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THE TOTAL CO-INDEPENDENT DOMINATION NUMBER OF
SOME GRAPH OPERATIONS

ABEL CABRERA MARTÍNEZ, SUITBERTO CABRERA GARCÍA, IZTOK PETERIN,
AND ISMAEL G. YERO

Abstract. A set D of vertices of a graph G is a total dominating set if
every vertex of G is adjacent to at least one vertex of D. The total domi-
nating set D is called a total co-independent dominating set if the subgraph
induced by V (G) − D is edgeless. The minimum cardinality among all total
co-independent dominating sets of G is the total co-independent domination
number of G. In this article we study the total co-independent domination
number of the join, strong, lexicographic, direct and rooted products of graphs.

1. Introduction

Throughout this article we consider simple graphs G = (V (G), E(G)) of order n
and size m. That is, graphs that are finite, undirected, and without loops or
multiple edges. Given a vertex v of G, N(v) represents the open neighborhood of v,
i.e., the set of all neighbors of v in G, and the degree of v is δ(v) = |N(v)|. If
δ(v) = n − 1, then we say that v is a universal vertex of G. The minimum and
maximum degrees of G are denoted by δ(G) and ∆(G), respectively. By G[D] we
denote the induced subgraph of G on D ⊆ V (G). By the union of two graphs
G ∪H we mean the disjoint union. In particular, kG = ∪k

i=1G is a disjoint union
of k copies of a graph G. We use the notation [k] for the set of integer numbers
{1, . . . , k}.

Given a graph G, a set D ⊆ V (G) is a total dominating set of G if every vertex
in V (G) is adjacent to at least one vertex in D. The total domination number of G
is the minimum cardinality among all total dominating sets of G and is denoted
by γt(G). A γt(G)-set is a total dominating set of cardinality γt(G). For more
information on total domination we suggest the relatively recent survey [15] and
the book [16]. A set of vertices is independent if it induces an edgeless graph.
The independence number of G is the cardinality of a maximum independent set
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of G and is denoted by α(G). An independent set of cardinality α(G) is called an
α(G)-set. A set S of vertices of G is a vertex cover if every edge of G is incident
in at least one vertex of S. The vertex cover number of G, denoted by β(G),
is the smallest cardinality among all vertex covers of G. We refer to a β(G)-set
in G as a vertex cover of cardinality β(G). The following well-known result, due
to Gallai [12], states the relationship between the independence number and the
vertex cover number of a graph.

Theorem 1.1 (Gallai, 1959 [12]). For any graph G of order n, β(G) + α(G) = n.

The theory of domination and independence in graphs has attracted the atten-
tion of many researchers since several years ago. The number of works, results and
open problems in this area span a wide range of directions, from highly theoretical
aspects and various practical applications, to a large number of connections with
other topics in graph theory itself and in some external areas. One can easily notice
these facts, by simply making some specialized searches in well-known databases
like MathSciNet, Scopus or JCR. The idea of studying a variant of a dominating
set whose complement is independent has previously been explored, for instance,
in the Ph.D. thesis [19], although it was probably introduced earlier.

In recent years, a reborn interest has arisen in research concerning connections
between domination and independence in graphs. One of the ideas behind this
interest comes from a Roman domination structure whose “complement” has in-
dependent properties. Particular and remarkable cases are observed in [1, 8] for
co-independent Roman domination, in [2] for co-independent double Roman dom-
ination, and in [7, 18] for co-independent total Roman domination. Other similar
parameters not related to Roman domination are [3, 4, 11]. It is then our goal here
to continue making some contributions to this topic which concerns dominating sets
whose complements form an independent set. We remark that some of the articles
referenced above use the term “outer-independence” instead of “co-independence”.

A total dominating set D of a graph G without isolated vertices is called a
total co-independent dominating set (or TC-ID set for short) if the set of vertices
V (G) − D is independent. The total co-independent domination number of G is
the minimum cardinality among all TC-ID sets of G and is denoted by γt,coi(G).
A TC-ID set of cardinality γt,coi(G) is a γt,coi(G)-set.

The total co-independent domination number of a graph G has been introduced
in [23], where a few of its combinatorial properties were considered. Among them,
a couple of almost trivial bounds in terms of α(G) and the order of G were proved
for γt,coi(G). The following result is an example of this.

Theorem 1.2 ([23]). For any graph G of order n without isolated vertices we have
γt,coi(G) ≥ n− α(G).

In addition, exact values for some families of graphs were presented in [23].
We mention γt,coi(Pn) = n −

⌈
n
3
⌉
, γt,coi(Cn) = n −

⌊
n
3
⌋
, γt,coi(Kn) = n − 1 and

γt,coi(Ks,t) = min{s, t}+ 1, which we use later in Section 3.
The parameter of total co-independent domination number was studied also

in [5] for the case of trees, and in [6] from a combinatorial and complexity point
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of view. Until now, and to the best of our knowledge, this parameter has not
been studied for product graphs. In this sense, it is our goal to make several
contributions to this topic of total co-independent domination, and so, to begin
studying the join, direct, strong and lexicographic product graphs, and the rooted
and corona product graphs. We end this section with an easy general result that
will come in handy later for the rooted product.

Lemma 1.3. Let H be a graph of order n ≥ 3 different from the star graph. If H
has a universal vertex v ∈ V (H), then γt,coi(H) = n− α(H).

