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ON COMMUTATIVE HOMOGENEOUS VECTOR BUNDLES
ATTACHED TO NILMANIFOLDS

ROCÍO DÍAZ MARTÍN AND LINDA SAAL

Abstract. The notion of Gelfand pair (G, K) can be generalized by con-
sidering homogeneous vector bundles over G/K instead of the homogeneous
space G/K and matrix-valued functions instead of scalar-valued functions.
This gives the definition of commutative homogeneous vector bundles. Being
a Gelfand pair is a necessary condition for being a commutative homogeneous
vector bundle. In the case when G/K is a nilmanifold having square-integrable
representations, a big family of commutative homogeneous vector bundles was
determined in [Transform. Groups 24 (2019), no. 3, 887–911]. In this paper
we complete that classification.

1. Introduction

A homogeneous space G/K is called commutative, and the pair (G,K) is called
a Gelfand pair, when G is a locally compact group, K is a compact subgroup of G,
and the convolution algebra L1

0(G) is commutative. Here L1
0(G) denotes the Banach

algebra of L1 functions on G satisfying f(kxk′) = f(x) for x ∈ G and k, k′ ∈ K,
where the product is the usual convolution (f ∗ h)(g) =

∫
G
f(x)h(x−1g) dx on G

(where dx denotes the Haar measure on G).
By a nilmanifold we mean a differentiable manifold on which a nilpotent Lie

group acts transitively. By a commutative nilmanifold we mean a commutative
space G/K such that G is a Lie group and a closed nilpotent subgroup N of G
acts transitively (see e.g. [16]). In that notation, if G/K is simply connected then
N acts simply transitively on G/K and G is the semidirect product K n N (see
[15, Theorem 13.1.6]). It is shown in [1] that if (K nN,K) is a Gelfand pair then
N must be abelian or two-step nilpotent.

Those definitions are associated to the commutative property of the algebra
L1

0(G) of scalar-valued functions. For the vector-valued case we have analogous
definitions.

Again, let G be a Lie group and K a compact subgroup of G. It is well known
that all the homogeneous vector bundles over the homogeneous space G/K are
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described by taking finite-dimensional representations (τ,Wτ ) of K (see [14, Section
5.2]). Indeed, if we consider the equivalence relation over G×Wτ given by (gk, w) ∼
(g, τ(k)w) for g ∈ G, w ∈Wτ , and k ∈ K, the space of equivalence classes Eτ has an
structure of homogeneous vector bundle over G/K. Moreover, each homogeneous
vector bundle over G/K is isomorphic to Eτ for some representation (τ,Wτ ) of K
of finite dimension.

The space of compactly supported smooth sections of the homogeneous vector
bundle Eτ is naturally identified with the space of functions u on D(G,Wτ ) such
that u(xk) = τ(k)−1u(x) for k ∈ K and x ∈ G. It follows from the Schwartz kernel
theorem that every linear operator T , continuous with respect to the standard
topologies, mapping D-sections of Eτ into D′-sections of Eτ and commuting with
the action of G on Eτ , can be represented in a unique way as a convolution operator(

T (u)
)
(g) = u ∗ F (g) :=

∫
G

F (x−1g)u(x) dx ∀ g ∈ G, (1.1)

where F is a distribution, F ∈ D′(G,End(Wτ )), satisfying

F (k1xk2) = τ(k2)−1F (x)τ(k1)−1 ∀ k1, k2 ∈ K, x ∈ G. (1.2)

In particular, operators T = TF as in (1.1) with F a function in L1(G,End(Wτ ))
satisfying (1.2) can be composed with each other and

TF2 ◦ TF1 = TF1∗F2 .

We call L1
τ,τ (G,End(Wτ)) the convolution algebra of integrable matrix-valued

functions with property (1.2).
Let (τ,Wτ ) be an irreducible unitary representation of K. Let K̂ denote the set

of equivalence classes of irreducible unitary representations of the group K. The
homogeneous vector bundle Eτ is called commutative, and the triple (G,K, τ) is
also called commutative, when the algebra L1

τ,τ (G,End(Wτ )) is commutative. In
particular, (G,K) is a Gelfand pair when (G,K, τ) is a commutative triple with
τ the trivial representation of K. Here L1

τ,τ (G,End(Wτ )) = L1
0(G). It is shown

in [11] that if G/K is connected and if there exists τ ∈ K̂ such that (G,K, τ) is a
commutative triple then (G,K) is a Gelfand pair. Therefore, in most cases, being
a Gelfand pair is a necessary condition to give rise to commutative triples. When
τ is a character of K and the triple (G,K, τ) is commutative, these cases are also
known as twisted Gelfand pairs with respect to the character τ . Finally, we say
that (G,K) is a strong Gelfand pair if (G,K, τ) is commutative for every τ ∈ K̂.

