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RECURRENT CURVATURE OVER FOUR-DIMENSIONAL
HOMOGENEOUS MANIFOLDS

MILAD BASTAMI, ALTI HAJI-BADALI, AND AMIRHESAM ZAEIM

ABSTRACT. Recurrent curvature properties are considered on four-dimensional
pseudo-Riemannian homogeneous manifolds with non-trivial isotropy, and also
on some geometric manifolds.

1. INTRODUCTION

It is well known that the most important geometric object living on a manifold
is the curvature tensor. Many different conditions may be applied on the curva-
ture tensor, and each of them is the geometric interpretation of an outer property.
Being parallel is a famous condition on the curvature tensor, which determines the
(locally) symmetric spaces. Locally symmetric manifolds have an important appli-
cation in various fields of sciences like applied physics. In this way, manifolds with
recurrent curvature, as a generalization of locally symmetric spaces, will find a spe-
cial place. Many authors focused their studies on spaces with recurrent curvature.
We present a brief survey about them.

Spaces with recurrent curvature were firstly introduced and characterized by
H. S. Ruse [I0]. He investigated these spaces and showed that the necessary and
sufficient condition for a three-dimensional Riemannian manifold to have recurrent
curvature is to accept a parallel vector field. Also in dimension 2, he showed that
every Riemannian manifold has recurrent curvature.

A. G. Walker [13] made more extensive studies and proved several interesting
results; probably the most important was the characterization of three-spaces with
recurrent curvature, spaces known as strictly Walker manifolds.

In recent years, for the Lorentzian setting, several authors have studied three-
manifolds with recurrent curvature; for example, E. Garcia-Rio et al. obtained a
complete description of all locally homogeneous Lorentzian manifolds with recur-
rent curvature [5]. Using this classification, G. Calvaruso and A. Zaeim [I] inves-
tigated symmetries on this space and computed Ricci and curvature collineations
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on Lorentzian three-manifolds with recurrent curvature. A. Haji-Badali [7] inves-
tigated these spaces and showed that a Lorentzian three-manifold with recurrent
curvature does not accept non-trivial proper gradient Ricci solitons; he also ob-
tained a classification for Ricci almost solitons on these spaces.

Due to the previous research, we concentrate our work on the study of the re-
current curvature property of four-dimensional homogeneous pseudo-Riemannian
manifolds. These examples contain important classes of pseudo-Riemannian man-
ifolds and it is worthwhile to study different geometric properties. Our study is
based on the classification of four-dimensional homogeneous manifolds with non-
trivial isotropy, which was given by Komrakov in [9]. We complete this study by
checking the recurrent condition for these spaces, obtaining a new classification for
homogeneous four-dimensional pseudo-Riemannian manifolds with recurrent cur-
vature.

This paper is organized in the following way. The second section contains pre-
liminaries and some basic facts necessary for our study. Section 3 is devoted to
the main theorem of this study, i.e., the classification of homogeneous four-spaces
with recurrent curvature, and then we consider the geometry of each class in Sec-
tion 4. In the last section, the recurrent curvature property is considered on some
geometric manifolds with physical applications, e.g. Walker spaces.

2. PRELIMINARIES

A pseudo-Riemannian manifold (M, g) is called homogeneous if for any pair of
points p, ¢ € M, there exists an isometry ¢ on M such that ¢(p) = ¢. Homogeneous
spaces with many interesting geometric properties are studied by several authors
[2, B 6L[@]. Tt is well known that a homogeneous space may be realized and studied
as a quotient space G /H, where G is the group of isometries, which acts transitively
on (M, g), and H is the isotropy subgroup.

We denote the Lie algebra of G and its subgroup H by g and b, respectively, and
by m we denote the subspace of g complementary to h. One of the most important
properties of homogeneous spaces is the existence of a one-to-one correspondence
between invariant metrics on M = G/H and non-degenerate symmetric bilinear
forms on m. The pair (g, ) uniquely defines the following map:

¥ g — gl(m), V(@) (y) = [z, y]m, forallzeg, yem.