Proof. Let v be a universal vertex of H. If V (H) − {v} is a γt,coi(H)-set, then
α(H) = 1 and H ∼= Kn and the result follows. Otherwise, let A be an arbitrary
α(H)-set. Clearly, v /∈ A and the set V (H) − A induces a connected subgraph
of H with at least two vertices, because v is a universal vertex and H is not a
star. Moreover, V (H)−A also totally dominates H because v is universal. Hence,
γt,coi(H) ≤ n− α(H). Theorem 1.2 completes the proof. �

2. The join, the lexicographic and the strong products of graphs

The join graph G ∨ H of the graphs G and H is the graph with vertex set
V (G ∨ H) = V (G) ∪ V (H) and edge set E(G ∨ H) = E(G) ∪ E(H) ∪ {uv : u ∈
V (G), v ∈ V (H)}. The following simple lemma is a part of folklore, and it can be
found for instance in [22].

Lemma 2.1 ([22]). For any two graphs G and H,
α(G ∨H) = max{α(G), α(H)}.

Theorem 2.2. Let G and H be any graphs with nX = |V (X)| and mX = |E(X)|
for X ∈ {G,H}. If mG ≥ mH , then γt,coi(G ∨H) equals
nG + nH −max{α(G), α(H)}+ 1, if (mG > mH = 0 ∧ α(G) < nH ∧ δ(G) = 0)

∨ mG = 0;
nG + nH −max{α(G), α(H)}, otherwise.

Proof. By Lemma 2.1 and Theorem 1.2 we obtain the inequality γt,coi(G ∨H) ≥
nG + nH −max{α(G), α(H)}.

Let AG be an α(G)-set and let AH be an α(H)-set. Notice that DG = V (G ∨
H) − AG and DH = V (G ∨ H) − AH are TC-ID sets of G ∨ H whenever both
G and H, respectively, contain at least one edge. In this case γt,coi(G ∨ H) ≤
min{|DG|, |DH |} = nG + nH − max{α(G), α(H)}. Therefore the equality follows
when mG > 0 and mH > 0.

Suppose next that mG > 0 and mH = 0, which means that α(H) = nH and
H ∼= Kt for some positive integer t. Again DG is a TC-ID set because mG > 0. If
α(G) ≥ nH , then we have γt,coi(G ∨H) ≤ |DG| = nG + nH − α(G) = nG + nH −
max{α(G), α(H)} and equality holds again. So, let α(G) < nH = t. If δ(G) > 0,
then DH = V (G) is a TC-ID set because V (G) contains no isolated vertex. In this
case γt,coi(G∨H) ≤ |DH | = nG = nG +nH− t = nG +nH−max{α(G), α(H)} and
equality holds again. If δ(G) = 0, then DH = V (G) is not a TC-ID set because DH
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is not a total dominating set of G∨H. Notice that V (H) is the unique α(G∨H)-
set because α(G) < nH and every independent set of G ∨H is contained either in
V (G) or in V (H). Therefore, γt,coi(G ∨H) > nG + nH −max{α(G), α(H)}. On
the other hand, the set V (G) ∪ {h}, for some h ∈ V (H), is a TC-ID set of G ∨H
of cardinality nG + 1 = nG + nH − t+ 1 = nG + nH −max{α(G), α(H)}+ 1 and
we have γt,coi(G ∨H) = nG + nH −max{α(G), α(H)}+ 1.

Finally, let mH = mG = 0, which means that G ∼= Ks and H ∼= Kt. Again
DG and DH are not TC-ID sets of G ∨H because V (H) and V (G), respectively,
are not total dominating sets of G ∨H. As before, the inequality γt,coi(G ∨H) >
nG + nH − max{α(G), α(H)} follows. The equality γt,coi(G ∨ H) = nG + nH −
max{α(G), α(H)}+ 1 now follows from the fact that V (G) ∪ {h}, with h ∈ V (H),
and V (H) ∪ {g}, with g ∈ V (G), are TC-ID sets of G ∨H. �

Let G and H be two graphs. The lexicographic product of G and H is the graph
G ◦H whose vertex set is V (G ◦H) = V (G)× V (H), and (g, h)(g′, h′) ∈ E(G ◦H)
if and only if gg′ ∈ E(G) or (g = g′ and hh′ ∈ E(H)). The set Gh = {(g, h) : g ∈
V (G)} is called the G-layer through h, and similarly, Hg = {(g, h) : h ∈ V (H)} is
called the H-layer through g. Clearly, subgraphs of G◦H induced by Gh and Hg are
isomorphic to G and H, respectively. The map pG : V (G)×V (H)→ V (G) defined
by pG((g, h)) = g is called a projection map to G. The map pH is defined similarly.
Notice that K2 ◦ H ∼= H ∨ H presents a connection between the lexicographic
product and the join of graphs.

In order to obtain the total co-independent domination number of the lexico-
graphic product of two graphs, we need the following result.

Theorem 2.3 ([13]). For any two graphs G and H, α(G ◦H) = α(G)α(H).

It is straightforward to observe that G ◦ H is connected whenever G � K1 is
connected. Moreover, if G is not connected, then one can treat every component
of G ◦H separately with respect to γt,coi(G ◦H). Hence, we can assume that G is
connected.

Let G be a graph without isolated vertices. By I(G) we denote the set of
all maximal independent sets of G. By a maximal independent set we mean an
independent set which is not contained in any other independent set (notice that
any maximum independent set is maximal, but the contrary is not always true).
The set DG = V (G)−AG is a dominating set of G for any AG ∈ I(G) because of
the maximality of AG. Denote by D∗G the set of all isolated vertices from G[DG].
Finally, let A∗G be a minimum subset of AG such that A∗G dominates D∗G.

