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CANAL SURFACES WITH GENERALIZED 1-TYPE
GAUSS MAP

JINHUA QIAN, MENGFEI SU, AND YOUNG HO KIM

Abstract. This work considers a kind of classification of canal surfaces in
terms of their Gauss map G in Euclidean 3-space. We introduce the notion of
generalized 1-type Gauss map for a submanifold that satisfies ∆G = fG+gC,
where ∆ is the Laplace operator, C is a constant vector, and (f, g) are non-zero
smooth functions. First of all, we show that the Gauss map of any surface of
revolution with unit speed profile curve in Euclidean 3-space is of generalized
1-type. At the same time, the canal surfaces with generalized 1-type Gauss
map are discussed.

1. Introduction

In the 1970’s, Chen introduced the notion of finite-type submanifolds in Eu-
clidean space or pseudo-Euclidean space, which was extended to differential maps,
in particular to Gauss maps of submanifolds. The notions of finite-type immersion
and finite-type Gauss map are very useful tools in investigating and characterizing
many important submanifolds [3, 1, 2]. The simplest finite-type Gauss map is of
1-type, i.e., the Gauss map G of a submanifold M in Euclidean space or pseudo-
Euclidean space satisfies ∆G = λ(G + C) for some constant λ ∈ R (λ 6= 0) and a
constant vector C, where ∆ denotes the Laplace operator defined on M, given by

∆ = − 1√
G

∑
i,j

∂

∂xi

(√
Gg̃ij ∂

∂xj

)
,

where (x1, . . . , xn) is a local coordinate system of M, g̃ij the components of the
inverse matrix of the first fundamental form of M, and G the determinant of the
first fundamental form of M. Planes, circular cylinders, and spheres in Euclidean
3-space are typical examples of surfaces with 1-type Gauss maps [12].

As a generalization of 1-type Gauss map, the definition of submanifold with
pointwise 1-type Gauss map is proposed in [9], which takes the form ∆G = f(G+C)
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for a non-zero smooth function f and a constant vector C. For example, a helicoid, a
catenoid, and a right cone in Euclidean 3-space are typical examples of surfaces with
pointwise 1-type Gauss maps. Some related works have been done; for example,
surfaces of revolution with pointwise 1-type Gauss map were studied in [5], and
ruled submanifolds and hypersurfaces of Euclidean space with pointwise 1-type
Gauss map were discussed in [6, 7, 9].

Very recently, the authors of [12] considered a cylindrical surface parameterized
by

x(s, t) =
(s

2 cos(ln s) + s

2 sin(ln s),−s2 cos(ln s) + s

2 sin(ln s), t
)
,

whose Gauss map satisfies

∆G = 1
s2 (1 + cot(ln s))G− 1

s2 csc(ln s)(0, 1, 0).

This example yields the following definition.

Definition 1.1 ([12]). The Gauss map G of a submanifold M in Em is of generalized
1-type if the Gauss map G of M satisfies

∆G = fG + gC (1.1)
for some non-zero functions (f, g) on M and a constant vector C, where ∆ denotes
the Laplace operator defined on M.

Indeed, the notion of generalized 1-type Gauss map can be regarded as a gener-
alization of both 1-type Gauss map and pointwise 1-type Gauss map, since if both
f and g are non-zero constants, then (1.1) can be written as ∆G = λ(G + C),
(0 6= λ ∈ R). In this case, the Gauss map is just of 1-type in the usual sense. If the
function f is equal to g, (1.1) can be expressed as ∆G = f(G+C), which is called
the Gauss map of pointwise 1-type. More precisely, the pointwise 1-type Gauss
map is said to be of the first kind when C = 0, and of the second kind otherwise.
If f and g vanish identically, then G is said to be harmonic.

Based on the definition of generalized 1-type Gauss map, the authors of [12]
completely classified developable surfaces in Euclidean 3-space with a generalized
1-type Gauss map, i.e., cylindrical surfaces, conical surfaces, and tangent devel-
opable surfaces. Naturally, this idea of generalized 1-type Gauss map of submani-
folds can be extended into many other submanifolds both in Euclidean space and
in pseudo-Euclidean space.

