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THE CONVEX AND WEAK CONVEX DOMINATION NUMBER
OF CONVEX POLYTOPES

ZORAN LJ. MAKSIMOVIĆ, ALEKSANDAR LJ. SAVIĆ, AND MILENA S. BOGDANOVIĆ

Abstract. This paper is devoted to solving the weakly convex dominating
set problem and the convex dominating set problem for some classes of planar
graphs—convex polytopes. We consider all classes of convex polytopes known
from the literature and present exact values of weakly convex and convex
domination number for all classes, namely An, Bn, Cn, Dn, En, Rn, R′′

n, Qn,
Sn, S′′

n , Tn, T ′′
n and Un. When n is up to 26, the values are confirmed by

using the exact method, while for greater values of n theoretical proofs are
given.

1. Introduction

This paper is dedicated to solving the weak convex and convex dominating set
problems (WCDSP/CDSP) for some special classes of graphs. A dominating set of
a graph G can be defined as a set of vertices in G such that any vertex u ∈ V (G)
either belongs to the dominating set or is adjacent to some vertex that belongs to
the dominating set. A closely related problem is that of finding the domination
number, i.e. finding the dominating set with the minimum cardinality. The minimal
cardinality of a dominating set will be denoted as γ(G).

In this paper, we consider only simple graphs, i.e. graphs without loops or par-
allel edges. In order to introduce the convexity property in graphs let us define the
distance d(u, v) between any two vertices u and v of G as the length of the shortest
path between them. Since the graph is not weighted, the distance d(u, v) is equal
to the number of edges in the shortest path.

We say that a set of vertices S, S ⊂ V (G), is a weakly convex (or isometric [17])
set in G if for any two vertices u, v ∈ S, there exists at least one shortest u−v path
that contains only vertices belonging to S. Now, a weakly convex dominating set
is a set S that is both weakly convex and dominating. Similarly to the domination
number, the weakly convex domination number γwconv(G) is the minimal cardinality
among all weakly convex dominating sets. The weakly convex dominating set
problem (WCDSP) is the problem of finding such minimal cardinality.
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As expected, convex domination requires stricter conditions. We will say that a
set of vertices S, S ⊂ V (G), is a convex set in G if for any two vertices u, v ∈ S
all vertices in all shortest u−v paths belong to S. A set S is convex dominating
if it is convex and dominating at the same time. The convex domination number
γconv(G) is the minimal cardinality among all convex dominating sets. The convex
dominating set problem (CDSP) can be now defined as the problem of determining
such minimal cardinality. There are other domination related problems depending
on additional conditions such as Roman domination, signed Roman domination1,
etc.

The convex domination number was defined during verbal communication be-
tween Jerzy Topp and Magdalena Lemanska in 2002 (stated in [15]). In [18] it was
proven that decision problems of WCDSP and CDSP are NP-complete even for
bipartite and split graphs. So, determining the weakly convex domination number
and the convex domination number is NP-hard in a general case.

In [14], relations between γconv and γwconv were discussed for certain classes of
graphs, and the following lemma was proposed for connected graphs:

Lemma 1.1 ([14]). For any connected graph G, we have

γ(G) ≤ γwconv(G) ≤ γconv(G).

In the paper [10] different bounds of the weakly convex domination and the
convex domination number were obtained. It was shown in [4] that the convex
domination number can be arbitrarily increased or decreased by an edge subdivi-
sion.

In this paper we will consider finding the weakly convex and the convex domina-
tion number for some classes of planar graphs. Some of these classes, called convex
polytopes, were for the first time considered in [2], where they were denoted as Rn

and Qn. Other classes, such as An, Bn, Cn, Dn, En, R
′′
n, Sn, S

′′
n, Tn and Un, were

introduced in [5, 6, 9, 8, 7]. Certain graph invariants of convex polytopes were
considered in [11]. For all these we assume that n ≥ 5, and all indices are taken
modulo n.

For n ≥ 27, the values of both the weak convex and the convex domination
number are stated by theorems. For n ≤ 26, the exact method from [12] is used.

The largest graph for which the exact method was used is R′′26, with 156 vertices
and 234 edges. The exact method found that the weak convex and the convex
domination numbers are equal to 156.

2. Convex polytopes Dn

The graph of convex polytope Dn, n ≥ 5 (Figure 1), introduced in [1], consists
of 2n 5-sided faces and a pair of n sided faces. We will use the standard notation
[n] = {1, 2, . . . , n} and [n]0 = {0, 1, 2, . . . , n}.

1A. Kartelj, D. Matić and V. Filipović, Solving the signed Roman domination and signed total
Roman domination problems by exact and heuristic methods (unpublished manuscript).
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Figure 1. The graph of convex polytope Dn

We have

V (Dn) = {ai, bi, ci, di | i ∈ [n− 1]0},
E(Dn) = {aiai+1, didi+1, aibi, bici, cidi, bi+1ci | i ∈ [n− 1]0}.

Theorem 2.1. For every convex polytope Dn with n ≥ 27 it holds that
γwconv(Dn) = |V (Dn)| = 4n.

Proof. Let S be a weak convex dominating set of Dn. We will prove that S =
V (Dn). First we will show that ai ∈ S for every i ∈ [n − 1]0. From the fact that
S is a dominating set, for arbitrary i it follows that there exist u from N [ai] ∩ S
and w from N [ai+3] ∩ S. Since n ≥ 27, N [ai] = {ai, ai−1, ai+1, bi} and N [ai+3] =
{ai+3, ai+2, ai+4, bi+3}, we have the 16 subcases displayed in Table 1.