Let G ∼= C2k = v1 . . . v2kv1. There are exactly two maximum independent sets
in I(G), namely AG,1 = {v2i : i ∈ [k]} and AG,2 = {v2i−1 : i ∈ [k]}. Without loss of
generality we may assume that AG = AG,2 because AG,1 and AG,2 are symmetric.
It is easy to see that one possibility is A∗G = {v4i : i ∈ [k/2]} if k is even, and
A∗G = {v4i : i ∈ [(k − 1)/2]} ∪ {v2k} if k is odd.
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Theorem 2.4. Let G be a connected graph of order nG and let H be any graph of
order nH . If H � Kt, then

γt,coi(G ◦H) = nGnH − α(G)α(H).
Moreover, if H ∼= Kt, then

γt,coi(G ◦H) = min
AG∈I(G)

{|DG|nH + |A∗G|}.

Proof. Let I be an α(G◦H)-set. Notice that V (G◦H)− I is a TC-ID set of G◦H
whenever H � Kt. By Theorem 2.3 we obtain γt,coi(G ◦H) ≤ |V (G ◦H) − I| =
nGnH −α(G ◦H) = nGnH −α(G)α(H). The equality follows by Theorem 1.2 and
Theorem 2.3.

Let now H ∼= Kt and let first AG ∈ I(G), together with DG and A∗G. Every
vertex outside of (DG × V (H)) has a neighbor in (DG × V (H)), because DG is
a dominating set of G. However, if g ∈ D∗G, then (g, h) ∈ (DG × V (H)) has no
neighbor in (DG × V (H)). Hence, to obtain a TC-ID set we need to add some
vertices. Since A∗G dominates vertices from D∗G, we see that (DG×V (H))∪ (A∗G×
{h}) is a TC-ID set of G ◦ H for any h ∈ V (H). Therefore, γt,coi(G ◦ H) ≤
minAG∈I(G){|DG|nH + |A∗G|}. Let now D be a γt,coi(G ◦ H)-set. The set D′G =
pG(D) is a total dominating set of G because H ∼= Kt. Also for A = V (G◦H)−D,
AG = pG(A) is an independent set of G, since A is an independent set in G ◦H.
Let A∗G = AG ∩D′G and let DG = D′G−A∗G. We will see that every vertex g ∈ A∗G
is adjacent to some vertex g′ ∈ DG, which is an isolated vertex in the subgraph
of G induced by DG. If this does not hold, then we obtain a contradiction with D
being a γt,coi(G◦H)-set because D−{(g, h)} would be a TC-ID set of G◦H, where
(g, h) ∈ A. Now, notice that |D ∩Hg| ≥ 1 for every g ∈ A∗G, and |D ∩Hg| = nH

for every g ∈ DG. Therefore, we have at least |DG|nH + |A∗G| vertices in D. As
DG, AG and A∗G have the desired properties for every γt,coi(G ◦H)-set D, we have
γt,coi(G ◦H) ≥ minAG∈I(G){|DG|nH + |A∗G|}. Combining both inequalities yields
the stated equality. �

Notice that I(G) contains all maximal independent sets, which are not neces-
sarily α(G)-sets. We are not aware of any example where a maximal independent
set (that is not an α(G)-set) would yield a better result in Theorem 2.4 than an
α(G)-set.

The strong product of the graphs G and H is the graph G � H, with vertex
set V (G�H) = V (G)× V (H), and two vertices (g, h) and (g′, h′) are adjacent in
G�H if and only if, either

• g = g′ and hh′ ∈ E(H) or
• h = h′ and gg′ ∈ E(G) or
• gg′ ∈ E(G) and hh′ ∈ E(H).

Notice that G�Kt
∼= G ◦Kt. Also, G�H has isolated vertices whenever both

G and H have isolated vertices. By H− we denote the graph obtained from H by
deleting all isolated vertices. The upper bound γt(G � H) ≤ γt(G)γt(H) follows
from a result in [20]. The independence number α(G � H) is the basis for the
so-called Shannon capacity; see [14, Chapter 27.1].
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Theorem 2.5. Let G and H be graphs of order nG and nH , respectively. If G has
no isolated vertices and H has iH isolated vertices, then

γt,coi(G�H) = nG(nH − iH)− α(G�H−) + iHγt,coi(G).

Proof. First notice that G�H ∼= G�H− ∪ iHG. We need γt,coi(G) vertices in a
γt,coi(G�H)-set D for every component of G�H that is isomorphic to G. Hence,
D contains iHγt,coi(G) vertices outside of G�H−.

Let A be an α(G � H−)-set and let D− = V (G � H−) − A. Since A is a
maximum independent set, D− is a dominating set of G � H−. Next we show
that D− is also a total dominating set of G � H−. Let (g, h) ∈ D−. Notice
that there exists a vertex g′ ∈ V (G) such that gg′ ∈ E(G) and there exists a
vertex h′ ∈ V (H−) such that hh′ ∈ E(H−). In G � H−, the subgraph induced
by S = {(g, h), (g, h′), (g′, h), (g′, h′)} is a complete graph K4, so |S ∩ A| ≤ 1, and
consequently |S ∩ D−| ≥ 3, implying that |N((g, h)) ∩ D−| ≥ 2. Hence, D− is a
total dominating set of G � H−, and therefore a TC-ID set of G � H− as well.
Consequently, γt,coi(G�H−) ≤ |D−| = nG(nH − iH)− α(G�H−).

