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SELBERG ZETA-FUNCTION ASSOCIATED TO COMPACT
RIEMANN SURFACE IS PRIME

RAMUNAS GARUNKSTIS

ABSTRACT. Let Z(s) be the Selberg zeta-function associated to a compact
Riemann surface. We consider decompositions Z(s) = f(h(s)), where f and
h are meromorphic functions, and show that such decompositions can only be
trivial.

1. INTRODUCTION

We continue the investigation of decompositions of the Selberg zeta-function
which was started in Garunkstis and Steuding [6]. First we reproduce required
definitions. Let s = o+t be a complex variable and X a compact Riemann surface
of genus g > 2 with constant negative curvature —1. The surface X can be written
as a quotient I'\H, where I' C PSL(2,R) is a strictly hyperbolic Fuchsian group
and H is the upper half-plane of C. Then the Selberg zeta-function associated with
X =T\H is defined by (see Hejhal [8 § 2.4, Definition 4.1])

2(s) =TI 11 - N2, (L1)

{Po} k=0

Here {Py} is the conjugacy class of a primitive hyperbolic element Py of T' and
N(Py) = o? if the eigenvalues of Py are a and a~! with |a|] > 1. Equation
defines the Selberg zeta-function in the half-plane ¢ > 1. The function Z(s) can
be extended to an entire function (see [, § 2.4, Theorem 4.25]).

Definition 1.1 (Gross [7], Chuang and Yang [I, Section 3.2], [6]). Let F be a
meromorphic function. Then an expression

F(z) = f(h(2)), (1.2)
where f is meromorphic and h is entire (h may be meromorphic when f is a
rational function), is called a decomposition of F', with f and h as its left and right
components, respectively. F' is said to be prime in the sense of a decomposition
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if for every representation of F' of the form ([1.2) we have that either f or h is
linear. If every representation of F' of the form ([1.2)) implies that f is rational or
h is a polynomial, we say that F' is pseudo-prime in the sense of a decomposition.
Furthermore, F is said to be left-prime (right-prime) if every factorization
implies that f is linear whenever h is transcendental (h is linear whenever f is
transcendental).

Liao and Yang [10] showed that the Riemann zeta-function is prime. In [6] the
following theorem is proved.

Theorem A. The Selberg zeta-function Z associated with a compact Riemann
surface of genus g is pseudo-prime and right-prime. Moreover, if Z(s) = f(h(s)),
where f is rational and h is meromorphic, then f is a polynomial of degree k, where
k divides 2g — 2, and h is an entire function.

Here we complete Theorem A.

Theorem 1.2. The Selberg zeta-function Z associated with a compact Riemann
surface of genus g > 2 is prime.

Theorem follows from Theorem A, the property that Z(s) has a simple zero
at s =1 ([8, § 2.4, Theorem 4.11]), and the following lemma.

Lemma 1.3. If there exist a polynomial P and an entire function h such that
Z(s) = P(h(s)) then the polynomial P has only one root in the complex plane
(counting without multiplicities).

The proof of Lemma [1.3]is based on the distribution of zeros of Z(s) —a, a € C,
(such zeros are called a-points of Z(s)) and of zeros of Z’(s) in the left half-plane
of C. These zeros are described below.

The Selberg zeta-function Z(s) has trivial zeros at integers s = —n, n > 1, of
multiplicity (2g — 2)(2n + 1); at s = 0 with multiplicity 2¢g — 1; and an already
mentioned zero at s = 1 with multiplicity 1 (see [8, § 2.4, Theorem 4.11], also for
nontrivial zeros).

For the trivial zeros of Z'(s), Theorem 1 from [5] together with the equality
Z(s) = Z(5) give the following proposition.