As it can be seen from Table 1, in all 16 subcases the shortest path is unique
and all 16 shortest paths contain vertices ai+1 and ai+2. Since for any u ∈ N [ai]
and any w ∈ N [ai+3], vertex ai+1 belongs to a unique shortest u−w path and S is
a weak convex dominating set, vertex ai+1 must belong to S. As i is arbitrary we
have ai ∈ S for every i ∈ [n− 1]0.

Note that the symmetry property holds for convex polytopes Dn, so vertices ai,
bi, ci, di can be relabeled as di, ci, bi, ai, which gives the same graph Dn. Therefore,
using the same argumentation as above, we have di ∈ S for every i ∈ [n− 1]0.

As it can be shown, for arbitrary i ∈ [n− 1]0 the shortest path between ai and
di is unique (ai−bi−ci−di) and has both endpoints in S (ai, di ∈ S). From the fact
that S is a weak convex dominating set it must hold that vertices bi and ci belong
to S for all i ∈ [n−1]0. Due to the inclusion {bi, ci | i ∈ [n−1]0} ⊂ S and previous
facts, it stands that {ai, bi, ci, di | i ∈ [n− 1]0} ⊆ S, implying that S = V (Dn). �

Corollary 2.2. For every convex polytope Dn with n ≥ 27 it holds that γconv(Dn) =
|V (Dn)| = 4n.

Proof. Since for each graph G it holds that γwconv(G) ≤ γconv(G) ≤ |V (G)| and
γwconv(Dn) = |V (Dn)| = 4n, we have γconv(Dn) = 4n. �
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Table 1. Shortest paths used in Theorems 2.1 and 3.1

u w Shortest path
ai ai+3 ai−ai+1−ai+2−ai+3

ai+2 ai−ai+1−ai+2
ai+4 ai−ai+1−ai+2−ai+3−ai+4
bi+3 ai−ai+1−ai+2−ai+3−bi+3

ai−1 ai+3 ai−1−ai−ai+1−ai+2−ai+3
ai+2 ai−1−ai−ai+1−ai+2
ai+4 ai−1−ai−ai+1−ai+2−ai+3−ai+4
bi+3 ai−1−ai−ai+1−ai+2−ai+3−bi+3

ai+1 ai+3 ai+1−ai+2−ai+3
ai+2 ai+1−ai+2
ai+4 ai+1−ai+2−ai+3−ai+4
bi+3 ai+1−ai+2−ai+3−bi+3

bi ai+3 bi−ai−ai+1−ai+2−ai+3
ai+2 bi−ai−ai+1−ai+2
ai+4 bi−ai−ai+1−ai+2−ai+3−ai+4
bi+3 bi−ai−ai+1−ai+2−ai+3−bi+3

3. Convex polytopes R′′n
The graph of convex polytope R′′n, n ≥ 5 (Figure 2), introduced in [16], has the

following vertex and edge sets:
V (R′′n) = {ai, bi, ci, di, ei, fi | i ∈ [n− 1]0}
E(R′′n) = {(ai, ai+1), (fi, fi+1), (ai, bi), (bi, ci), (ci, di),

(di, ei), (ei, fi), (bi+1, ci), (di+1, ei) | i ∈ [n− 1]0}.
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Figure 2. Polytope R′′n
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Theorem 3.1. For every convex polytope R′′n with n ≥ 27 it holds that γwconv(R′′n) =
|V (R′′n)| = 6n.

Proof. Let S be a weak convex dominating set of R′′n. We will prove that S =
V (R′′n). First we will show that ai ∈ S for every i ∈ [n − 1]0. Similarly to
Theorem 2.1, from the fact that S is a dominating set for an arbitrary i, it
stands that there exist u ∈ N [ai] ∩ S and w ∈ N [ai+3] ∩ S. Because n ≥ 27,
N [ai] = {ai, ai−1, ai+1, bi} and N [ai+3] = {ai+3, ai+2, ai+4, bi+3}, we have 16 sub-
cases, same as for Dn, displayed in Table 1.

Again, as it can be seen from Table 1, in all 16 subcases the shortest path is
unique and all 16 shortest paths contain vertices ai+1 and ai+2. Same as for Dn,
ai+1 must belong to S. This is because S is a weak dominating set and some
u,w ∈ S contain ai+1 in its unique shortest u−w path. As i is arbitrary we have
ai ∈ S for every i ∈ [n− 1]0.

Note that the symmetry property also holds for convex polytopes R′′n, so vertices
ai, bi, ci, di, ei, fi can be relabeled as fi, ei, di, ci, bi, ai, giving the same graph R′′n.
Therefore, because of the same arguments used for a-vertices, we have that all
f -vertices belong to S, i.e. {fi | i ∈ [n− 1]0} ⊂ S.

As it can be shown, for arbitrary i ∈ [n−1]0 the shortest path between ai+1 and
fi is unique (ai+1−bi+1−ci−di−ei−fi), and has both endpoints in S (ai+1, fi ∈ S),
so from the fact that S is a weak convex dominating set it must hold that for all
i ∈ [n − 1]0 we have bi+1, ci, di, ei ∈ S. Due to the inclusion {bi+1, ci, di, ei | i ∈
[n−1]0} ⊂ S and previous facts, we have {ai+1, bi+1, ci, di, ei, fi | i ∈ [n−1]0} ⊆ S,
implying that V (R′′n) ⊆ S. Therefore, it holds that S = V (R′′n). �

Corollary 3.2. For every convex polytope R′′n with n ≥ 27 it holds that γconv(R′′n) =
|V (R′′n)| = 6n.