By Theorem 1.2, we get the equality γt,coi(G�H−) = nG(nH−iH)−α(G�H−).
Together with all the components of G�H isomorphic to G, we obtain the desired
result. �

3. The direct product of graphs

The direct product of two graphs G and H is the graph G×H, with vertex set
V (G×H) = {(g, h) : g ∈ V (G), h ∈ V (H)}, and two vertices (g, h) and (g′, h′) are
adjacent in G×H if and only if gg′ ∈ E(G) and hh′ ∈ E(H). The direct product
can be considered as a subgraph of the strong product. It has the special property
that every edge from G ×H projects to edges in both factors G and H, and it is
therefore often considered as the most natural graph product. On the other hand,
this brings several problems. Even connectivity is not trivial among direct products.
Indeed, G×H is a connected graph if and only if both G and H are connected and
at least one of G and H is non bipartite. Moreover, if both G and H are bipartite,
then G×H has exactly two components (see [25] and also [14]). In addition, and
important in our case, G×H has isolated vertices if and only if at least one of G
and H has isolated vertices. G- and H-layers are defined as in the lexicographic
product. However, one must note that any layer induces a graph without edges.
This already implies the lower bound α(G×H) ≥ max{α(G)|V (H)|, α(H)|V (G)|}.
A remarkable upper bound for α(G×H) can be found in [24]. Some bounds and
exact results on γt(G×H) can be found in [9, 10, 20, 21].

It is easy to see that Kp,q ×Kr,s
∼= Kpr,qs ∪Kps,qr. Since Kpr,qs

∼= Kpr ∨Kqs

and Kps,qr
∼= Kps ∨Kqr, we can use Theorem 2.2 to obtain

γt,coi(Kp,q ×Kr,s) = min{pr, qs}+ min{ps, qr}+ 2. (3.1)

We next present an upper bound for γt,coi(G × H) from the independent set
perspective. Let G be a graph without isolated vertices. Recall that I(G) is the
set of all maximal independent sets of G, that DG = V (G) − AG is a dominating
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set of G for any AG ∈ I(G), and that A∗G is a minimum subset of AG such that
A∗G dominates the set (denoted by D∗G) of all isolated vertices of G[DG].

Theorem 3.1. For any two graphs G and H without isolated vertices of order nG

and nH , respectively,

γt,coi(G×H) ≤ min
AG∈I(G),
AH∈I(H)

{|DG|nH + |A∗G|γt(H), |DH |nG + |A∗H |γt(G)}.

Proof. Let AG be any maximal independent set of a graph G and let TH be a
γt(H)-set. We will show that S = (DG × V (H)) ∪ (A∗G × TH) is a TC-ID set of
G ×H. The set V (G ×H) − S is independent because pG(V (G ×H) − S) ⊆ AG

is independent.
Next we show that S is a total dominating set of G × H. Let (u, v) be an

arbitrary vertex of G×H. If u ∈ AG, then there exists g ∈ DG which is adjacent
to u in G because DG dominates G. There also exists h ∈ V (H) which is adjacent
to v in H because H has no isolated vertices and (g, h) ∈ S is adjacent to (u, v).
If u ∈ DG −D∗G, then u is not an isolated vertex from G[DG]; let g ∈ D(G) be a
neighbor of u in DG. Again there exists a neighbor h of v in H, and (g, h) ∈ S is
adjacent to (u, v). So, let u ∈ D∗G be an isolated vertex in G[DG]. By the definition
of A∗G there exists a neighbor g ∈ A∗G of u. Also, since TH is a total dominating
set of H, there exists a neighbor h ∈ TH of v. Hence (u, v) has a neighbor (g, h)
in S and S is a total dominating set of G×H. Therefore, S is a TC-ID set.

By symmetric arguments we can show that S′ = (V (G) ×DH) ∪ (TG × A∗H) is
a TC-ID set of G ×H for an arbitrary maximal independent set AH of H and a
γt(G)-set TG. Since the sets AG, AH , TG and TH were arbitrarily chosen, the upper
bound follows. �

Again we are not aware of any example where a maximal independent set (that
is not an α(G)-set) would yield a better result in Theorem 3.1 than an α(G)-set.

The bound of Theorem 3.1 performs rather well. We show this by the results
that follow until the end of this section. However, we do not obtain equality in all
cases. The smallest example is probably C5 ×K2 ∼= C10. We have γt,coi(C10) = 7,
but the bound from Theorem 3.1 gives 8. Moreover, this is the smallest member
of the family C6k−1 ×K2 ∼= C12k−2, for an arbitrary positive integer k, for which
γt,coi(C12k−2) = 8k− 1, but the upper bound from Theorem 3.1 gives 8k. Another
example is C5 × C5, where it is not hard to check that

V (C5 × C5)− {(g0, h0), (g0, h1), (g0, h2), (g0, h3), (g0, h4), (g2, h0), (g2, h4), (g3, h2)}

is a TC-ID set of C5 × C5, by taking g0g1g2g3g4g0 as the first cycle C5 and
h0h1h2h3h4h0 as the second C5. With this we have γt,coi(C5 × C5) ≤ 17, but
Theorem 3.1 gives 18.

We can use the example Kp,q ×Kr,s to show that the bound of Theorem 3.1 is
sharp. By some straightforward computations, one obtains from Theorem 3.1 that

γt,coi(Kp,q ×Kr,s) ≤ min{(r + s) min{p, q}+ 2, (p+ q) min{r, s}+ 2}.
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With an additional analysis of the relationship ≥ between p and q, as well as
between r and s, we obtain the same result as in (3.1).

We next study the total co-independent domination number of several examples
of direct products. They all show that the bound of Theorem 3.1 is tight.

Proposition 3.2. For any integer numbers r ≥ t ≥ 2, γt,coi(Kr ×Kt) = r(t− 1).

