [[\mathcal{F}\varphi,\mathcal{F}\psi]]. \tag{5.1}$$

Proof. For any $a_1, \ldots, a_{p+1} \in A^F$ and vector fields X_1, \ldots, X_{p+q} on M we have

$$[\mathcal{F}\varphi(\operatorname{af}(a_1) \circ \mathcal{F}X_1, \dots, \operatorname{af}(a_p) \circ \mathcal{F}X_p),$$

$$\mathcal{F}\psi(\operatorname{af}(a_{p+1}) \circ \mathcal{F}X_{p+1}, \dots, \operatorname{af}(a_{p+q}) \circ \mathcal{F}X_{p+q})]$$

$$= \operatorname{af}(a_1 \cdot \dots \cdot a_{p+q}) \circ \mathcal{F}([\varphi(X_1, \dots, X_p), \psi(X_{p+1}, \dots, X_{p+q})]).$$

Indeed, applying formulas (4.4) and (3.1) we easily get

$$[\mathcal{F}\varphi(\operatorname{af}(a_{1})\circ\mathcal{F}X_{1},\ldots,\operatorname{af}(a_{p})\circ\mathcal{F}X_{p}),$$

$$\mathcal{F}\psi(\operatorname{af}(a_{p+1})\circ\mathcal{F}X_{p+1},\ldots,\operatorname{af}(a_{p+q})\circ\mathcal{F}X_{p+q})]$$

$$= [\operatorname{af}(a_{1}\cdot\ldots\cdot a_{p})\circ\mathcal{F}(\varphi(X_{1},\ldots,X_{p})),$$

$$\operatorname{af}(a_{p+1}\cdot\ldots\cdot a_{p+q})\circ\mathcal{F}(\psi(X_{p+1},\ldots,X_{p+q}))]$$

$$= \operatorname{af}(a_{1}\cdot\ldots\cdot a_{p+q})\circ\mathcal{F}([\varphi(X_{1},\ldots,X_{p}),\psi(X_{p+1},\ldots,X_{p+q})]).$$

Similarly, we have

$$\mathcal{F}\psi([\underline{\mathcal{F}\varphi}(\operatorname{af}(a_1)\circ\mathcal{F}X_1,\ldots,\operatorname{af}(a_p)\circ\mathcal{F}X_p),\operatorname{af}(a_{p+1})\circ\mathcal{F}X_{p+1}],$$

$$\operatorname{af}(a_{p+2})\circ\mathcal{F}X_{p+2},\ldots,\operatorname{af}(a_{p+q})\circ\mathcal{F}X_{p+q})$$

$$=\operatorname{af}(a_1\cdot\ldots\cdot a_{p+q})\circ\mathcal{F}(\psi([\varphi(X_1,\ldots,X_p),X_{p+1}],X_{p+2},\ldots,X_{p+q}))$$

and

$$\mathcal{F}\psi(\underline{\mathcal{F}\varphi}([\mathrm{af}(a_1)\circ\mathcal{F}X_1,\mathrm{af}(a_2)\circ\mathcal{F}X_2],\mathrm{af}(a_3)\circ\mathcal{F}X_3,\ldots,\mathrm{af}(a_{p+1})\circ\mathcal{F}X_{p+1}),$$

$$\mathrm{af}(a_{p+2})\circ\mathcal{F}X_{p+2},\ldots,\mathrm{af}(a_{p+q})\circ\mathcal{F}X_{p+q})$$

$$=\mathrm{af}(a_1\cdot\ldots\cdot a_{p+q})\circ\mathcal{F}(\psi(\varphi([X_1,X_2],X_3,\ldots,X_{p+1}),X_{p+2},\ldots,X_{p+q})),$$

and the same formulas with φ replaced by ψ and vice versa, and the same formulas with indices $1, \ldots, p+q$ replaced by $\sigma(1), \ldots, \sigma(p+q)$. Now, using the above formulas and formula (4.4) for $[[\varphi, \psi]]$ instead of φ and formula (2.2) on the Frolicher–Nijenhuis bracket $[[\varphi, \psi]]$ and formula (2.2) with φ and ψ replaced by $\mathcal{F}\varphi$ and $\mathcal{F}\psi$, and the **R**-linearity of the complete lifting of vector fields (Lemma 3.3),