Proof. Since, for each graph G, it holds that γwconv(G) ≤ γconv(G) ≤ |V (G)| and
γwconv(R′′n) = |V (R′′n)| = 6n, we have γconv(R′′n) = 6n. �

4. Convex polytopes An and Rn

The classes of convex polytopes An and Rn (Figure 3) were introduced in [6]
and [2] respectively. Their sets of vertices are

V (An) = V (Rn) = {ai, bi, ci | i ∈ [n− 1]0},
while their sets of edges are

E(Rn) = {aiai+1, bibi+1, cici+1, aibi, bici, ai+1bi | i ∈ [n− 1]0},
E(An) = {aiai+1, bibi+1, cici+1, aibi, bici, ai+1bi, bi+1ci | i ∈ [n− 1]0}.

Theorem 4.1. For every convex polytope An with n ≥ 27 it holds that γwconv(An) =
γconv(An) = n.

Proof. First, we will prove that γconv(An) ≤ n. Let S = {bi | i ∈ [n − 1]0}.
Now, we will prove that S is a convex dominating set of An. The set S is a
dominating set of An, since for all i ∈ [n − 1]0 it holds that ai, bi, ci ∈ N [bi], so
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r������
C
C
C r���XXX �

�
�� rXXX@
@@

�
�� r
@
@@

C
C
CC

���

r���XXXr���
�

XXX

r""""�
�
�
�
�

@
@@

r""""
"

C
C
C r

b
b
bb

�
�
�

r
T
T
TT

b
b
b
bb

�
��

r���r���
�
�
r""""

"r r
b
b
b
b
br
T
T
T
T
Tr

�� AA
@@ ��@@

@@
a2

a1
a0

an−1

an−2
b2

b1

b0
bn−1

bn−2

bn−3
c2

c1

c0 cn−1

cn−2

cn−3 r������
C
C
C r���XXX �

�
�� rXXX@
@@

�
�� r
@
@@

C
C
CC

���

r���XXXr���
�

XXX

r""""@
@@

rCCC r
b
b
bb

�
�
�

r
T
T
TT

�
��

r���r���
�
�
r""""

"r r
b
b
b
b
br
T
T
T
T
Tr

�� AA
@@ ��

a2

a1
a0

an−1

an−2
b2

b1

b0
bn−1

bn−2

bn−3c2

c1

c0 cn−1

cn−2

cn−3

Figure 3. Polytopes An and Rn

⋃n−1
i=0 N [bi] = {ai, bi, ci | i ∈ [n − 1]0} = V (An). Also, S is a convex set, since all

shortest paths between b-vertices contain only b-vertices. Therefore, S is a convex
dominating set of An and γconv(An) ≤ |S| = n. Note that the mentioned shortest
paths are not always unique, so this argument can be used only for the convex
domination, and not for the weak convex domination.

Next, we will prove that γwconv(An) ≥ n. Let k = bn/3c and let S be a weak
convex dominating set of An.

Let us observe vertices a1 and c2 from V (An). Since S is a dominating set,
there exist some neighbours of a1 and c2 which are in S, i.e. there are u and w
such that u ∈ S ∩ N [a1] and w ∈ S ∩ N [c2]. Since N [a1] = {a1, a0, a2, b0, b1} and
N [c2] = {c2, c1, c3, b2, b3}, it is easy to see that each shortest u−w path contains
some b-vertex, either b0, b1, b2 or b3. Since u,w ∈ S and S is a weak convex set,
one of the previously mentioned b-vertices is in S. Let p ∈ {0, 1, 2, 3} be an index
of the b-vertex which is in S.

If we observe vertices ak+1 and ck+2 from V (An), using the same argumentation
as before, there is q ∈ {k, k + 1, k + 2, k + 3} such that bq ∈ S. And similarly, for
vertices a2k+1 and c2k+2 from V (An) there is r ∈ {2k, 2k + 1, 2k + 2, 2k + 3} such
that br ∈ S.

For n ≥ 27 it holds that q−p ≤ n/2−1, r−q ≤ n/2−1 and n+p−r ≤ n/2−1,
so all the shortest paths bp−bq, bq−br and br−bp are unique and each b-vertex is
in one of them. Since S is a weak convex set, previously mentioned shortest paths
are unique, and bp, bq, br ∈ S. So, every b-vertex is in S, i.e. for all i the vertex bi

belongs to S, which implies that {bi | i ∈ [n− 1]0} ⊆ S. Therefore |S| ≥ n.
Finally, since γwconv(An) ≤ γconv(An), γwconv(An) ≥ n and γconv(An) ≤ n, we

have γwconv(An) = γconv(An) = n. �

Theorem 4.2. For every convex polytope Rn with n ≥ 27 it holds that γconv(Rn) =
n.

Proof. The proof goes along similar lines as the proof of Theorem 4.1, and it will
be omitted. �
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Figure 4. Polytope Sn
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Figure 5. Polytope S′′n
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Figure 6. Polytope Tn

5. Convex polytopes Sn, S′′n and Tn

The class of convex polytopes Sn (Figure 4) was introduced in [6]. The sets of
vertices and edges are

V (Sn) = {ai, bi, ci, di | i ∈ [n− 1]0},
E(Sn) = {aiai+1, bibi+1, cici+1, didi+1, aibi, bici, cidi, ai+1bi | i ∈ [n− 1]0}.