Proof. On the one hand, from Theorem 1.2 we have that γt,coi(Kr ×Kt) ≥ rt −
α(Kr × Kt) = rt − max{r, t} = r(t − 1). On the other hand, by Theorem 3.1
we obtain γt,coi(Kr × Kt) ≤ min{(r − 1)t, (t − 1)r} = r(t − 1), which gives the
equality. �

Proposition 3.3. Let n, r, t ≥ 2 be integers. If r ≥ t, then γt,coi(Kr,t × Kn) =
nt+ 2.

Proof. If n = 2, then Kr,t × Kn is isomorphic to Kr,t × K1,1. Thus, we have
γt,coi(Kr,t ×K1,1) = min{r, t}+ min{r, t}+ 2 = 2t+ 2 by (3.1). Hence, from now
on we may assume n ≥ 3.

Let Vr and Vt be the bipartite sets of Kr,t of cardinality r and t, respectively.
Let S be a γt,coi(Kr,t × Kn)-set and let Sr = S ∩ (Vr × V (Kn)) and St = S ∩
(Vt × V (Kn)). Suppose first that Vt × V (Kn) = St. The set St is independent
since Vt is independent, and therefore Sr 6= ∅ because S is a total dominating
set. If Sr = {(g, h)}, then the vertices from Vt × {h} have no neighbor in S, a
contradiction. Hence Sr contains at least two vertices. This means that we have
γt,coi(Kr,t × Kn) ≥ nt + 2 in this case. We can ignore the symmetric condition
Vr × V (Kn) ⊆ Sr because we obtain at least nr + 2 ≥ nt + 2 vertices in |S|, a
contradiction with S being a γt,coi(Kr,t ×Kn)-set when r > t.

Now we may assume that Vt × V (Kn) 6= St and Vr × V (Kn) 6= Sr. Since any
two vertices (g, h), (g′, h′) such that g ∈ Vr, g′ ∈ Vt and h 6= h′ are adjacent, it
must happen, for the complement of S to be independent, that Vr × (V (Kn) −
{h}) ⊆ Sr and Vt × (V (Kn) − {h}) ⊆ St for some h ∈ V (Kn). Consequently,
|S| = |Sr| + |St| ≥ (r + t)(n − 1) = rn + tn − r − t. Since r ≥ t ≥ 2 and n ≥ 3,
it happens that rn − r − t ≥ rn − 2r = r(n − 2) ≥ r ≥ 2. Thus, again we have
γt,coi(Kr,t ×Kn) = |S| ≥ tn+ 2.

The other inequality γt,coi(Kr,t × Kn) ≤ min{tn + 2, (n − 1)(r + t)} = tn + 2
(since n ≥ 3) follows from Theorem 3.1 and the proof is complete. �

Proposition 3.4. For any integers r, t with r, t ≥ 4,

γt,coi(Cr ×Kt) =



r

2(t+ 1), if r ≡ 0 (mod 4);

(r − 1)
2 (t+ 1) + t, if r ≡ 1 (mod 4);

r

2(t+ 1) + 1, if r ≡ 2 (mod 4);

r + 1
2 (t+ 1)− 2, if r ≡ 3 (mod 4).
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Proof. Let Cr = g0g1 . . . gr−1g0 (from now on, operations with the subindexes
of such vertices are done modulo r) and let V (Kt) = {h1, . . . , ht}. Let S be a
γt,coi(Cr ×Kt)-set and let A = V (Cr ×Kt)−S. Note that if a vertex (gi, hj) does
not belong to S for some hj ∈ V (Kt), then all the vertices (gi−1, hk), (gi+1, h`) for
every hk, h` ∈ V (Kt)− {hj} must belong to S (otherwise A is not independent).

Suppose first that there exists an edge between two vertices of pCr (A), that is, for
instance, (gi, hj), (gi−1, hj) ∈ A. By the reasons above, (Kgi+1

t −{(gi+1, hj)}) ⊆ S,
(Kgi

t −{(gi, hj)}) ⊆ S, (Kgi−1
t −{(gi−1, hj)}) ⊆ S and also (Kgi−2

t −{(gi−2, hj)}) ⊆
S for A to be independent. In such a case, there exist at most four vertices outside
of S in four consecutive layers Kgi−2

t ,K
gi−1
t ,Kgi

t and K
gi+1
t . Since t ≥ 4, we will

see that this does not give a minimum cardinality to S and that it is better to have
a whole layer Kgi+1

t outside of S.
If there are no edges between vertices of pCr

(A), then the whole layer Kgi

t can be
in A. In such a case, it must happen that Kgi−1

t ,K
gi+1
t ⊆ S. Moreover, Kgi−2

t ∩S 6=
∅ and Kgi+2

t ∩ S 6= ∅, because some vertices from K
gi−2
t and Kgi+2

t must dominate
vertices from K

gi−1
t and Kgi+1

t , respectively. Furthermore, to dominate all vertices
from K

gi−1
t and Kgi+1

t we need at least γt(Kt) = 2 vertices from K
gi−2
t and Kgi+2

t ,
respectively. Also, if Kgi−2

t or Kgi+2
t are not subsets of S, then K

gi−3
t and K

gi+3
t

must be in S because γt(Kt) = 2. We conclude that among any four consecutiveKt-
layers Kgi−3

t ,K
gi−2
t ,K

gi−1
t and Kgi

t at least two of them are completely contained
in S and in addition one of the other two contains at least γt(Kt) = 2 vertices in S.
Since this is better than in the previous paragraph, we can ignore that option.