The class of surfaces formed by sweeping a sphere was first investigated by Monge
in 1850, who named them canal surfaces. Canal surfaces may be generated either by
sweeping a sphere along a path, or by sweeping a particular circular cross-section of
the sphere along the same path [8]. Canal surfaces are useful for representing long
thin objects, e.g., pipes, poles, ropes, 3D fonts or intestines; they are also frequently
used in solid and surface modelling for CAD/CAM. Representative examples are
natural quadrics, tori, tubular surfaces, and Dupin cyclides. In 2016, the authors
of [8] investigated the geometric properties of canal surfaces in Euclidean 3-space,
and in 2019 they classified canal surfaces with pointwise 1-type Gauss map in [11].
Based on the conclusions achieved in [11] and the definition of generalized 1-type
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Gauss map, we would like to discuss in this work the canal surfaces with generalized
1-type Gauss map.

This paper is organized as follows. In Section 2, some fundamental facts of
canal surfaces are briefly recalled. In Section 3, surfaces of revolution and canal
surfaces with generalized 1-type Gauss map are surveyed. Finally, some examples
with generalized 1-type Gauss map are shown in Section 4.

Throughout this paper, we assume that all objects are smooth and all surfaces
are connected, unless otherwise stated.

2. Preliminaries

Let M be a hypersurface in the Euclidean (n + 1)-space En+1. We denote the
Levi-Civita connections of En+1 and M by ∇̃ and ∇, respectively. Let X, Y be
vector fields tangent to M and let ξ be a unit normal vector field of M. Then the
Gauss and Weingarten formulas are given respectively by

∇̃XY = ∇XY + h(X,Y ),
∇̃Xξ = −AξX.

Here, h is the second fundamental form and Aξ is the shape operator (or the
Weingarten operator) in the direction of ξ on M. The eigenvalues and eigenvectors
of Aξ are called the principal curvatures and principal directions of M, respectively.

The mean curvature H of M is defined by H =
√
〈 ~H, ~H〉, where ~H = 1

n trh is the
mean curvature vector field and trh is the trace of h. The map G : M→ Sn ⊂ En+1

that maps each point of M to the unit normal vector to M at the point is called
the Gauss map of M, where Sn denotes the unit hypersphere centered at the origin
of En+1.

For a hypersurface in the Euclidean space En+1, the following lemma plays an
important role.

Lemma 2.1 ([4]). Let M be an oriented hypersurface in the Euclidean space En+1.
Then the Laplacian of the Gauss map G of M satisfies

∆G = ‖AG‖2G + n∇H, (2.1)

where ‖AG‖2 = tr(AGAG) and ∇H is the gradient of the mean curvature H.

Note that, for a surface in E3, the gradient ∇H can be obtained by the following
lemma.

Lemma 2.2 ([10]). Let M be an oriented surface in E3. Then the gradient ∇f of
a smooth function f defined on M can be formulated by

∇f = 1
g11g22 − (g12)2 {(g22fs − g12ft)∂s + (−g12fs + g11ft)∂t},

where {s, t} is a local coordinate system of M such that 〈∂s, ∂s〉 = g11, 〈∂s, ∂t〉 =
g12, and 〈∂t, ∂t〉 = g22, and fs, ft are the partial derivatives of f with respect to s
and t, respectively.
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In order to classify completely the canal surfaces with generalized 1-type Gauss
map, we review some basic facts of canal surfaces in E3 according to [8].

A canal surface M in E3 is an immersed surface swept out by a sphere moving
along an arbitrary curve c = c(s) or by a particular circular cross-section of the
sphere along the same path. Due to the generating process, the parametrization
of M can be given as
x(s, θ) = c(s) + r(s){cosϕ(s)T (s) + sinϕ(s) cos θN(s) + sinϕ(s) sin θB(s)}, (2.2)

where θ ∈ [0, 2π), ϕ ∈ [0, π), and −r′(s) = cosϕ for some smooth function ϕ(s).
The curve c(s) is called the spine curve (or center curve) and r(s) is called the
radial function of M. In particular, if c(s) is a straight line then M is a surface of
revolution, and if r(s) is a constant then M is a tube (or pipe surface). In what
follows, T,N,B are respectively the unit tangent, principal normal, and binormal
vector fields defined along the spine curve c.