The class of convex polytopes S′′n (Figure 5) was introduced in [8], where the au-
thors also determined its metric dimension. The sets of vertices and edges defining
these convex polytopes are

V (S′′n) = {ai, bi, ci, di | i ∈ [n− 1]0},
E(S′′n) = {aiai+1, bibi+1, cici+1, didi+1, aibi, bici, cidi, bi+1ci | i ∈ [n− 1]0}.

The graph of convex polytope Tn (Figure 6), introduced in [8], consists of 4n
3-sided faces, n 4-sided faces and a pair of n sided faces. In this case, the vertices
and edges are

V (Tn) = {ai, bi, ci, di | i ∈ [n− 1]0},
E(Tn) = {aiai+1, bibi+1, cici+1, didi+1, aibi, bici, cidi, ai+1bi, ci+1di | i ∈ [n− 1]0}.

Theorem 5.1. For every n ≥ 27 it holds that γwconv(Sn) = γconv(Sn) = 2n.

Proof. First let us prove that γconv(Sn) ≤ 2n. In order to accomplish this let us
prove that the set S = {bi, ci | i ∈ [n − 1]0} is a convex dominating set for Sn.
The set S is obviously a dominating set of Sn, since for all i ∈ [n − 1]0 it holds
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that ai, bi, ci, di ∈ N [bi] ∪ N [ci], so
⋃n−1

i=0 N [bi] ∪
⋃n−1

i=0 N [ci] = {ai, bi, ci, di | i ∈
[n− 1]0} = V (Sn). Also, S is a convex set, since:

• All shortest paths between b-vertices contain only b-vertices;
• all shortest paths between c-vertices contain only c-vertices;
• all shortest paths between any b-vertex and any c-vertex contain only some
b-vertices and some c-vertices.

Therefore, S is a convex dominating set for Sn and γconv(Sn) ≤ |S| = 2n. Note
that the shortest paths mentioned are not always unique, so this argument can be
used only for the convex domination, and not for the weak convex domination.

Next, we will prove that γwconv(Sn) ≥ 2n. Using the same argumentation as in
the proof of Theorem 4.1, it can be concluded that every b-vertex is in S, i.e. for
all i ∈ [n− 1]0 it holds that bi ∈ S, which implies that {bi | i ∈ [n− 1]0} ⊆ S.

Similarly, it can be concluded that c-vertices belong to the set S, i.e. {ci | i ∈
[n− 1]0} ⊆ S. Therefore, {bi, ci | i ∈ [n− 1]0} ⊆ S so |S| ≥ 2n.

Finally, since γwconv(Sn) ≤ γconv(Sn), γwconv(Sn) ≥ 2n and γconv(Sn) ≤ 2n, we
have γwconv(Sn) = γconv(Sn) = 2n. �

Theorem 5.2. For every n ≥ 27 it holds that
γwconv(S′′n) = γconv(S′′n) = γwconv(Tn) = γconv(Tn) = 2n.

Proof. The proof goes along similar lines as the proof of Theorem 5.1, so it will be
omitted. �

6. Convex polytopes Qn and T ′′n

Convex polytopes of the class Qn (Figure 7) were introduced in [2]. They are
specified by these sets of vertices and edges:

V (Qn) = {ai, bi, ci, di | i ∈ [n− 1]0},
E(Qn) = {aiai+1, bibi+1, didi+1, aibi, bici, cidi, bi+1ci | i ∈ [n− 1]0}.
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Figure 7. Polytope Qn
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Figure 8. Polytope T ′′n

Convex polytopes of the class T ′′n (Figure 8) were introduced in [6]. They are
specified by these sets of vertices and edges:

V (T ′′n ) = {ai, bi, ci, di | i ∈ [n− 1]0},
E(T ′′n ) = {aiai+1, bibi+1, didi+1, aibi, bici, cidi, bi+1ci, ai+1bi | i ∈ [n− 1]0}.
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Theorem 6.1. For every n ≥ 27 it holds that γwconv(Qn) = γconv(Qn) = 2n.

Proof. We start by proving that γconv(Qn) ≤ 2n. Let S = {bi, ci | i ∈ [n − 1]0}.
Now, we will prove that S is a convex dominating set of Qn. The set S is obviously
a dominating set of Qn, since for all i ∈ [n− 1]0 it holds that ai, bi, ci, di ∈ N [bi]∪
N [ci], so

⋃n−1
i=0 N [bi] ∪

⋃n−1
i=0 N [ci] = {ai, bi, ci, di | i ∈ [n− 1]0} = V (Qn). Also, S

is a convex set, since:
• All shortest paths between b-vertices contain only b-vertices;
• all shortest paths between c-vertices, except endpoints, contain only
b-vertices;

• all shortest paths between any b-vertex and any c-vertex, except c-endpoint,
contain only b-vertices.

Therefore, S is a convex dominating set for Qn and γconv(Qn) ≤ |S| = 2n. Note
that the shortest paths mentioned are not always unique, so this argument can be
used only for the convex domination, and not for the weak convex domination.

Next, we will prove that γwconv(Qn) ≥ 2n. Using the same argumentation as in
the proof of Theorem 4.1, it can be concluded that every b-vertex is in S, i.e. for
all i ∈ [n− 1]0 it holds that bi ∈ S, which implies that {bi | i ∈ [n− 1]0} ⊆ S.