This means that for every i ∈ {0, . . . , r−1}, |S∩({gi−3, gi−2, gi−1, gi}×V (Kt))| ≥
2t+ 2. Therefore,

γt,coi(Cr×Kt) = |S| = 1
4

r−1∑
i=0
|S∩({gi−3, gi−2, gi−1, gi}×V (Kt))| ≥

r(t+ 1)
2 . (3.2)

Notice that in the above argument we can have also Kgi−2
t ,K

gi+2
t ⊆ S and Kgi−3

t ∩
S = ∅ and K

gi+3
t ∩ S = ∅. This also yields Kgi−4

t ,K
gi+4
t ⊆ S for S to be co-

independent. In this case we have only 2t in S ∩ {gi−3, gi−2, gi−1, gi}, but on
the other hand at least 3t vertices in S ∩ {gi−4, gi−3, gi−2, gi−1}. Because t ≥ 4
this approach gives more vertices in S and we can ignore it. Next we proceed by
analyzing four different situations.

Case 1: r ≡ 0 (mod 4). Clearly, ACr
= {g2i−1 : i ∈ [r/2]} is in I(Cr) and, in

this case, A∗Cr
= {g4i−1 : i ∈ [r/4]} is one option. By Theorem 3.1, we obtain

γt,coi(Cr × Kt) ≤ min{ rt
2 + 2r

4 , (t − 1)r + 0} = r
2 (t + 1), where the last equality

occurs since t ≥ 3. The other inequality comes from (3.2), and we have the desired
equality in this case.

Case 2: r ≡ 1 (mod 4). Now, ACr = {g2i−1 : i ∈ [(r−1)/2]} is in I(Cr) and, in this
case, A∗Cr

= {g4i−1 : i ∈ [(r − 1)/4]}. Clearly, |DCr
| = r+1

2 and |A∗Cr
| = r−1

4 . For
these sets, Theorem 3.1 leads to γt,coi(Cr×Kt) ≤ min

{ (r+1)t
2 + 2(r−1)

4 , (t−1)r+0
}

=
(r−1)(t+1)

2 + t, where the last equality occurs since t ≥ 4 and r ≥ 3.
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For the lower bound, notice that the comments before (3.2) allow us to claim that
there exist at least four consecutive Kt-layers, all four of them having nonempty
intersection with S, because r ≡ 1 (mod 4). Furthermore, among these four layers,
at least three of them are completely contained in S. One of them is treated
separately in the sum of (3.2), and we get

γt,coi(Cr ×Kt) = |S| = 1
4

r−1∑
i=0
|S ∩ ({gi−3, gi−2, gi−1, gi} × V (Kt))|

≥ (r − 1)(2t+ 2)
4 + t = (r − 1)(t+ 1)

2 + t.

Case 3: r ≡ 2 (mod 4). The set ACr = {g2i−1 : i ∈ [r/2]} is in I(Cr) and we
can choose A∗Cr

= {g4i−3 : i ∈ [(r + 2)/4]}. For the set ACr we have |DCr | = r
2

and |A∗Cr
| = r+2

4 . Now, by Theorem 3.1, we obtain γt,coi(Cr × Kt) ≤ min{ rt
2 +

2(r+2)
4 , (t− 1)r + 0} = r

2 (t+ 1) + 1, where the last equality is due to the fact that
t ≥ 4 and r ≥ 3.

For the lower bound, we use a similar argument as in Case 2. Now, there exist
at least five consecutive Kt-layers, all of them with nonempty intersection with S,
because r ≡ 2 (mod 4). Clearly, at least three of them are completely contained
in S. (Notice that one layer with empty intersection with S is possible among
them, however this yields that the remaining four are completely contained in S,
which is not optimal as t ≥ 4.) We deal with two of them separately in the sum of
(3.2), and obtain

γt,coi(Cr ×Kt) = |S| = 1
4

r−1∑
i=0
|S ∩ ({gi−3, gi−2, gi−1, gi} × V (Kt))|

≥ (r − 2)(2t+ 2)
4 + t+ 2 = r(t+ 1)

2 + 1.

Case 4: r ≡ 3 (mod 4). The set ACr
= {g2i−1 : i ∈ [(r − 1)/2]} is independent

and A∗Cr
= {g4i−1 : i ∈ [(r− 3)/4]}. With this, |DCr

| = r+1
2 and also |A∗Cr

| = r−3
4 .

Again by Theorem 3.1, we get γt,coi(Cr×Kt) ≤ min
{ (r+1)t

2 + 2(r−3)
4 , (t−1)r+0

}
=

r+1
2 (t+ 1)− 2, where the last equality holds because t ≥ 4 and r ≥ 3.

For the lower bound, there exist at least two consecutive Kt-layers completely
contained in S, because r ≡ 3 (mod 4). We consider them and one neighboring
layer separately in the sum of (3.2) and get

γt,coi(Cr ×Kt) = |S| = 1
4

r−1∑
i=0
|S ∩ ({gi−3, gi−2, gi−1, gi} × V (Kt))|

≥ (r − 3)(2t+ 2)
4 + 2t = (r + 1)(t+ 1)

2 − 2. �

The next proposition is stated without a proof because one can use a similar
approach as in the proof of Proposition 3.4.
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Proposition 3.5. For any integer numbers r, t with r ≥ 7 and t ≥ 3,

γt,coi(Pr ×Kt) =



r
2 (t+ 1), if r ≡ 0 (mod 4);
r−1

2 (t+ 1), if r ≡ 1 (mod 4);
r−2

2 (t+ 1) + t, if r ≡ 2 (mod 4);
r−3

2 (t+ 1) + t+ 2, if r ≡ 3 (mod 4).