we get

$$\begin{split} &\mathcal{F}([[\varphi,\psi]])(\operatorname{af}(a_1)\circ\mathcal{F}X_1,\dots,\operatorname{af}(a_{p+q})\circ\mathcal{F}X_{p+q}) \\ &=\operatorname{af}(a)\circ\mathcal{F}([[\varphi,\psi]](X_1,\dots,X_{p+q})) \\ &=\frac{1}{p!q!}\sum_{\sigma}\operatorname{sgn}\sigma\cdot\operatorname{af}(a)\circ\mathcal{F}([\varphi(X_{\sigma 1},\dots,X_{\sigma p}),\psi(X_{\sigma(p+1)},\dots,X_{\sigma(p+q)})]) \\ &+\frac{1}{p!(q-1)!}\sum_{\sigma}\operatorname{sgn}\sigma\cdot\operatorname{af}(a)\circ\mathcal{F}(\psi([\underline{\varphi}(X_{\sigma 1},\dots,X_{\sigma p}),X_{\sigma(p+1)}],X_{\sigma(p+2)},\dots)) \\ &+\frac{(-1)^{pq}}{(p-1)!q!}\sum_{\sigma}\operatorname{sgn}\sigma\cdot\operatorname{af}(a)\circ\mathcal{F}(\varphi([\underline{\psi}(X_{\sigma 1},\dots,X_{\sigma q}),X_{\sigma(q+1)}],X_{\sigma(q+2)},\dots)) \\ &+\frac{(-1)^{p-1}}{(p-1)!(q-1)!2!}\sum_{\sigma}\operatorname{sgn}\sigma\cdot\operatorname{af}(a)\circ\mathcal{F}(\psi(\underline{\varphi}([X_{\sigma 1},X_{\sigma 2}],X_{\sigma 3},\dots),X_{\sigma(p+2)},\dots)) \\ &+\frac{(-1)^{(p-1)q}}{(p-1)!(q-1)!2!}\sum_{\sigma}\operatorname{sgn}\sigma\cdot\operatorname{af}(a)\circ\mathcal{F}(\varphi(\underline{\psi}([X_{\sigma 1},X_{\sigma 2}],X_{\sigma 3},\dots),X_{\sigma(q+2)},\dots)) \\ &=\frac{1}{p!q!}\sum_{\sigma}\operatorname{sgn}\sigma\cdot[\mathcal{F}\varphi(\operatorname{af}(a_{\sigma 1})\circ\mathcal{F}X_{\sigma 1},\dots),\mathcal{F}\psi(\operatorname{af}(a_{\sigma(p+1)})\circ\mathcal{F}X_{\sigma(p+1)},\dots)] \\ &+\frac{-1}{p!(q-1)!}\sum_{\sigma}\operatorname{sgn}\sigma\cdot\mathcal{F}\psi([\underline{\mathcal{F}}\varphi(\operatorname{af}(a_{\sigma 1})\circ\mathcal{F}X_{\sigma 1},\dots),\operatorname{af}(a_{\sigma(p+1)})\circ\mathcal{F}X_{\sigma(p+1)}],\dots) \\ &+\frac{(-1)^{pq}}{(p-1)!q!}\sum_{\sigma}\operatorname{sgn}\sigma\cdot\mathcal{F}\varphi([\underline{\mathcal{F}}\psi(\operatorname{af}(a_{\sigma 1})\circ\mathcal{F}X_{\sigma 1},\dots),\operatorname{af}(a_{\sigma(p+1)})\circ\mathcal{F}X_{\sigma(p+1)}],\dots) \\ &+\frac{(-1)^{p-1}}{(p-1)!(q-1)!2!}\sum_{\sigma}\operatorname{sgn}\sigma\cdot\mathcal{F}\psi(\underline{\mathcal{F}}\varphi([\operatorname{af}(a_{\sigma 1})\circ\mathcal{F}X_{\sigma 1},\operatorname{af}(a_{\sigma 2})\circ\mathcal{F}X_{\sigma 2}],\dots),\dots) \\ &+\frac{(-1)^{(p-1)q}}{(p-1)!(q-1)!2!}\sum_{\sigma}\operatorname{sgn}\sigma\cdot\mathcal{F}\varphi(\underline{\mathcal{F}}\psi([\operatorname{af}(a_{\sigma 1})\circ\mathcal{F}X_{\sigma 1},\operatorname{af}(a_{\sigma 2})\circ\mathcal{F}X_{\sigma 2}],\dots),\dots) \\ &=[[\mathcal{F}\varphi,\mathcal{F}\psi]](\operatorname{af}(a_1)\circ\mathcal{F}X_1,\dots,\operatorname{af}(a_{p+q})\circ\mathcal{F}X_{p+q}), \end{split}$$

for any vector fields X_1, \ldots, X_{p+q} on M and any $a_1, \ldots, a_{p+q} \in A^F$, where $a := a_1 \cdot \ldots \cdot a_{p+q}$. Then, since the vector fields $\mathrm{af}(a) \circ \mathcal{F}X$ generate (over $C^{\infty}(FM)$) the space $\mathcal{X}(FM)$, formula (5.1) holds.

6. An application to double-linear general connections

Let F be a ppgb-functor on \mathcal{DVB} .

In Definition 1.5, we introduced the concept of double-linear connections Γ in a double vector bundle K.

Lemma 6.1. Given a double linear connection Γ in K, its complete lift $\mathcal{F}\Gamma$ is a double-linear connection in FK.