Since vertices bi such that i ∈ [n−1]0 are in S, and S is a weak convex dominating
set, from the uniqueness of the shortest path bj−cj−dj the following implication
holds:

Qn : dj ∈ S ⇒ cj ∈ S. (6.1)
Let k = bn−1

2 c and i ∈ [n−1]0. Therefore, it is easy to see that 2k+1 ≤ n ≤ 2k+
2. To obtain domination for all d-vertices, S must contain some of c-vertices or/and
d-vertices. Precisely, for N [di] = {di, di−1, di+1, ci} and N [di+k] = {di+k, di+k−1,
di+k+1, ci+k}, the following conditions must hold: N [di]∩S 6= ∅ and N [di+k]∩S 6=
∅.

There are 9 nontrivial possible cases. As it can be seen from Table 2, each of
the 7 other possibilities can be directly reduced to one of the following cases.

Case 1: There is i such that di ∈ S and ck+i ∈ S. Let us consider the unique
shortest path di−di+1− · · · −dk+i−1−dk+i−ck+i whose endpoints are in S. Since
S is a weak convex dominating set, we have that di, di+1, . . . , dk+i−1, dk+i ∈ S.
From (6.1) it follows that ci, ci+1, . . . , ck+i−1, ck+i ∈ S. As S contains at least
k + 1 c-vertices and k + 1 d-vertices and all n b-vertices, and 2k + 2 ≥ n, we have
|S| ≥ n+ 2k + 2 ≥ 2n.

Case 2: There is i such that ci ∈ S and dk+i ∈ S. Similarly to Case 1, we can
consider the unique shortest path ci−di−di+1−· · ·−dk+i−1−dk+i whose endpoints
are in S. Again, since S is a weak convex dominating set, di, di+1, . . . , dk+i−1, dk+i ∈
S. In the same way, from (6.1) it follows that ci, ci+1, . . . , ck+i−1, ck+i ∈ S, again
giving |S| ≥ n+ 2k + 2 ≥ 2n.

Case 3: There is i such that ci ∈ S and dk+i−1 ∈ S. Similarly to Case 2,
we can consider the unique shortest path ci− di− di+1− · · · − dk+i−2− dk+i−1
whose endpoints are in S. Again, since S is a weak convex dominating set,
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di, di+1, . . . , dk+i−2, dk+i−1 ∈ S. In the same way, from (6.1) it follows that
ci, ci+1, . . . , ck+i−2, ck+i−1 ∈ S. Let S′ = {bl | l ∈ [n − 1]0} ∪ {cj , dj | j ∈
[k + i− 1]0, j ≥ i}; then S′ ⊆ S and |S′| ≥ 2n− 2. Since S is a dominating set, at
least one vertex from N [di−2] and at least one vertex from N [di−5] must be in S.
We have N [di−2] ∩ N [di−5] = ∅, and n ≥ 27, which implies that N [di−2] ∩ S′ = ∅
and N [di−5] ∩ S′ = ∅. Therefore, we have |S| ≥ |S′|+ 2 = 2n.

Case 4: There is i such that ci ∈ S and dk+i+1 ∈ S. If n is odd (n = 2k + 1),
we can consider the unique shortest path dk+i+1−dk+i+2− · · · −di−1−di − ci

whose endpoints are in S. Again, since S is a weak convex dominating set,
dk+i+1, dk+i+2, . . . , di−1, di ∈ S. In the same way, from (6.1) it follows that
ck+i+1, ck+i+2, . . . , ci−1, ci ∈ S, giving |S| ≥ n+2(k+1) = n+2k+2 = 2n+1 > 2n.
Otherwise, if n is even (n = 2k+2), we can consider the two shortest paths between
vertices ci and dk+i+1:

• shortest path ci−di−di+1− · · · −dk+i−dk+i+1;
• shortest path dk+i+1−dk+i+2− · · · −di−1−di − ci.

Since both endpoints ci and dk+i+1 are in S, and S is a weak convex domi-
nating set, at least one shortest path must be in S. Therefore, we have that
di, di+1, . . . , dk+i, dk+i+1 ∈ S or dk+i+1, dk+i+2, . . . , di−1, di ∈ S, which leads to
ci, ci+1, . . . , ck+i, ck+i+1 ∈ S or ck+i+1, ck+i+2, . . . , ci−1, ci ∈ S. In both subcases,
S must have at least n b-vertices, k + 2 c-vertices and k + 2 d-vertices, giving
|S| ≥ n+ 2(k + 2) = n+ 2k + 4 = 2n+ 2 > 2n.

Case 5: There is i such that di+1 ∈ S and ck+i ∈ S. Similarly to Case 3, we
can consider the unique shortest path di+1−di+2− · · · −dk+i−1−dk+i−ck+i whose
endpoints are in S. Again, since S is a weak convex dominating set, di+1, di+2, . . . ,
dk+i−1, dk+i ∈ S. In the same way, (6.1) implies that ci+1, ci+2, . . ., ck+i−1,
ck+i ∈ S. Let S′ = {bl | l ∈ [n − 1]0} ∪ {cj , dj | j ∈ [k + i], j ≥ i + 1}; it
follows that S′ ⊆ S and |S′| ≥ 2n − 2. Since S is a dominating set, at least
one vertex from N [di−1] and at least one vertex from N [di−4] must be in S. We
have N [di−1] ∩ N [di−4] = ∅ and n ≥ 27, which imply that N [di−1] ∩ S′ = ∅ and
N [di−4] ∩ S′ = ∅. Therefore, we have |S| ≥ |S′|+ 2 = 2n.