4. The rooted and corona products of graphs

Given a graph G of order n and a graph H with root vertex v, the rooted product
G◦vH is defined as the graph obtained from G and H by taking one copy of G and
n copies of H, and identifying the ith vertex of G with the vertex v in the ith copy
of H for every i ∈ [n]. If H or G is isomorphic to K1, then G ◦v H is equal to G
or H, respectively. In this sense, to obtain the rooted product G ◦v H, hereafter
we only consider graphs G and H of order at least two. For every x ∈ V (G), Hx

will denote the copy of H in G ◦v H containing x. A formula for the independence
number of rooted product graphs can be found in [17].

We need to introduce the following definitions. A near total co-independent
dominating set, abbreviated near-TC-ID set, of a graph G, relative to a vertex v,
is a set D ⊆ V (G) satisfying the following:

(i) v ∈ D;
(ii) V (G)−D is an independent set;
(iii) every vertex u ∈ D − {v} is adjacent to at least one vertex in D.
The minimum cardinality among all near-TC-ID sets of G relative to v is called

the near total co-independent domination number of G relative to v, which we
denote as γnt,coi(G; v). A near-TC-ID set of G relative to v with cardinality
γnt,coi(G; v) is called a γnt,coi(G; v)-set. Notice that every TC-ID set of G that
contains v is a near-TC-ID set of G relative to v.

Next, we present a useful result.

Theorem 4.1. Let G be a graph of order at least three without isolated vertices.
If v ∈ V (G), then

γt,coi(G)− 1 ≤ γnt,coi(G; v) ≤ γt,coi(G) + 1.

Furthermore,
(a) if there is a γt,coi(G)-set that contains v, then γt,coi(G)−1 ≤ γnt,coi(G; v) ≤

γt,coi(G);
(b) if v does not belong to any γt,coi(G)-set, then γt,coi(G) ≤ γnt,coi(G; v) ≤

γt,coi(G) + 1.

Proof. Let D be a γnt,coi(G; v)-set. Suppose there exists a γt,coi(G)-set S that
contains v. We have γnt,coi(G; v) ≤ γt,coi(G) because v ∈ S. If D is also a TC-ID
set of G, then γt,coi(G) ≤ |D| = γnt,coi(G; v), which implies that γnt,coi(G; v) =
γt,coi(G). If D is not a TC-ID set of G, then N(v) ∩ D = ∅. Let u ∈ N(v) and

Rev. Un. Mat. Argentina, Vol. 63, No. 1 (2022)



164 A. CABRERA MARTÍNEZ ET AL.

notice that D′ = D ∪ {u} is a TC-ID set of G. So, γt,coi(G) ≤ |D′| = |D| + 1 =
γnt,coi(G; v) + 1, which completes the proof of (a).

To prove (b), we assume that v does not belong to any γt,coi(G)-set. Let S be
a γt,coi(G)-set. As v /∈ S, the set S′ = S ∪ {v} is a near-TC-ID set of G relative
to v. So γnt,coi(G; v) ≤ |S′| = |S|+ 1 = γt,coi(G) + 1.

Now, suppose that γnt,coi(G; v) < γt,coi(G). Recall that D is a γnt,coi(G; v)-
set and let w ∈ N(v). Notice that D′′ = D ∪ {w} is a TC-ID set of G, so that
γt,coi(G) ≤ |D′′| = |D| + 1 = γnt,coi(G; v) + 1. Thus, we obtain γnt,coi(G; v) =
γt,coi(G)−1, and hence D′′ is a γt,coi(G)-set containing v, which is a contradiction.
Therefore, γnt,coi(G; v) ≥ γt,coi(G) and the proof of (b) is complete. By (a) and
(b), the inequality chain follows. �

Lemma 4.2. If D is a γt,coi(G ◦v H)-set, then

γt,coi(G ◦v H) ≥
∑

x∈V (G)∩D

γnt,coi(H;x) +
∑

x∈V (G)−D

γt,coi(H).

Proof. Let x ∈ V (G). If x ∈ D, then V (Hx)∩D is a near-TC-ID set of Hx relative
to x, which implies that |V (Hx)∩D| ≥ γnt,coi(H;x). If x /∈ D, then V (Hx)∩D is a
TC-ID set of Hx because D is a TC-ID set of G ◦v H. So |V (Hx)∩D| ≥ γt,coi(H).
Therefore,

γt,coi(G ◦v H) =
∑

x∈V (G)∩D

|V (Hx) ∩D|+
∑

x∈V (G)−D

|V (Hx) ∩D|

≥
∑

x∈V (G)∩D

γnt,coi(H;x) +
∑

x∈V (G)−D

γt,coi(H). �

Theorem 4.3. Let G be a graph of order n ≥ 2 without isolated vertices. For any
graph H of order at least three with root v and without isolated vertices,

γt,coi(G ◦v H) ∈ {n(γt,coi(H)− 1), nγt,coi(H), n(γt,coi(H) + 1)− α(G)}.
Furthermore,

(i) if γnt,coi(H; v) = γt,coi(H)− 1, then γt,coi(G ◦v H) = n(γt,coi(H)− 1);
(ii) if γnt,coi(H; v) = γt,coi(H), then γt,coi(G ◦v H) = nγt,coi(H);
(iii) if γnt,coi(H; v) = γt,coi(H)+1, then γt,coi(G◦vH) = n(γt,coi(H)+1)−α(G).