Initially, from (2.2) and the Frenet formula of a regular space curve c in E3 with
curvature κ and torsion τ , the quantities of the first fundamental form are given
by
g11 = 〈xs, xs〉

= r2(κ2 sin2 ϕ cos2 θ + r′2κ2 + τ2 sin2 ϕ+ ϕ′2 + 2κϕ′ cos θ + 2r′κτ sinϕ sin θ)
− (2rr′′ + 2rκ sinϕ cos θ − sin2 ϕ),

g12 = 〈xs, xθ〉 = r2τ sin2 ϕ+ r2r′κ sinϕ sin θ,
g22 = 〈xθ, xθ〉 = r2 sin2 ϕ,

(2.3)
where

xs = ∂x

∂s
= x1

sT + x2
sN + x3

sB, xθ = ∂x

∂θ
= x1

θN + x2
θB,

and
x1
s = sin2 ϕ− rr′′ − rκ sinϕ cos θ,
x2
s = r′ sinϕ cos θ − rr′κ− rτ sinϕ sin θ − rr′ϕ′ cos θ,
x3
s = r′ sinϕ sin θ + rτ sinϕ cos θ − rr′ϕ′ sin θ,
x1
θ = −r sinϕ sin θ, x2

θ = r sinϕ cos θ.

(2.4)

Then, we have
g11g22 − (g12)2 = r2(rr′′ + rκ sinϕ cos θ − sin2 ϕ)2. (2.5)

Meanwhile, the Gauss map G of M is given by

G = xs × xθ
‖xs × xθ‖

= cosϕT + sinϕ cos θN + sinϕ sin θB, (2.6)

from which we have
Gs = −(r′′ + κ sinϕ cos θ)T − (r′κ+ r′ϕ′ cos θ + τ sinϕ sin θ)N

+ (τ sinϕ cos θ − r′ϕ′ sin θ)B,
Gθ = − sinϕ sin θN + sinϕ cos θB.

(2.7)
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Based on (2.4) and (2.7), the shape operator of M is obtained as

AG =

 −QP R
rP

0 − 1
r

, (2.8)

where
P = rr′′ + rκ sinϕ cos θ − sin2 ϕ,

Q = r′′ + κ sinϕ cos θ,
R = τ sin2 ϕ+ r′κ sinϕ sin θ.

(2.9)

Note that, from (2.5), P 6= 0 everywhere due to the regularity of M.
From (2.8), we see that the Gaussian curvature K and the mean curvature H

are written, respectively, as

K = Q

rP
, H = 2P + sin2 ϕ

−2rP . (2.10)

At the same time, we have the following result.

Proposition 2.3 ([8]). The Gaussian curvature K and the mean curvature H of
a canal surface M in E3 are related by

H = −1
2

(
Kr + 1

r

)
.

3. Main results

In this section, we will focus on the surfaces of revolution and canal surfaces
which have generalized 1-type Gauss maps.

3.1. Surfaces of revolution with generalized 1-type Gauss map. Let M be
a surface of revolution in E3 parameterized by

x(s, θ) = (ψ(s), φ(s) cos θ, φ(s) sin θ) (3.1)

for some smooth functions ψ and φ. Without loss of generality, we assume that
the profile curve is of unit speed, i.e., ψ′2 + φ′2 = 1. A direct computation shows
that the Gauss map G of M is

G = (φ′,−ψ′ cos θ,−ψ′ sin θ). (3.2)

Then, the Laplacian ∆G of the Gauss map G can be written as

∆G = − 1
φ

(
φ
∂2G
∂s2 + φ′ ∂G

∂s
+ 1
φ

∂2G
∂θ2

)
.

Explicitly, it can be expressed as

∆G =
(
−φ

′φ′′

φ
− φ′′′,

(
ψ′′′ + φ′ψ′′

φ
− ψ′

φ2

)
cos θ,

(
ψ′′′ + φ′ψ′′

φ
− ψ′

φ2

)
sin θ

)
.

(3.3)
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Suppose that M has generalized 1-type Gauss map, i.e., ∆G = fG + gC, where
C = (C1, C2, C3) is a constant vector. Substituting (3.2) and (3.3) into (1.1), we
obtain 

fφ′ + gC1 = −φ
′φ′′

φ
− φ′′′,

f(−ψ′ cos θ) + gC2 =
(
ψ′′′ + φ′ψ′′

φ
− ψ′

φ2

)
cos θ,

f(−ψ′ sin θ) + gC3 =
(
ψ′′′ + φ′ψ′′

φ
− ψ′

φ2

)
sin θ.