Case 6: There is i such that di+1 ∈ S and dk+i−1 ∈ S. Similarly to Cases
3 and 5, we can consider the unique shortest path di+1−di+2− · · · −dk+i−2−
dk+i−1 whose endpoints are in S. Again, since S is a weak convex dominat-
ing set, di+1, di+2, . . . , dk+i−2, dk+i−1 ∈ S. In the same way, (6.1) implies that
ci+1, ci+2, . . . , ck+i−2, ck+i−1 ∈ S. Let S′ = {bl | l ∈ [n − 1]0} ∪ {cj , dj | j ∈
[k+ i− 1], j ≥ i+ 1}, which leads to S′ ⊆ S and |S′| ≥ 2n− 4. Since S is a domi-
nating set, at least one vertex from neighbourhoods N [di−1], N [di−4], N [di−7] and
N [di−10] must be in S. It is easy to see that all four mentioned neighbourhoods
are mutually disjoint and, since n ≥ 27, we conclude that each neighbourhood has
an empty intersection with S′, so |S| ≥ |S′|+ 4 = 2n.
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Table 2. Other possibilities in Theorem 6.1

Possibility Reduced to case Reason
(∃i) (di ∈ S ∧ dk+i ∈ S) 1 dk+i ∈ S ⇒ ck+i ∈ S

(∃i) (di ∈ S ∧ dk+i−1 ∈ S) 3 di ∈ S ⇒ ci ∈ S

(∃i) (di ∈ S ∧ dk+i+1 ∈ S) 4 di ∈ S ⇒ ci ∈ S

(∃i) (di−1 ∈ S ∧ dk+i ∈ S) 7 dk+i ∈ S ⇒ ck+i ∈ S

(∃i) (di−1 ∈ S ∧ dk+i−1 ∈ S) 1 i′ = i− 1, dk+i ∈ S ⇒ ck+i ∈ S

(∃i) (di+1 ∈ S ∧ dk+i ∈ S) 5 dk+i ∈ S ⇒ ck+i ∈ S

(∃i) (di+1 ∈ S ∧ dk+i+1 ∈ S) 1 i′ = i+ 1, dk+i ∈ S ⇒ ck+i ∈ S

Case 7: There is i such that di−1 ∈ S and ck+i ∈ S. Similarly to Case 4, for
odd n (n = 2k + 1) we have the unique shortest path ck+i−dk+i−dk+i+1− · · · −
di−2− di−1 whose endpoints are in S. Again, since S is a weak convex dom-
inating set, dk+i, dk+i+1, . . . , di−2, di−1 ∈ S. In the same way, (6.1) implies that
ck+i, ck+i+1, . . . , ci−2, ci−1 ∈ S, giving |S| ≥ n+2(k+1) = n+2k+2 = 2n+1 > 2n.
Otherwise, for even n (n = 2k+2), we can consider the two shortest paths between
vertices di−1 and ck+i:

• shortest path di−1−di− · · · −dk+i−1−dk+i−ck+i;
• shortest path ck+i−dk+i−dk+i+1− · · · −di−2−di−1.

Since both endpoints di−1 and ck+i are in S, and S is a weak convex dominating set,
at least one shortest path must be in S. Therefore, di−1, di, . . . , dk+i−1, dk+i ∈ S
or dk+i, dk+i+1, . . . , di−2, di−1 ∈ S, which leads to ci−1, ci, . . . , ck+i−1, ck+i ∈ S or
ck+i, ck+i+1, . . . , ci−2, ci−1 ∈ S. In both subcases, S must have at least n b-vertices,
k + 2 c-vertices and k + 2 d-vertices, giving |S| ≥ n + 2(k + 2) = n + 2k + 4 =
2n+ 2 > 2n.

Case 8: There is i such that di−1 ∈ S and dk+i+1 ∈ S. Let us consider the unique
shortest path dk+i+1−dk+i+2− · · · −di−2−di−1 whose endpoints are in S. Since
S is a weak convex dominating set, dk+i+1, dk+i+2, . . . , di−2, di−1 ∈ S. From (6.1)
it follows that ck+i+1, ck+i+2, . . . , ci−2, ci−1 ∈ S. Let S′ = {bl | l ∈ [n − 1]0} ∪
{cj , dj | j ∈ [n + i − 1], j ≥ k + i + 1}}. First, S′ is a subset of S. Second, since
n+ i−1− (k+ i+ 1) + 1 = n−k−1, S′ must have n b-vertices, n−k−1 c-vertices
and n − k − 1 d-vertices, giving |S′| = n + 2(n − k − 1) = 3n − 2k − 2 ≥ 2n − 1.
Since S is a dominating set, at least one vertex from N [di+1] must be in S. From
n ≥ 27 we have N [di+1] ∩ S′ = ∅. Therefore, we have |S| ≥ |S′|+ 1 ≥ 2n.

Case 9: For all i it holds that ci ∈ S and ck+i ∈ S. Since i ∈ [n − 1]0, it holds
that all c-vertices are in S. As all b-vertices are already in S, we have |S| ≥ 2n.
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Finally, since |S| ≥ 2n for all nine cases, γwconv(Qn) ≥ 2n. Since γwconv(Qn) ≤
γconv(Qn), γwconv(Qn) ≥ 2n and γconv(Qn) ≤ 2n, we have that γwconv(Qn) =
γconv(Qn) = 2n. �

Theorem 6.2. For every n ≥ 27 it holds that γwconv(T ′′n ) = γconv(T ′′n ) = 2n.