Proposition 1.4.
(i) There is o9 > 1 such that Z'(s) # 0 in o > og;
(ii) the function Z'(s) has zeros at s = n of multiplicity (29 — 2)(1 — 2n) — 1 for
any n < —1, and at s = 0 of multiplicity 2g — 2.
Moreover, for any 0 < e < 1/2, there is a constant ng = no(e) < —1 such that
(iii) Z'(s) has a simple real zero in the disc |s +1/2 —n| < e for any n < ng;
(iv) Z'(s) has no other zeros in o < ng except those mentioned in (ii) and (iii).
For more about the zeros of the derivative of the Selberg zeta-function see [4,
11, 12).
For the a-points of Z(s) we will prove the following two statements.
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Proposition 1.5. Let b > 0 and 1/6 < r < 1/2. Then there exists a negative
number N = N(Z,b,r) such that, for a € C, 0 < |a| < b, the function Z(s) —a has
(29—2)(1—2n) simple zeros in |s—n| < r, where n < N are integers. Furthermore,
Z(s) — a has no other zeros in o < N.

On the other hand, Proposition[I.4]implies that, for sufficiently large negative n,
a neighborhood of n 4 1/2 contains a double zero of Z(s) — Z(n + 1/2).

Using Proposition and the particular kind of polynomials P(z) = z* + C we
can easily demonstrate the main idea of the proof of Lemma [I.3] Indeed, let

Z(s) = h(s)* +C,

where C' # 0 and h(s) is an entire function. Then all zeros of Z(s) — C are at
least of order k. By Proposition [L.5| we see that £ = 1 and Lemma [1.3]is true for
this particular kind of polynomials. To consider the general case we will need the
following consequence of Proposition [T.5]

Corollary 1.6. Let a : [0,1] — C\ 0 be a continuous function. Then for any
sufficiently large negative n there are (29 — 2)(2n + 1) continuous functions s; :
[0,1] — C such that, for each j, we have Z(sj(z)) = a(z), |sj(z) —n| < 1/3, and
sj(x) # sm(z) if j #m and x € [0,1].

In the last corollary, 1/3 can be replaced by any number r, 1/6 < r < 1/2.
Various properties of a-points of Selberg zeta-functions were considered in [2], B].

The next section contains the proofs of Proposition Corollary [1.6] and
Lemma, [[3]

2. PROOFS
Proof of Proposition[I.5. We have (see [8, § 2.4, Theorem 4.12])
Z(s) = f(s)Z(1 — s), (2.1)

where
s—1/2
f(s) =exp (area(X)/ v tan(mv) dv).
0

It is known ([0, Lemma 6]) that, for ¢ > 0 and s not an integer,

s—1/2
/ vtan(mv) dv
0

i(s—1/2)* s—1/2 2mi(s— i (s

— _ 1 1 mi(s—1/2) " Lio(— 27mi(s—1/2) v
2 o log(l+e )+ g (e )+
where the integration is along the straight line segment joining the origin to s —1/2
if s is not on the real line; if s is on the real line, and not an integer, we define
the integral by the requirement of continuity as s is approached from the upper

half-plane; furthermore, the branch of the logarithm is chosen such that

—7m/2 < Slog (1 + 627”(8_1/2)) <m/2.

1
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Then, for 0 — —o0,

|f(s)]
c—1/2 2in(s—1/2)
:exp(area(X)<—(a—1/2)t— - log|l+e |+O(|t\+1))>
(2.2)

uniformly in ¢ > 0. Let

1 . .

glo,t) =t+ —log |l + 627'7T(071/2+7't)|.

T
We will observe that there is §, > 0 such that

g(o,t) > br, (2.3)

where s = o + it lies on the semicircle [s —n| =r,t > 0,n € Z,and 1/6 <r < 1/2.
Note that g(z + n,t) = g(—z + n,t), x € R. Thus it is enough to prove for
the following quarter of the circle: |s —n| =7, ¢ > 0,0 < 0 —n < r, which we
parametrize by t = x, 0 = Vr?2 — 22 +n, x € [0,r]. Consequently we consider the
function

q(z) =g(\/r2 — 22+ n,x).

Straightforward calculations show that ¢(0) > 0 and ¢’(z) > 0 for 0 < z < r,
1/6 < r < 1/2. This establishes the inequality (2.3)).