The second and third of these equations obviously imply that C2 = C3 = 0. And

f(s) = 1
φ2 −

φ′ψ′′

φψ′ −
ψ′′′

ψ′ ,

g(s) = 1
C1

(
−φ′′′ − φ′

φ2 −
φ′φ′′

φ
+ ψ′′φ′2

φψ′ + φ′ψ′′′

ψ′

)
= 1
C1

(
−φ′′′ − φ′

φ2 + ψ′′

φψ′ + φ′ψ′′′

ψ′

)
,

(3.4)

where C1 is a non-zero constant.
Conversely, if we use the above information with the given functions ψ and φ, a

surface of revolution with unit speed profile curve satisfies ∆G = fG+ gC for such
non-zero functions (f, g) and a constant vector C. Thus, we have the following
result.

Theorem 3.1. Any surface of revolution M with unit speed profile curve in E3 has
generalized 1-type Gauss map. Explicitly, the Gauss map G of M satisfies

∆G = fG + gC

for some non-zero smooth functions (f, g) given by (3.4) and a constant vector
C = (C1, 0, 0), where C1 is a non-zero constant.

3.2. Canal surfaces with generalized 1-type Gauss map. In [11], the authors
obtained the Laplacian of the Gauss map G for a canal surface M. We will recall
the relevant process as follows.

By (2.8) and (2.9), we have

‖AG‖2 = r2Q2 + P 2 +R2

r2P 2 ,
D

r2P 2 . (3.5)

From (2.10), the partial derivatives of mean curvature can be written as

Hs = 2r2r′κ2 sin2 ϕ cos2 θ − (2rr′κ− r2κ′) sin3 ϕ cos θ + 5r2r′r′′κ sinϕ cos θ
2r2P 2

+ −2rr′r′′ sin2 ϕ+ r2r′′′ sin2 ϕ+ 4r2r′r′′2 + r′ sin4 ϕ

2r2P 2 ,

Hθ = −κ sin3 ϕ sin θ
2P 2 .

(3.6)
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By Lemma 2.2, (2.5) and (3.6), we get

∇H(x) = 1
r2P 2

[
(x1
sU)T + (x2

sU + x1
θV )N + (x3

sU + x2
θV )B

]
, (3.7)

where we have put

U = g22Hs − g12Hθ, V = −g12Hs + g11Hθ. (3.8)

Substituting (2.6), (3.5), and (3.7) into (2.1) with n = 2 in Lemma 2.1, we get

∆G = (D cosϕ+ 2x1
sU)T + [D sinϕ cos θ + 2(x2

sU + x1
θV )]N

r2P 2

+ [D sinϕ sin θ + 2(x3
sU + x2

θV )]B
r2P 2 .

(3.9)

Based on the above information, we have the following conclusions.

Theorem 3.2. An oriented canal surface M in E3 has generalized 1-type Gauss
map if and only if it is one of the following surfaces:

(1) a surface of revolution such as

x(s, θ) = (r(s) cosϕ(s) + s, r(s) sinϕ(s) cos θ, r(s) sinϕ(s) sin θ),

where r(s) satisfies (3.22);
(2) a torus.

Proof. Suppose that an oriented canal surface M satisfies ∆G = fG+gC. Without
loss of generality, we may decompose the constant vector C as

C = C1T + C2N + C3B, (3.10)

where C1 = 〈C, T 〉, C2 = 〈C,N〉, C3 = 〈C,B〉.
Substituting (2.6), (3.9), and (3.10) into ∆G = fG + gC, we obtain

D cosϕ+ 2x1
sU = r2P 2(f cosϕ+ gC1),

D sinϕ cos θ + 2(x2
sU + x1

θV ) = r2P 2(f sinϕ cos θ + gC2),
D sinϕ sin θ + 2(x3

sU + x2
θV ) = r2P 2(f sinϕ sin θ + gC3).

(3.11)

From the first equation of (3.11), we have the following two cases:

Case 1: r′ = − cosϕ 6= 0. In this case, we have

f = D cosϕ+ 2x1
sU

r2P 2 cosϕ − gC1

cosϕ. (3.12)

Taking (3.12) into the second and third equations of (3.11), we have

g = 2(x2
sU + x1

θV ) cosϕ− 2x1
sU sinϕ cos θ

r2P 2(C2 cosϕ− C1 sinϕ cos θ)

= 2(x3
sU + x2

θV ) cosϕ− 2x1
sU sinϕ sin θ

r2P 2(C3 cosϕ− C1 sinϕ sin θ) .