In the case where L1
τ,τ (G,End(Wτ )) is a commutative algebra, the spherical

analysis consists of the computation of the continuous characters of such convolu-
tion algebra and this gives rise to a kind of simultaneous “diagonalization” of all
the operators TF (see e.g. [2, 7]).

From now on we concentrate on homogeneous vector bundles associated to nil-
manifolds.

The classification of Gelfand pairs (KnN,K) withN nilpotent was completed by
E. Vinberg. In the notable article [13] are exhibited all the Gelfand pairs (KnN,K)
that are irreducible and maximal. On the one hand, the irreducibility means that
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the center z of the Lie algebra n of N must be z = [n, n] and K acts irreducibly on
n/z. On the other hand, the maximality implies that the pair (KnN,K) does not
have non-trivial central reductions. This means that z does not have K-invariant
subspaces s such that if s̃ denotes the orthogonal complement of s on z and Ñ is the
simply connected Lie group with Lie algebra ñ := s̃⊕ (n/z) ' n/s, then (KnÑ ,K)
is a Gelfand pair (see [15, Section 13.4A, p. 320]).

Firstly, J. Lauret constructs a family of Gelfand pairs (K n N,K) considering
on N a Riemannian structure (see [8]). Here K n N is the group of isometries
of N . In the particular case when N is the Heisenberg group or the euclidean
space Rn, the commutative triples were determined in [11]. For the corresponding
(matrix) spherical analysis see that article and also [2]. When additionally N has
square integrable representations, all the commutative triples that come from these
Gelfand pairs were determined in the recent article [3].

This article has the aim of completing the classification of commutative homo-
geneous vector bundles associated to nilmanifolds, that is, commutative triples of
the form (K nN,K, τ) with N a nilpotent Lie group. We will analyze which com-
mutative triples come from the Gelfand pairs in [13] that are not included in the
list given in [8].

Acknowledgement. We are immensely grateful to Jorge Lauret, who gave
impulse to this research.

2. Preliminaries

We recall that since we consider N a two-step nilpotent Lie group, its Lie algebra
splits, as a vector space, as n = z ⊕ V , where V is an orthogonal complement
of the center z and [V, V ] ⊂ n. The group N acts naturally on n by the adjoint
action Ad. Also, N acts on n∗, the real dual space of n, by the dual or contragredient
representation of the adjoint representation Ad∗(n)λ := λ◦Ad(n−1) for n ∈ N and
λ ∈ n∗. For each λ ∈ n∗, let O(λ) := {Ad∗(n)λ | n ∈ N} be its coadjoint orbit.
From Kirillov’s theory there is a correspondence between N̂ and the set of coadjoint
orbits. Let Bλ be the skew symmetric bilinear form on n given by

Bλ(X,Y ) := λ([X,Y ]) ∀X,Y ∈ n.

Let m ⊂ n be a maximal isotropic subalgebra in the sense that Bλ(X,Y ) = 0 for all
X,Y ∈ m and let M := exp(m). Defining on M the character χλ(exp(Y )) := eiλ(Y )

for Y ∈ m, the irreducible representation ρλ ∈ N̂ associated to O(λ) is the induced
representation ρλ := IndNM (χλ).

Let Xλ ∈ z be the representative of λ|z (the restriction of λ to z), that is,
λ(Y ) = 〈Y,Xλ〉 for all Y ∈ z. We can split z = RXλ ⊕ zλ, where zλ := Ker(λ|z) is
the orthogonal complement of RXλ in z.

Let Z be the center of N . A representation (ρ,Hρ) ∈ N̂ is said to be square
integrable if its matrix coefficients 〈u, ρ(x)v〉, for u, v ∈ Hρ, are square integrable
functions on N modulo Z.

One can see that ρλ ∈ N̂ is a square integrable representation if and only if
Bλ is non-degenerate on V or, equivalently, if and only if the orbits are maximal
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(see [3]). In this situation, consider the Heisenberg algebra nλ := RXλ ⊕ V with
the bracket given by

[X,Y ]nλ := Bλ(X,Y )Xλ.