Hence, for any given real positive number Y and 1/6 < r < 1/2; there is a
negative number M = M (Y, r) such that

|f(8)] = exp (area(X)(=(0 = 1/2)g(0,t) + O(|t| + 1))) > Y,
if |s —n| =7, ¢t >0, and n < M. The Dirichlet series expansion of Z(s) yields
|Z(s)| > 1/2 (2.4)
if o is sufficiently large. Note that
Z(s) = Z(3). (2.5)

Then Rouché’s theorem gives that for sufficiently large negative n the functions
Z(s) and Z(s) — a have the same number of zeros in the disc |[s —n| < r. In
this disc Z(s) has only one distinct zero at s = n and clearly Z(n) # a. This,
1/6 < r < 1/2, and Proposition [[.4] give that Z(s) —a and (Z(s) —a) = Z'(s) have
no common zeros in ¢ < N. Accordingly, all zeros of Z(s) —a located in |s—n| < r
are simple.

It remains to show that for any sufficiently large negative n the area {s : |s—n| >
r,n—1/2 <o < n+1/2} is free from zeros of Z(s) — a. This follows by the
inequalities dg(o,t)/0t > 0if t > 0, 0 € R and ¢(0,0) > 01if |0 —1/2 —n| < 1/3,
together with formulas 7. Proposition is proved. O
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Lemma 2.1. If the polynomial P(z) has at least two different roots, then there is
a nonzero constant ¢ such that P(z) — ¢ has a multiple root.

Proof. Let deg P = k > 2. Conversely to the statement of the lemma, suppose
that the roots of P(z) — ¢ are simple for all ¢ # 0. Then (P(z) — ¢) = P/()
has no common roots with P(z) — ¢ for any ¢ # 0. Therefore, for any root zé,
j€{l,...,k =1}, of P'(z), we have P(2}) = 0. This is possible only if P(z) =
a(z—z))" and 2} = 2], for all j € {2,...,k—1}. The contradiction obtained proves
the lemma. O

Proof of Corollary[1.6, By Proposition for any large negative n and fixed z €
[0,1], there are exactly (2g — 2)(n + 1) simple zeros s;(x) of Z(s) — a(x) in the
disc |s — n| < 1/3. Then the corollary follows by the implicit function theorem
([9 Theorem 2.4.1]) from which we see that Z(s) is a one-to-one function in some
neighborhood of each s;(z), j =1,...,(2g —2)(n+1), € [0,1]. O

Proof of Lemma[I.3 Note that P cannot be a constant polynomial. To obtain a
contradiction, assume that Z(s) = P(h(s)) and the polynomial P, deg P = k, has
at least two different roots. Then Lemma @ implies the existence of a; such that
P'(a1) =0 and P(a1) # 0. Therefore we can write

P(z) — P(a1) = d(z —a)* ... (z — am)*™, (2.6)

where k1 > 2 and ki + - -+ k,, = k. In view of Proposition there are infinitely
many zeros of Z(s) — P(ay) each of which lies at a distance smaller than 1/3 from
some negative integer. Thus there are an infinite subset S of these zeros and a;
defined by such that h(p) —a; =0 for p € S. If k; > 2 then the zeros p are
multiple zeros of Z(s) — P(ay) and this contradicts Proposition Hence k; =1,
P’(a;) # 0, and by we see that j > 2. Therefore there is a continuous function
a : [0,1] — C, such that a(0) = a;, a(1) = a1, and

P'(a(z)) #0 for z € [0,1). (2.7)
By Corollary there is a continuous function ¢ : [0,1] — C such that ¥(0) € S,
Z((x)) = Pla(z)), (2.8)
and, for z € [0,1] and some large negative integer n,
[(z) —n| < 1/3.

Note that Z(i(x)) = P(h(¢(x))). To get the contradiction we will show that

h(y(1)) = a1. By
P(h(¢(x))) = Pla(z)).

In view of we have that P(z) is a one-to-one function in a sufficiently small
neighborhood of any a(z), € [0,1). Then h(¢(0)) = a(0) leads to the equality
h((x)) = a(z) for z € [0,1). Continuity gives h(t(1)) = a(l) = a; and thus
z = ¢(1) is a multiple zero of Z(z) — Z(¢(1)). This contradicts Proposition
and proves Lemma [1.3 (]
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