(3.13)
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According to (3.13), we have

[C3(x2
sU + x1

θV )− C2(x3
sU + x2

θV )] cos2 ϕ− x1
sU sinϕ cosϕ(C3 cos θ − C2 sin θ)

= C1 sinϕ cosϕ[(x2
sU + x1

θV ) sin θ − (x3
sU + x2

θV ) cos θ]. (3.14)

Rearranging (3.14) with the help of (2.4) and (3.8), we get

(g22Hs − g12Hθ)
× [(sinϕ− rr′ϕ′ − rκ sin2 ϕ cos θ)(C3 cos θ − C2 sin θ)− C3rr

′2κ− C1rτ sin2 ϕ

− rr′τ sinϕ(C3 sin θ + C2 cos θ)− C1rr
′κ sinϕ sin θ]

= (g11Hθ − g12Hs)[rr′ sinϕ(C3 sin θ + C2 cos θ) + C1r sin2 ϕ].
(3.15)

Because {cos(mθ), sin(mθ) | m ∈ N} forms a set of linearly independent func-
tions, considering the coefficients of cos 4θ and sin 4θ in (3.15) with the help of
(2.3) and (3.6), we have {

C2r
3κ3 sin4 ϕ = 0,

C3r
3κ3 sin4 ϕ = 0.

(3.16)

From (3.16), we consider the open subset O = {p ∈M | κ(p) 6= 0} of M. Suppose
that O is not empty. On O, since r 6= 0 and sinϕ 6= 0, we have C2 = C3 = 0. By
(3.15), we have

C1[(g22Hs − g12Hθ)(r′κ sin θ + τ sinϕ) + (g11Hθ − g12Hs) sinϕ] = 0. (3.17)

Furthermore, by comparing the coefficients of the highest degree of the power of
sin 3θ in (3.17), we obtain that C1 = 0, then C = (0, 0, 0). In this situation, M has
pointwise 1-type Gauss map of the first kind, i.e., ∆G = fG. In this case, O is
part of a catenoid or a surface of revolution, i.e., κ = 0 (for the details, see [11]).
Therefore, O is empty and κ ≡ 0, i.e., M is a surface of revolution. Simplifying
(3.15) with the help of (2.3) and (3.6), we have

(C3 cos θ−C2 sin θ)(sinϕ−rϕ′)(−2rr′r′′ sin2 ϕ+r2r′′′ sin2 ϕ+4r2r′r′′2+r′ sin4 ϕ) = 0
(3.18)

At the same time, when κ = 0, by (3.6)

Hs = −2rr′r′′ sin2 ϕ+ r2r′′′ sin2 ϕ+ 4r2r′r′′2 + r′ sin4 ϕ

2r2P 2 , Hθ = 0.

Then equation (3.18) can be written as

(C3 cos θ − C2 sin θ)(sinϕ− rϕ′)Hs = 0.

Obviously, from this it follows that Hs = 0 or C2 = C3 = 0. (Note that sinϕ−rϕ′ 6=
0 or else P = 0 and M is degenerate.)

Case 1.1: Hs = 0. Due to Hθ = 0 with κ = 0, M has constant mean curvature.
From the conclusion in [11], M has pointwise 1-type Gauss map of the first kind.
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Case 1.2: C2 = C3 = 0. From (3.11), we have
f = D

r2P 2 + 2r′U(sinϕ− rϕ′)
r2P 2 sinϕ ,

g = 2U(sinϕ− rϕ′)
C1r2P 2 sinϕ .

(3.19)

Since P,D,U are all functions of s when κ = 0, (3.19) yields that the functions f, g
depend on s only, i.e., f = f(s), g = g(s). Then, simplifying (3.19) with the help
of (3.5), (3.6), and (3.8), we get

f(s) = 1
r2 + r2K2 + τ2(1− r′2)2K2 − 2rr′r′′HsK

r′′2 ,

g(s) = −2rHsK

C1r′′ .