Since the character χλ is trivial on zλ, the representation ρλ acts trivially on zλ
and defines an irreducible unitary representation of the corresponding Heisenberg
group Nλ.

Now, let P (λ) be the square root of the determinant of (Bλ)|V×V , which is called
the Pfaffian. This function P depends only on λ|z and so there is a homogeneous
polynomial function (which we also denote P ) on z∗ such that P (λ) = P (λ|z) (see
[15, p. 333]). According to [15, Theorem 14.2.10] there is a correspondence between
the coadjoint orbits O(λ) with P (λ|z) 6= 0 and the square integrable representa-
tions.

Apart from that, let K be a compact subgroup of automorphisms of N and
let Kλ be the stabilizer of Xλ with respect to the action of K on n. Note that
since we always assume N to be simply connected, we make no distinction between
automorphisms of N and those of n. It can be seen that Kλ is a subgroup of the
symplectic group Sp(V, (Bλ)|V×V ). Moreover, since Kλ is compact, we can assume
that it is a subgroup of the unitary group U(m) ⊂ Sp(V, (Bλ)|V×V ). Let ω be the
metaplectic representation of Kλ associated to the Heisenberg group Nλ. That is,

(ω(k)(p))(z) := p(k−1z)

for all p in the space P(Cm) of polynomials on Cm, where 2m is the dimension
on V . (For more details, see [3].)

For the following theorem see [3, Theorem 3] and [11, Theorem 6.1]. An impor-
tant fact in the proof of this result is that the classes in N̂ of square integrable
representations have full Plancherel measure.

Theorem 2.1. Let N be a connected and simply connected real two-step nilpotent
Lie group which has a square integrable representation. Let K be a compact sub-
group of orthogonal automorphisms of N and let (τ,Wτ ) ∈ K̂. Then (KnN,K, τ)
is a commutative triple if and only if (Kλ nNλ,Kλ, τ |Kλ) is a commutative triple
for every square integrable representation ρλ ∈ N̂ , where τ |Kλ denotes the restric-
tion of τ to Kλ. Also, (Kλ nNλ,Kλ, τ |Kλ) is a commutative triple if and only if
ω ⊗ (τ |Kλ) is multiplicity free.

The previous result will be crucial, since it allows us to reduce the problem from
two-step nilpotent Lie groups in general to Heisenberg groups. But it is extremely
important the condition on N of having square integrable representations.

There are few Gelfand pairs (K nN,K) in the list of E. Vinberg such that the
nilpotent group is not of the form given by J. Lauret. Specifically, they correspond
to items 3, 5, 11, 12, 20, and 26 of [13, Table 3].

In items 3 and 26 of [13, Table 3] the group N does not have square integrable
representations; we will omit them from our study. In the following section we will
develop the analysis of the triples derived from the remaining Gelfand pairs:
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• Case A: We will develop item 5 of [13, Table 3]. Here we have n =[
Λ2(C2n)⊕ iR

]
⊕ C2n, where Λ2(C2n) denotes the space of antisymmet-

ric bilinear forms on C2n over the complex field, and K = U(2n).
• Case B: We will study item 12 of [13, Table 3]. Denoting by H the quater-

nions, we have n = [H0(Hn)⊕ Im(H)] ⊕ Hn, where H0(Hn) denotes the
space of hermitian n×n matrices over H of trace zero and Im(H) the imag-
inary quaternions, and K = S1×Sp(n), where S1 is the one-dimensional
torus and Sp(n) the symplectic group. The only difference between items 12
and 11 of [13, Table 3] is that for item 11 the group K is smaller.

• Case C: We will analyze item 20 of [13, Table 3]. Here we have n = R7⊕R8

and K = Spin(7).

3. Analysis of commutavive and non-commutative triples

Case A. The objects that we will describe here can be found in item 5 of [13,
Table 3] as well as in item 5 of Table 13.4.1 in the book [15].

Consider the two-step nilpotent Lie algebra
n = z⊕ V =

[
Λ2(C2n)⊕ iR

]
⊕ C2n

where the composition is given by
[(z, u), (w, v)] := ((u ∧ v, Im(u∗v)), 0) ∀ z, w ∈ z, u, v ∈ V,

where we denote by ut the row vector obtained from the column vector u and by
u∗ the conjugate row vector. The wedge product u ∧ v can also be expressed as
uvt − vut.