Proof. The proof goes along similar lines as the proof of Theorem 6.1, so it will be
omitted. �

7. Convex polytopes Bn, Cn and En

The graph of convex polytope Bn (Figure 9) was introduced in [2] and consists
of 2n 4-sided faces, n 3-sided faces, n 5-sided faces and a pair of n-sided faces. The
set of vertices is

V (Bn) = {ai, bi, ci, di, ei | i ∈ [n− 1]0}
and the set of edges is
E(Bn) = {aiai+1, bibi+1, didi+1, eiei+1, aibi, bici, bi+1ci, cidi, diei | i ∈ [n− 1]0}.
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Figure 9. Polytope Bn

Convex polytopes Cn (Figure 10) were introduced in [9] and consist of 3n 3-sided
faces, n 4-sided faces, n 5-sided faces and a pair of n-sided faces. Their sets of
vertices and edges are

V (Cn) = {ai, bi, ci, di, ei | i ∈ [n− 1]0}
and

E(Cn) = {aiai+1, bibi+1, didi+1, eiei+1, aibi, bici, cidi,

diei, bi+1ci, di−1ei | i ∈ [n− 1]0}.
The graph of convex polytope En (Figure 11), similar to the Cn, introduced

in [9], consists of 5n 3-sided faces, n 5-sided faces and a pair of n-sided faces, where
V (En) = {ai, bi, ci, di, ei | i ∈ [n− 1]0}
E(En) = {aiai+1, bibi+1, didi+1, eiei+1, aibi, bici, cidi,

diei, bi+1ci, di−1ei, ai−1bi | i ∈ [n− 1]0}.

Theorem 7.1. For every n ≥ 27 it holds that γwconv(Bn) = γconv(Bn) = 3n.
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Figure 10. Polytope Cn
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Figure 11. Polytope En

Proof. First we will prove that γconv(Bn) ≤ 3n. Let S = {bi, ci, di | i ∈ [n − 1]0}.
Now, we will prove that S is a convex dominating set for Bn. The set S is obviously
a dominating set of Bn, since for all i ∈ [n − 1]0 it holds that ai, bi, ci, di, ei ∈
N [bi]∪N [ci]∪N [di], so

⋃n−1
i=0 N [bi]∪

⋃n−1
i=0 N [ci]∪

⋃n−1
i=0 N [di] = {ai, bi, ci, di, ei |

i ∈ [n − 1]0} = V (Bn). Also, S is a convex set, since each shortest path between
two vertices from {bi, ci, di | i ∈ [n − 1]0} contains only b-vertices, c-vertices or
d-vertices.

Therefore, S is a convex dominating set for Bn and γconv(Bn) ≤ |S| = 3n. Note
that, as before, shortest paths are not always unique, so this argument can be used
only for the convex domination, and not for the weak convex domination.

Next, we will prove that γwconv(Bn) ≥ 3n. Using the same argumentation as
in the proof of Theorem 4.1, it can be concluded that every b-vertex is in S, i.e.
{bi | i ∈ [n− 1]0} ⊆ S.

Using the same argumentation as in the proof of Theorem 4.1, it can be con-
cluded that {di | i ∈ [n− 1]0} ⊆ S.

For an arbitrary i ∈ [n − 1]0 the shortest path between bi and di is unique
(bi−ci−di), and has both endpoints in S (bi, di ∈ S), so from the fact that S is
a weak convex dominating set it must hold that for all i ∈ [n − 1]0, ci ∈ S. Due
to the inclusion {ci | i ∈ [n − 1]0} ⊂ S and previous facts, we have {bi, ci, di | i ∈
[n− 1]0} ⊆ S ⇒ |S| ≥ 3n.

Finally, since γwconv(Bn) ≤ γconv(Bn), γwconv(Bn) ≥ 3n and γconv(Bn) ≤ 3n,
we have that γwconv(Bn) = γconv(Bn) = 3n. �

Rev. Un. Mat. Argentina, Vol. 63, No. 1 (2022)
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Theorem 7.2. For every n ≥ 27 it holds that
γwconv(Cn) = γconv(Cn) = γwconv(En) = γconv(En) = 3n.

Proof. The proof goes along similar lines as the proof of Theorem 7.1, so it will be
omitted. �

8. Convex polytopes Un

The convex polytopes Un, n ≥ 5 (Figure 12), were introduced in [8]. They
consist of n 4-sided faces, 2n 5-sided faces and a pair of n-sided faces, having these
vertex and edge sets:

V (Un) = {ai, bi, ci, di, ei | i ∈ [n− 1]0},
E(Un) = {aiai+1, bibi+1, eiei+1, aibi, bici, cidi, diei, ci+1di | i ∈ [n]}.
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Figure 12. Polytope Un

Theorem 8.1. For every n ≥ 27 it holds that γwconv(Un) = γconv(Un) = 4n.

Proof. First, we will prove that γconv(Un) ≤ 4n. Let S = {bi, ci, di, ei | i ∈ [n−1]0}.
Now, we will prove that S is a convex dominating set for Un. The set S is obviously
a dominating set of Un, since for all i ∈ [n − 1]0 it holds that ai, bi, ci, di, ei ∈
N [bi]∪N [ci]∪N [di]∪N [ei], so

⋃n−1
i=0 N [bi]∪

⋃n−1
i=0 N [ci]∪

⋃n−1
i=0 N [di]∪

⋃n−1
i=0 N [ei]

= {ai, bi, ci, di, ei | i ∈ [n−1]0} = V (Un). Also, S is a convex set, since each shortest
path between two vertices from {bi, ci, di, ei | i ∈ [n− 1]0} contains only b-vertices,
c-vertices, d-vertices or e-vertices.

Therefore, S is a convex dominating set for Un and γconv(Un) ≤ |S| = 4n.
Note that, as previously, mentioned shortest paths are not always unique, so this
argument can be used only for the convex domination, and not for the weak convex
domination.