(3.20)

It is obvious that M is a surface of revolution with generalized 1-type Gauss map.
Without loss of generality, we may assume the center curve c(s) = (s, 0, 0) and
T = (1, 0, 0), N = (0, 1, 0), B = (0, 0, 1). Then, M can be represented by

x(s, θ) = (r(s) cosϕ(s) + s, r(s) sinϕ(s) cos θ, r(s) sinϕ(s) sin θ).
Comparing the above parametrization of M with the general form of the surface

of revolution as stated in (3.1), we let ψ(s) = r(s) cosϕ(s) +s, φ(s) = r(s) sinϕ(s),
and ψ′2(s) + φ′2(s) = 1, i.e.,

(1− r′2 − rr′′)2 = 1− r′2.

Solving the above differential equation, we get
(r + c)(2cr − c2) 1

2 = 3cs+ c0, (c, c0 ∈ R). (3.21)
Via Mathematica, we get a real solution of r(s) as follows:

r(s) = − 3c2
3
√

4B
− B

6c 3
√

2
− c

2 , (3.22)

where A = −972c4s2 − 648c3c0s− 108c2c20 − 54c6, B = (A+
√
−2916c16 +A2) 1

3 .
At the same time, if we combine the expression forms of (f, g) in (3.20) and

(3.4) we have 
f(s) = 1

r2 sin2 ϕ
+ ϕ′ cos2 ϕ

r sin2 ϕ
− ϕ′′ cosϕ

sinϕ + ϕ′2,

g(s) = 1
C1

(
ϕ′′

sinϕ −
cosϕ

r2 sin2 ϕ
− ϕ′ cosϕ
r sin2 ϕ

)
.

(3.23)

Thus, the Gauss map G of M is of generalized 1-type for some non-zero smooth
functions (f, g) given by (3.23) and a constant vector C = (C1, 0, 0), where C1 is a
non-zero constant.

Case 2: r′ = − cosϕ = 0, i.e., M is a tube surface.
Suppose the interior O of the subset {p ∈M | κ(p) = 0} of M is non-empty, i.e.,

r′ = 0, κ = 0 on the open set O. This means that O is part of a circular cylinder,
and it has 1-type Gauss map of the first kind in the usual sense, i.e., the function f
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is a non-zero constant [11]. Therefore, O is empty. Thus, we may assume that
r′ = 0, κ 6= 0.

First of all, suppose that C1 6= 0. Then, from the first equation of (3.11) we get

g = 2x1
sU

C1r2P 2 . (3.24)

Taking (3.24) into the second and third equations of (3.11), we obtain

f = D

r2P 2 + 2(x2
sU + x1

θV )
r2P 2 sinϕ cos θ −

2C2x
1
sU

C1r2P 2 sinϕ cos θ

= D

r2P 2 + 2(x3
sU + x2

θV )
r2P 2 sinϕ sin θ −

2C3x
1
sU

C1r2P 2 sinϕ sin θ .

According to this equation, we have

C1
[
(x2
sU + x1

θV ) sin θ − (x3
sU + x2

θV ) cos θ
]

= x1
sU(C2 sin θ − C3 cos θ). (3.25)

Simplifying (3.25) with the help of (2.3), (2.4), (2.9), and (3.8), considering the
coefficient of the power of sin θ in (3.25), we get C1rκ = 0, and hence C1 = 0. This
is a contradiction. Therefore, C1 = 0. Together with the first equation of (3.11),
we have x1

sU = 0, i.e.,
κ′ cos θ + κτ sin θ = 0.

Therefore, κ = c (0 6= c ∈ R) and τ = 0; then the center curve c of M is a circle.
This, together with the fact that r is constant, implies that M is a torus.

Furthermore, from the second and third equations of (3.11), we have

f = D

r2P 2 + 2x1
θV

r2P 2 sinϕ cos θ −
gC2

sinϕ cos θ

= D

r2P 2 + 2x2
θV

r2P 2 sinϕ sin θ −
gC3

sinϕ sin θ ,

g = 2V (x1
θ sin θ − x2

θ cos θ)
r2P 2(C2 sin θ − C3 cos θ) .

(3.26)

Simplifying (3.26) with the help of (2.3), (2.4), (2.9), and (3.8), we have
f = f(θ) = 4H2 − 2K − 4rκ(H2 −K)(C2 cos θ + C3 sin θ) sin θ

(C2 sin θ − C3 cos θ) ,

g = g(θ) = 4rκ(H2 −K) sin θ
C2 sin θ − C3 cos θ .