The unitary group K = U(2n) acts on z by
k·(uvt−vut, s) := (k(uvt−vut)kt, s), ∀ k ∈ K and ∀uvt−vut ∈ Λ2(C2n), s ∈ iR.

We consider in particular a linear functional λ in n∗ such that (when we restrict
it to z) it has as a representative the element Xλ := (u ∧ v, 0) ∈ z with u ∧ v
non-degenerate. Let ρλ denote the irreducible representation class associated to λ.
From the formula for the Pfaffian given in [15, pp. 339–340 ], P (λ) is a positive
multiple of the determinant of the matrix uvt − vut. According to our election of
the linear functional λ, P (λ) results invertible. Therefore ρλ is square integrable
and we are allowed to apply Theorem 2.1. In this case, the subgroup Kλ coincides
with the symplectic group Sp(n).

Let τ ∈ K̂ be non-trivial. Then there is a non-trivial η ∈ Ŝp(n) appearing in
the restriction of τ to Kλ.

Now we introduce some notation. Let δi,j denote the Kronecker delta. Writing
Hi := δi,i − δn+i,n+i, we have that the Cartan subalgebra h of sp(n) is a complex
vector space generated by {H1, . . . ,Hn}. Let {L1, . . . , Ln} be its dual basis in the
dual space h∗, so 〈Li, H〉 = hi for all H ∈ h. From the theorem of the highest
weight, every irreducible representation of sp(n) is in correspondence with a non-
negative integer linear combination of the fundamental weights. Hence η ∈ Ŝp(n)
can be parametrized in terms of the weights {Li} as (η1, . . . , ηn), where ηi ∈ Z≥0 ∀i
and η1 ≥ η2 ≥ . . . ≥ ηn. (For a reference see, for example, [4, 6].) We will denote
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the representation η ∈ Ŝp(n) by η(η1,...,ηn) to emphasize that the representation η
is in correspondence with the tuple (η1, . . . , ηn) that we call partition.

The metaplectic representation (ω,P(C2n)) of Sp(n) decomposes (using the no-
tation given in the previous sections) as

ω =
⊕
j∈Z≥0

η(j),

where each η(j) corresponds to the partition of length one (j), for some non-negative
integer j.

The following fact is proved in [3, Corollary 2] and will be useful to deduce our
main results.

Lemma 3.1. Let η be an irreducible representation of Sp(n). Then η appears in
the decomposition into irreducible factors of η ⊗ η(2).

From the above lemma, the representation η appears in the decomposition of the
factors η⊗η(0) and η⊗η(2). Then, it appears with multiplicity in the decomposition
into irreducible factors of ω ⊗ τ |Kλ . Therefore, by Theorem 2.1, we have the
following result.

Theorem 3.2. The triple (KnN,K, τ), where N is the simply connected nilpotent
Lie group with Lie algebra

[
Λ2(C2n)⊕ iR

]
⊕ C2n and K = U(2n), is commutative

if and only if τ is the trivial representation.

Case B. The objects that we will describe here can be found in item 12 of [13,
Table 3] as well as in item 9 of Table 13.4.1 in the book [15].

Consider the two-step nilpotent Lie algebra
n = z⊕ V := [H0(Hn)⊕ Im(H)]⊕Hn

with Lie bracket given by
[(z, u), (w, v)] := (((uiv∗ − viu∗)0, u

∗v − v∗u), 0)
for all z, w ∈ z = H0(Hn)⊕ Im(H) and u, v ∈ V = Hn, where, in general, if A is a
matrix, (A)0 := A− 1

2 tr(A)I. Let N be the simply connected nilpotent Lie group
with Lie algebra n.

Every point (eiθ, k) ∈ K = S1×Sp(n) acts on n by
(eiθ, k) · ((A, q), v) := ((kAk∗, eiθqe−iθ), kve−iθ),

for all A ∈ H0(Hn), q ∈ Im(H), and v ∈ Hn.
Let τ = η ⊗ χr, where η ∈ Ŝp(n) and χr is a character of S1.
First we consider the case where the factor in Ŝp(n) is trivial, that is, τ = χr.