Proof. Let D be a γt,coi(G ◦v H)-set. We consider three cases.
Case 1: γnt,coi(H; v) = γt,coi(H) − 1. Let SH be a γnt,coi(H; v)-set (which

contains v). We obtain S by taking a copy of SH in every copy of H. Such a set
is a TC-ID set of G ◦v H of cardinality nγnt,coi(H; v) = n(γt,coi(H) − 1). Hence,
γt,coi(G ◦v H) ≤ n(γt,coi(H)− 1). By Lemma 4.2 we obtain

γt,coi(G ◦v H) ≥
∑

x∈V (G)∩D

γnt,coi(H;x) +
∑

x∈V (G)−D

γt,coi(H)

≥
∑

x∈V (G)∩D

(γt,coi(H)− 1) +
∑

x∈V (G)−D

γt,coi(H)

= |V (G) ∩D|(γt,coi(H)− 1) + |V (G)−D|γt,coi(H).
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Thus, we have

n(γt,coi(H)− 1) ≥ |V (G) ∩D|(γt,coi(H)− 1) + |V (G)−D|γt,coi(H)

and −n ≥ −|V (G) ∩D| follows. This holds only when V (G) ∩D = V (G). Hence,
γt,coi(G ◦v H) = n(γt,coi(H)− 1), and (i) follows.

Case 2: γnt,coi(H; v) = γt,coi(H). We construct, as in Case 1, a TC-ID set S of
G ◦v H of cardinality nγnt,coi(H; v) = nγt,coi(H). So γt,coi(G ◦v H) ≤ nγt,coi(H).
Again by Lemma 4.2 we get

γt,coi(G ◦v H) ≥
∑

x∈V (G)∩D

γnt,coi(H;x) +
∑

x∈V (G)−D

γt,coi(H)

=
∑

x∈V (G)

γt,coi(H) +
∑

x∈V (G)−D

γt,coi(H)

= nγt,coi(H).

Hence, γt,coi(G ◦v H) = nγt,coi(H), and (ii) follows.

Case 3: γnt,coi(H; v) = γt,coi(H) + 1. By Theorem 4.1 we know that v does not
belong to any γt,coi(H)-set. Let SH be a γt,coi(H)-set and let B be a β(G)-set,
which has cardinality n−α(G) by Theorem 1.1. We obtain the set S by union of B
and a copy of SH in every copy of H. Since V (G)−B is independent, S is a TC-ID
set of G ◦v H of cardinality nγt,coi(H) + (n−α(G)) = n(γt,coi(H) + 1)−α(G). So
γt,coi(G ◦v H) ≤ n(γt,coi(H) + 1)− α(G).

Observe also that V (G)−D is an independent set, and so |V (G)∩D| ≥ n−α(G).
Hence, by Lemma 4.2 we have

γt,coi(G ◦v H) ≥
∑

x∈V (G)∩D

γnt,coi(H;x) +
∑

x∈V (G)−D

γt,coi(H)

=
∑

x∈V (G)∩D

(γt,coi(H) + 1) +
∑

x∈V (G)−D

γt,coi(H)

= nγt,coi(H) + |V (G) ∩D|
≥ nγt,coi(H) + (n− α(G))
= n(γt,coi(H) + 1)− α(G).

Hence, γt,coi(G ◦v H) = n(γt,coi(H) + 1)− α(G), and (iii) follows.

Therefore, γt,coi(G◦vH) ∈ {n(γt,coi(H)−1), nγt,coi(H), n(γt,coi(H)+1)−α(G)},
which completes the proof. �

A particular case of the total co-independent domination number of rooted prod-
uct graphs G ◦v H, specifically when H contains a universal vertex, is presented
below.
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Theorem 4.4. Let G be a graph of order nG ≥ 2 with no isolated vertex and let
H be a graph of order nH ≥ 3. If H has a universal vertex v, then

γt,coi(G ◦v H) =
{
nG, H ∼= K1,t;
nG(nH − α(H)), H � K1,t.

Proof. If H is a star graph with universal vertex v, then it is straightforward to see
that γt,coi(G◦vH) = nG. From now on, we assume that H is a graph different from
a star. So α(H) ≤ nH −2. As v is a universal vertex of H, there exists a γt,coi(H)-
set S containing v and by Lemma 1.3, γt,coi(H) = |S| = nH−α(H). Also, we notice
that every γnt,coi(H; v)-set is a TC-ID set of H, and so γt,coi(H) ≤ γnt,coi(H; v).
By Theorem 4.1 (a), it follows that γnt,coi(H; v) = γt,coi(H) and consequently
γt,coi(G ◦v H) = nGγt,coi(H) by Theorem 4.3 (ii). �

Let G and H be two graphs of order nG and nH , respectively. The corona
product graph G � H is defined as the graph obtained from G and H by taking
one copy of G and nG copies of H and joining by an edge every vertex from the
ith copy of H with the ith vertex of G. Notice that any corona graph G � H
can be presented as a rooted product graph G ◦v H

′, where H ′ ∼= K1 ∨ H and v
is the vertex of K1. Also, observe that α(H ′) = α(H). Hence, Lemma 1.3 and
Theorem 4.4 lead to the following result.

Theorem 4.5. If G is a graph of order nG ≥ 2 with no isolated vertex, then for
every graph H of order nH ≥ 2,

γt,coi(G�H) =
{
nG, H ∼= Kt;
nG(nH − α(H) + 1), H � Kt.
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Math. 2 (1959), 133–138. MR 0131370.

[13] D. Geller and S. Stahl, The chromatic number and other functions of the lexicographic
product, J. Combinatorial Theory Ser. B 19 (1975), no. 1, 87–95. MR 0392645.
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Universitat Politécnica de Valencia, Departamento de Estad́ıstica e Investigación Operativa
Aplicadas y Calidad, Spain
suicabga@eio.upv.es

I. Peterin
University of Maribor, Faculty of Electrical Engineering and Computer Science, Slovenia, and
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