(3.27)

SinceK,H are all functions of θ only when r′ = 0, (3.27) yields that the functions
(f, g) depend only on θ. Therefore, the Gauss map G of M is of generalized 1-type
for some non-zero smooth functions (f, g) given by (3.27) and a constant vector
C = (0, C2, C3), where C2

2 + C2
3 6= 0.

Conversely, suppose that M is a torus or a surface of revolution parameterized
by

x(s, θ) = (r(s) cosϕ(s) + s, r(s) sinϕ(s) cos θ, r(s) sinϕ(s) sin θ)
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satisfying (3.22). One can easily check that ∆G = fG+gC is satisfied for some non-
zero smooth functions (f, g) given by (3.23) and (3.27) with the constant vectors
C = (0, C2, C3) and C = (C1, 0, 0), respectively. This completes the proof. �

As immediate consequences of the above theorem, we can easily get the following
conclusions.

Corollary 3.3. Let an oriented canal surface M with generalized 1-type Gauss
map be a surface of revolution. Then the Gauss map G of M satisfies

∆G = fG + gC

for some non-zero smooth functions (f(s), g(s)) given by (3.23) and a constant
vector C = (C1, 0, 0), where C1 is a non-zero constant.

Corollary 3.4. Let an oriented canal surface M with generalized 1-type Gauss
map be a torus. Then the Gauss map G of M satisfies

∆G = fG + gC

for some non-zero smooth functions (f(θ), g(θ)) given by (3.27) and a constant
vector C = (0, C2, C3, ), where C2, C3 ∈ R and C2

2 + C2
3 6= 0.

Remark 3.5. The canal surfaces with pointwise 1-type Gauss maps and the ones
which have 1-type Gauss maps have been discussed in [11].

4. Examples

In this section, we present some examples with generalized 1-type Gauss map.

Example 4.1. Let M be a surface of revolution with unit speed profile curve,
parameterized by

x(s, θ) = (∫ sin s2ds, ∫ cos s2ds cos θ, ∫ cos s2ds sin θ).
Then, its Gauss map G is given by

G = (− cos s2, sin s2 cos θ, sin s2 sin θ).
The Laplacian ∆G of the Gauss map G satisfies ∆G = fG + gC for smooth
functions f and g as follows:

f(s) = 1
(
∫

cos s2ds)2 −
2s cos2 s2

sin s2
∫

cos s2ds
− 2 cos s2

sin s2 + 4s2,

g(s) = cos s2

C1(
∫

cos s2ds)2 −
2s cos s2

C1 sin s2
∫

cos s2ds
− 2
C1 sin s2 ,

where C = (C1, 0, 0), C1 a non-zero constant.

Example 4.2. Let M be a torus with c(s) = (sin s, 0, cos s), r = 1
2 , parameterized

by
x(s, θ) = (sin s− 1

2 sin s cos θ, 1
2 sin θ, cos s− 1

2 cos s cos θ).
Then, its Gauss map G is given by

G = (sin s cos θ,− sin θ, cos s cos θ).
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The Laplacian ∆G of the Gauss map G satisfies ∆G = fG + gC, where
f(θ) = 8 cos2 θ − 16 cos θ + 16

(cos θ − 2)2 − 8 sin θ(C2 cos θ + C3 sin θ)
(cos θ − 2)2(C2 sin θ − C3 cos θ) ,

g(θ) = 8 sin θ
(cos θ − 2)2(C2 sin θ − C3 cos θ)

and C = (0, C2, C3), C2, C3 ∈ R, C2
2 + C2

3 6= 0.

Figure 1. The surface of
revolution in Example 4.1.

Figure 2. The torus
in Example 4.2.

Example 4.3. Let M be a surface of revolution parameterized by

x(s, θ) = (r(s) cosϕ+ s, r(s) sinϕ cos θ, r(s) sinϕ sin θ),

where r(s) satisfies (3.21), i.e., (r + c)(2cr − c2) 1
2 = 3cs + c0 (c, c0 ∈ R). We put

c = 1, c0 = 0; then r(s) is given by

r(s) = 1
2

(
−1 + 1

T
+ T

)
,

where T = (1 + 18s 1
3 + 6

√
s2 + 9s4) 1

3 .
The surface M has generalized 1-type Gauss map as shown in Theorem 3.2.

Figure 3. The surface of revolution in Example 4.3.
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