We recall that the convolution algebra L1
τ,τ (KnN,End(Wτ )) is naturally identified

with the space of End(Wτ )-valued integrable functions on N such that F (k · x) =
τ(k)F (x)τ(k)−1 for all k ∈ K and x ∈ N (see e.g. [2, 11]). In this situation,
it totally coincides with the convolution algebra of K-invariant integrable scalar
functions on N , which is commutative since we have a Gelfand pair. Therefore we
have commutative triples.
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Now let η ∈ Ŝp(n) be non-trivial. We consider the linear functional λ with
representative Xλ := (0, q) ∈ z. Let ρλ denote the irreducible representation class
associated to λ. From the formula for the Pfaffian given in [15, p. 340], P (λ)
is a positive multiple of |q|2n. Then for all imaginary non-zero quaternions q, the
associated representation ρλ is square integrable. The group Kλ is easily calculated:
If the quaternion q belongs to iR, Kλ coincides withK (since q commutes with every
complex); for the other cases, Kλ is Sp(n). We consider for example q = j ∈ Im(H)
in order to fix Kλ = Sp(n). Note that τ |Kλ = η.

The metaplectic representation (ω,P(C2n)) of Kλ = Sp(n) decomposes as

ω =
⊕
j∈Z≥0

η(j).

Therefore ω ⊗ η is not multiplicity free: η appears in the factors η ⊗ η(0) and in
η ⊗ η(2) by Lemma 3.1. Then, by Theorem 2.1, in these cases the triples are not
commutative.

Theorem 3.3. The triple (K nN,K, τ), where N is the simply connected nilpo-
tent Lie group with Lie algebra [H0(Hn)⊕ Im(H)] ⊕ Hn and K = S1×Sp(n), is
commutative if and only if τ ∈ Ŝ1.

To conclude this case we want to note that the analysis of item 11 of [13, Table 3]
is the same (or simpler), since the subgroup K is only Sp(n).

Case C. The objects that we will describe here can be found in item 20 of [13,
Table 3], as well as in item 2 of Table 13.4.1 in the book [15].

In this case we study an H-type group ([5]). Consider the two-step nilpotent
Lie algebra n = z ⊕ V , where V is R8 or the octonions O and the center z is
R7 or the imaginary octonions Im(O) with Lie bracket on V characterized by
〈[u, v], z〉z := 〈J(z)u, v〉V , where (J, V ) is a real representation of z given by the
product of octonions J(z)v := zv for z ∈ Im(O) and v ∈ O.

Let K be the maximal connected group of orthogonal automorphisms of N .
Precisely, K = Spin(7). (We mention that in general, for an H-type group, its
group of automorphisms was determined by L. Saal in [12].)

Let λ be a linear functional with representative X ∈ z. From [15, p. 340], the
Pfaffian P (λ) is not null almost everywhere. In this case, Kλ is isomorphic to the
spin group Spin(6). Therefore we will work with the Lie algebra so(6).

Let τ be a non-trivial irreducible unitary representation of Spin(7). When we
restrict τ to Spin(6) it decomposes as a sum of irreducible representations and we
can pick one non-trivial factor, which we will denote as η ∈ Spin(6). We can identify
η with its derived representation or we can as well view it as a representation of
so(6).

Apart from that, it is easy to derive the decomposition of the metaplectic repre-
sentation, since Spin(6) is isomorphic to SU(4) and it is well known that its action
on P(C4) decomposes into

⊕
j∈Z≥0

Pj(C4). The metaplectic representation can be
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identified with
ω =

⊕
j∈Z≥0

η̃(j), (3.1)

where η̃(j) corresponds to the partition of length one (j) of so(6). Here we decided to
use a notation analogous to that of the representations of sp(n). As a consequence
of the highest weight theorem, we can associate each irreducible representation σ of
so(2m) with an n-tuple of integers (σ1, . . . , σm) satisfying the condition σ1 ≥ σ2 ≥
. . . ≥ σm−1 ≥ |σm| (see [4, 10]). The following fact can be found in [10, Theorem
3.2 and Remark 3.5].
Lemma 3.4. Let η̃ be an arbitrary irreducible representation of so(2m) associated
to a sequence of m integers η̃1 ≥ η̃2 ≥ . . . ≥ η̃m−1 ≥ |η̃m| and let s be a non-negative
integer. Then the multiplicity of an irreducible representation σ (associated to the
sequence of integers σ1 ≥ σ2 ≥ . . . ≥ σm−1 ≥ |σm|) in the tensor product η̃ ⊗ η̃(s)
is equal to the number of integer sequences ς satisfying:

(i) ς1 ≥ ς2 ≥ . . . ≥ ςm−1 ≥ |ςm|;
(ii) η̃1 ≥ ς1 ≥ η̃2 ≥ ς2 ≥ . . . ≥ ςm−1 ≥ η̃m ≥ ςm and σ1 ≥ ς1 ≥ σ2 ≥ ς2 ≥ . . . ≥

ςm−1 ≥ σm ≥ ςm;
(iii)

∑m
i=1 (η̃i − ςi) +

∑m
i=1 (σi − ςi) = s;

(iv) ςm ∈ {η̃m, σm}.
Now we will apply this lemma with m = 3 to a fixed non-trivial irreducible rep-

resentation η̃ in the decomposition of τ |Kλ , to deduce whether the tensor product
ω⊗τ |Kλ is multiplicity free or not. The representation η̃ corresponds to (η̃1, η̃2, η̃3)
with η̃i ∈ Z for i = 1, 2, 3, η̃1 ≥ η̃2 ≥ |η̃3|, and η̃1 > 0 since it is non-trivial.

• If η̃1 > η̃3 (in particular if η̃3 ≤ 0), then η̃ appears in η̃⊗ η̃s for s = 2(η̃1 −
η̃3) > 0, since ς = (η̃2, η̃3, η̃3) satisfies the conditions listed in Lemma 3.4.
By (3.1) we have that η̃ appears at least twice in ω ⊗ τ |Kλ .

• If η̃1 = η̃2 = η̃3 = r for r ∈ Z>0, then if σ = (σ1, σ2, σ3) appears in η̃ ⊗ η̃s
for s ∈ Z≥0, then by Lemma 3.4 σ1 = σ2 = r. Also, with the notation in
that Lemma, it must happen that ς is (r, r, r) or (r, r, σ3). For the first case,
σ3 − r = s; then, since r ≥ σ3, the only possibility for s is s = 0. For the
second case, r − σ3 = s. Therefore s is completely determined by σ. Thus
σ = (r, r, σ3) with r ≥ σ3 appears once in η̃⊗⊕j∈Z≥0 η̃(j). Consequently, if
η̃ = (r, r, r) and σ = (r, r, σ3) with r > σ3 both appear in τ |Kλ , the tensor
product ω ⊗ τ |Kλ is not multiplicity free. Note that in this situation σ
satisfies the conditions η̃ for the first item. Therefore we have the following
conclusion.

Theorem 3.5. The triple (KnN,K, τ), where N is the simply connected nilpotent
Lie group with Lie algebra Im(O)⊕O and K = Spin(7), is commutative if and only
if τ |Spin(6) is associated to a partition of the form (r, r, r) for r ∈ Z≥0.

4. Conclusions

We can sum up as follows. Theorem 3.2 does not provide non-trivial commuta-
tive triples. Theorem 3.3 gives rise to a commutative triple only if τ is a character
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of S1. These cases are twisted Gelfand pairs. Finally, Theorem 3.5 gives a fam-
ily of commutative triples. This family is similar to the case of the H-type group
listed by J. Lauret in [8]. There the nilpotent Lie algebra n is Im(H)⊕Hn, where
Im(H) is its center z and the Lie bracket on Hn is given, analogously to case C,
by the real representation of z, J(z)(v) := (zv1, . . . , zvn) for v = (v1, . . . , vn) ∈ H.
Its (maximal connected) group of automorphisms is K = SU(2) × Sp(n). By [3,
Proposition 1], in that case we obtain commutative triples if and only if τ ∈ ŜU(2)
or τ ∈ Ŝp(n) corresponding to a partition of the form (a, a, . . . , a) of length at
most n for a non-negative integer a.

Let Hn be the Heisenberg group Cn × R, and let N be a simply connected
nilpotent Lie group having square integrable representations. In conclusion, if we
exclude from the analysis the Gelfand pairs of the form (Hn nK,K), where K is
a proper subgroup of U(n), all the commutative triples of the form (K nN,K, τ),
where K is a compact subgroup of G, are the following:

(1) ([S1×Sp(n)]nN, S1×Sp(n), τ), where N is the simply connected nilpotent
Lie group with Lie algebra [H0(Hn)⊕ Im(H)] ⊕ Hn, is commutative for
τ ∈ Ŝ1. It is a twisted Gelfand pair. It corresponds to the preceding
case C.