Next, we will prove that γwconv(Un) ≥ 4n. Using the same argumentation as in
the proof of Theorem 4.1, it can be concluded that every b-vertex is in S, i.e. for
all i ∈ [n− 1]0 it holds that bi ∈ S implies that {bi | i ∈ [n− 1]0} ⊆ S.

Also, we will prove that all e-vertices must be in the weak convex dominating set
of Un, i.e. for all i ∈ [n− 1]0 it holds that ei ∈ S. We can notice that by removing
vertices {ai | i ∈ [n− 1]0} from Un we obtain Dn, and {bi | i ∈ [n− 1]0} ⊆ S. Using
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the same argumentation for vertices {di | i ∈ [n − 1]0} as in Theorem 2.1, we can
conclude that {ei | i ∈ [n− 1]0} ⊆ S.

Similarly to the proof of Theorem 2.1, for an arbitrary i ∈ [n− 1]0 the shortest
path between bi and ei is unique (bi−ci−di−ei), and has both endpoints in S
(bi, ei ∈ S). From the fact that S is a weak convex dominating set it must hold that
for all i ∈ [n−1]0 the vertices bi and di belong to S. Since {ci, di | i ∈ [n−1]0} ⊂ S,
and from previous facts, it stands that {bi, ci, di, ei | i ∈ [n − 1]0} ⊆ S, implying
that |S| ≥ 4n.

Finally, since γwconv(Un) ≤ γconv(Un), γwconv(Un) ≥ 4n and γconv(Un) ≤ 4n, we
have that γwconv(Un) = γconv(Un) = 4n. �

9. Conclusion

This paper presents values of the weak convex and the convex domination num-
bers for all known convex polytopes. Validity of these values is proven for n ≥ 27,
while for n ≤ 26 the values are computed using the exact method. Values ob-
tained by the exact method satisfy formulas obtained theoretically, except in some
particular cases which will be mentioned below.

The results obtained are summarized in Table 3. Each row describes the weak
convex and the convex dominating sets with minimal cardinality, and the corre-
sponding weak convex and convex domination numbers for a certain polytope. The
first column, labeled with G, contains the type of polytope. The second and third
columns, labeled with |V (G)| and |E(G)|, contain the number of vertices and edges,
respectively. The fourth column, labeled Cond., denotes the polytopes for which
a certain result applies. In this column, ‘gc’ denotes that the result stands in the
general case, while n = 5 means that the result presented with given row stands
for the polytope where n = 5. The fifth column, labeled Type, describes the type
of domination: ‘wconv’ for the weak convex domination and ‘conv’ for the con-
vex domination, while ‘wconv, conv’ in a certain row means that the result stands
for both weak convex and convex domination. The sixth column, labeled Card.,
contains the weak convex and convex domination numbers. The seventh column,
labeled Basis, contains the weak convex and the convex dominating set with min-
imal cardinality. For example, polytope Bn, in general, has the weak convex and
convex dominating sets {bi, ci, di | i ∈ [n− 1]0} with 3n elements, with one excep-
tion for n = 5 where the weak convex dominating set with minimal cardinality 14
is {bi, ci, di, ei | i ∈ {0, 1, 2}} ∪ {b3, b4}.

Future work could be directed to obtaining the weakly convex and convex dom-
ination numbers of some other classes of graphs. Another promising direction for
future research would be to calculate other graph invariants of convex polytopes.
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Table 3. Summary of results

G |V (G)| |E(G)| Cond. Type Card. Basis
An 3n 7n gc wconv, conv n {bi | i ∈ [n− 1]0}
Bn 5n 9n gc wconv, conv 3n {bi, ci, di | i ∈ [n− 1]0}

n = 5 wconv 14 {bi, ci, di, ei | i = 0, 1, 2} ∪ {b3, b4}
Cn 5n 10n gc wconv, conv 3n {bi, ci, di | i ∈ [n− 1]0}
Dn 4n 6n gc wconv, conv 4n {a,bi, ci, di | i ∈ [n− 1]0}

n = 5 wconv 10 {a2, a3, a4, b2, b4, c1, c4, d0, d1, d4}

En 5n 11n gc wconv, conv 3n {bi, ci, di | i ∈ [n− 1]0}
Qn 4n 7n gc wconv, conv 2n {bi, ci | i ∈ [n− 1]0}
Rn 3n 6n gc wconv, conv n {bi | i ∈ [n− 1]0}
R′′n 6n 9n gc wconv, conv 6n {a,bi, ci, di, ei, fi | i ∈ [n− 1]0}

n = 5 wconv 20 {bi, ci, di, ei | i ∈ {0, 1, 2, 3, 4}}
Sn 4n 8n gc wconv, conv 2n {bi, ci | i ∈ [n− 1]0}
S′′n 4n 8n gc wconv, conv 2n {bi, ci | i ∈ [n− 1]0}
Tn 4n 9n gc wconv, conv 2n {bi, ci | i ∈ [n− 1]0}

n = 5 wconv 8 {a1, b0, b3, b4, c0, c3, c4, d0}

T ′′n 4n 8n gc wconv, conv 2n {bi, ci | i ∈ [n− 1]0}
Un 5n 8n gc wconv, conv 4n {bi, ci, di, ei | i ∈ [n− 1]0}

n = 5 wconv 13 {a0, a3, a4, b0, b3, b4, c0, c3, d0, d2, e0, e1, e2}
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Military Academy, University of Defence, Generala Pavla Jurǐsića Šturma 33, 11000 Belgrade,
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