Proof. Since $\Gamma(X)$ is a double-linear vector field on K with the underlying vector field equal to X, we have that $\mathcal{F}\Gamma(\operatorname{af}(a)\circ\mathcal{F}X)=\operatorname{af}(a)\cdot\mathcal{F}(\Gamma(X))$ is a double-linear vector field with the underlying vector field equal to $\operatorname{af}(a)\circ\mathcal{F}X$. Consequently, for any vector field $Y\in\mathcal{X}(FM)$, $\mathcal{F}\Gamma(Y)$ is a double linear vector field with the underlying vector field equal to Y.

Definition 6.2. A curvature of a double linear connection Γ in a double vector bundle K is $\mathcal{R}_{\Gamma} := \frac{1}{2}[[\Gamma, \Gamma]] : K \to \wedge^2 T^* M \otimes VK$ (i.e., $\mathcal{R}_{\Gamma}(X, Y) = [\Gamma(X), \Gamma(Y)] - \Gamma([X, Y])$).

Theorem 6.3. We have

$$\mathcal{R}_{\mathcal{F}\Gamma} = \mathcal{F}(\mathcal{R}_{\Gamma}).$$

Proof. It is clear because of $\mathcal{F}([[\Gamma, \Gamma]]) = [[\mathcal{F}\Gamma, \mathcal{F}\Gamma]].$

ACKNOWLEDGEMENT

I would like to thank the reviewer for his/her suggestion on notions.

References

- G. N. Bushueva, Weil functors and product-preserving functors on the category of parameterdependent manifolds. Russian Math. (Iz. VUZ) 49 (2005), no. 5, 11–18. MR 2186866.
- [2] A. Cabras and I. Kolář, Prolongation of tangent valued forms to Weil bundles, Arch. Math. (Brno) 31 (1995), no. 2, 139–145. MR 1357981.
- [3] A. Cabras and I. Kolář, Flow prolongation of some tangent valued forms, Czechoslovak Math. J. 58(133) (2008), no. 2, 493–504. MR 2411105.
- [4] J. Janyška, Natural operations with projectable tangent valued forms on a fibred manifold, Ann. Mat. Pura Appl. (4) 159 (1991), 171–187. MR 1145096.
- [5] I. Kolář, On the natural operators on vector fields, Ann. Global Anal. Geom. 6 (1988), no. 2, 109–117. MR 0982760.
- [6] I. Kolář, Weil bundles as generalized jet spaces, in Handbook of Global Analysis, 625–664, Elsevier Sci. B. V., Amsterdam, 2008. MR 2389643.
- [7] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993. MR 1202431.
- [8] K. Konieczna and P. Urbański, Double vector bundles and duality, Arch. Math. (Brno) 35 (1999), no. 1, 59–95. MR 1684522.
- [9] M. Kureš, Weil modules and gauge bundles, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 1, 271–278. MR 2200783.
- [10] M. Kureš and W. M. Mikulski, Liftings of linear vector fields to product preserving gauge bundle functors on vector bundles, Lobachevskii J. Math. 12 (2003), 51–61. MR 1974543.
- [11] K. C. H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005. MR 2157566.
- [12] W. M. Mikulski, Product preserving bundle functors on fibered manifolds, Arch. Math. (Brno) 32 (1996), no. 4, 307–316. MR 1441401.
- [13] W. M. Mikulski, Product preserving gauge bundle functors on vector bundles, Colloq. Math. 90 (2001), no. 2, 277–285. MR 1876848.
- [14] W. M. Mikulski, Lifting double linear vector fields to Weil like functors on double vector bundles, Math. Nachr. 292 (2019), no. 9, 2092–2100. MR 4009348.
- [15] W. M. Mikulski, Prolongation of linear semibasic tangent valued forms to product preserving gauge bundles of vector bundles, Extracta Math. 21 (2006), no. 3, 273–286. MR 2332075.
- [16] W. M. Mikulski and J. M. Tomáš, Product preserving bundle functors on fibered fibered manifolds, Colloq. Math. 96 (2003), no. 1, 17–26. MR 2013706.

- [17] V. V. Shurygin, jr., Product preserving bundle functors on multifibered and multifoliate manifolds, Lobachevskii J. Math. 26 (2007), 107–123. MR 2396705.
- [18] L. B. Smolyakova and V. V. Shurygin, Lifts of geometric objects to the Weil bundle $T^{\mu}M$ of a foliated manifold defined by an epimorphism μ of Weil algebras, Russian Math. (Iz. VUZ) **51** (2007), no. 10, 76–88. MR 2381929.

Włodzimierz M. Mikulski

Faculty of Mathematics and Computer Science UJ, ul. Łojasiewicza 6, 30-348, Cracow, Poland Wlodzimierz.Mikulski@im.uj.edu.pl

Received: May 8, 2019 Accepted: June 16, 2020