(2) (SU(n) × S1, N(su(n),Cn), τ), for all τ ∈ Ŝ1, where n ≥ 3. It is a twisted
Gelfand pair.

(3) (SU(n) × S1, N(u(n),Cn), τ), for all τ ∈ Ŝ1, where n ≥ 3. It is a twisted
Gelfand pair.

(4) (Spin(7) n N, Spin(7), τ), where N is the simply connected nilpotent Lie
group with Lie algebra Im(O)⊕O, is commutative when τ |Spin(6) is associ-
ated to a constant partition (r, r, r) for r ∈ Z≥0. N is of Heisenberg type.
It corresponds to the preceding case C.

(5)
(
SU(2)× Sp(n), N(su(2), (C2)n), τ

)
, for all τ ∈ ŜU(2) and for all τ ∈ Ŝp(n)

associated to a constant partition of length at most n, where n ≥ 1.
N(su(2), (C2)n) is of Heisenberg type.

(6) (SU(2)×U(k)× Sp(n), N(u(n), (C2)k ⊕ (C2)n), τ), for all τ ∈ Û(k), where
k ≥ 1, n ≥ 0.

(7) (G×U,N(g, V ), τ), where g = su(m1)⊕. . .⊕su(mβ)⊕su(2)⊕. . .⊕su(2)⊕c
with c an abelian component, G = SU(m1) × . . . × SU(mβ) × SU(2) ×
. . . × SU(2), V = Cm1 ⊕ . . . ⊕ Cmβ ⊕ C2k1+2n1 ⊕ . . . ⊕ C2kα+2nα , and
U = S1 × . . . × S1 × U(k1) × Sp(n1) × . . . × U(kα) × Sp(nα), for all τ ∈
Ŝ1 ⊗ . . . ⊗ Ŝ1 ⊗ Û(k1)⊗ . . . ⊗ Û(kα), where mj ≥ 3 for all 1 ≤ j ≤ β, and
ki ≥ 1, ni ≥ 0 for all 1 ≤ i ≤ α.

(8) (Hn n U(n),U(n), τ) for all τ ∈ Û(n) (proved by Yakimova in [17]). This
is the unique strong Gelfand pair of this form.

In items 2, 3, 5, 6, and 7 above, the nilpotent Lie group N = N(g, V ) is endowed
with a left-invariant Riemannian metric determined by an inner product 〈·, ·〉 on
its Lie algebra n described as follows. Let (π, V ) be a faithful real representation
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of a compact Lie algebra g. We consider inner products 〈·, ·〉g on g and 〈·, ·〉V on V
such that 〈·, ·〉g is ad(g)-invariant and 〈·, ·〉V is π(g)-invariant. Let n := g ⊕ V be
the two-step nilpotent Lie algebra with center g and Lie bracket defined on V by
〈[u, v], X〉g := 〈π(X)u, v〉V for all u, v ∈ V , X ∈ g. These inner products define
an inner product 〈·, ·〉 on n satisfying 〈·, ·〉|g×g = 〈·, ·〉g, 〈·, ·〉|V×V = 〈·, ·〉V , and
〈g, V 〉 = 0. Let N(g, V ) be the connected, simply connected, two-step nilpotent
Lie group with Lie algebra n. Specifically, in item 2, Cn denotes the standard
representation of su(n); in item 3, Cn denotes the standard representation of u(n)
regarded as a real representation; in item 5, C2 denotes the standard representation
of su(2) regarded as a real representation; in item 6, (C2)k⊕(C2)n is an orthogonal
sum, the center of u(2) acts non-trivially only on (C2)k, (C2)n denotes the repre-
sentation of su(2) stated in the first item, u(2) acts component-wise on (C2)k in
the standard way regarded as a real representation, and τ ∈ Û(k); and in item 7,
g is acting on V as follows: For each 1 ≤ i ≤ β + α, c has a unique subspace ci
acting non-trivially on only the i-th component of V and the dimension of ci is 1.
For 1 ≤ i ≤ β, su(mi) ⊕ ci (which is isomorphic to u(mi)) acts non-trivially only
on Cmi . For β + 1 < i ≤ β + α, su(2)⊕ ci acts non-trivially only on C2ki+2ni as in
the above case. For more details, see [3, 8, 9].
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