By using this map, we can determine bilinear forms g on m with respect to the
basis {e1,...,er,u1,...,u,}, where {e;}7_; and {u;}7_, are bases for h and m,
respectively. Now, the necessary and sufficient condition for the bilinear form g to
be invariant is

tqp(x) og+got(xr)=0, forallzeg.
The Levi-Civita connection is computed by
1
A@)(ym) = 5l yln +v(z,y), forallz,y e g, (2.1)
where v : g X g — m is the h-invariant symmetric mapping uniquely determined by

29(v(x,Y), 2m) = 9(Tm, [2, Ylm) + 9(Ym, [2, Z]m), for all z,y,z € g.

Rev. Un. Mat. Argentina, Vol. 62, No. 1 (2021)



RECURRENT CURVATURE OVER 4D HOMOGENEOUS MANIFOLDS 245

Then, the curvature tensor is determined by

R:mxm— gl(m)

(2.2)
and the Ricci tensor p of the metric g with respect to the basis {u;}}_; is
plui, uj) = Lg(R(uk, wi)uj, ug)- (2.3)

We recall the following definition.

Definition 2.1. A pseudo-Riemannian manifold (M, g) is called a recurrent cur-
vature manifold if there exists a 1-form w such that the following relation holds:

VR =w®R, (2.4)
where R is a (0,4) curvature tensor.

Generally, for any tensor field T' on (M, g) we can consider the spaces with
recurrent tensor field T' by studying the existence of a 1-form w such that VI' = w®
T. Trivially, a locally symmetric manifold, i.e., VR = 0, has recurrent curvature.

3. FOUR-DIMENSIONAL HOMOGENEOUS MANIFOLDS WITH
NON-TRIVIAL ISOTROPY

Now, we start with the classification of four-dimensional homogeneous manifolds
with non-trivial isotropy, which is given by Komrakov in [9], and from now on,
in this section and the following one, we will assume that (M = G/H,g) is an
arbitrary pseudo-Riemannian four-dimensional homogeneous manifold with non-
trivial isotropy, equipped with an invariant metric g.

Theorem 3.1. The homogeneous manifold (M, g) has non-trivially recurrent cur-
vature (not locally symmetric) if and only if one of the cases of Table [1] occurs,
where {0°}}_, is the dual basis of {u;}}_, and w; are the components of the one-
form w with respect to the basis {0°}}_,.

Proof. We start by the case-by-case study of homogeneous spaces with non-trivial
isotropy in [9]. Referring to [3], where a complete list of locally symmetric examples
is presented, we restrict our study to the non-locally symmetric cases.

We show the details for the case 1.1'.01, and the other cases may be treated
in a similar way. As stated in the preliminaries, every invariant metric on the
homogeneous space M = G/H is in one-to-one correspondence with an invariant
inner product on m. For this case, there exists a basis {e1,u1,...,u4} of g; the
nonzero brackets are

[61,U1] = ui, [61,1&3] = —us, [UhUB] = [U27U4] = U2, [u37u4] = us,

Rev. Un. Mat. Argentina, Vol. 62, No. 1 (2021)



246 MILAD BASTAMI, ALI HAJI-BADALI, AND AMIRHESAM ZAEIM

case invariant metric nonzero w; and conditions
2a0"0° + b0°6° + 2c6°0" + d6 0",
1111 5 b=0, wy=—2
a(c® —bd) # 0
11102 ' =0, ws =2\
. af'0" + 00207 + 2¢6%0" + a0°0° + d667,
11%:1 N b=0,w;=—4
a(c® —bd) #0
1.12:2 ' b=0,w;=—2p
131:5 —2a0"07 + 2a070° + b0°0° + 2¢6°0" + d6"07, B=2 A= 0, ws= 4
a#0
s , n=0,A=X2c+d =0,
wg = —2\
1.31:7 " A=0,d+2c=0, w3 =—2
1.31:9 " A=1,wy=-2
1.31:12 " b=0,wy=-2
! " A=1—p, wyg=-2
! " ﬂ:%./\:/\7w4:72
! " A=pu—1,wg=-2p
! ' A=p+1,wg=-2p—-2
1.3 :13 ' A=1 w=-2
A= é, wg=—1
A % wyg = -3
1.3': 14 ' A=\ wy=-2
1.3':19 ' b=0,wy=—2
1.3':21 ' A=\b=0,wy=-2
A= %, wy = —2
A=2, wy=—4
1.31:23 ' Wy =2
1.31:24 " A=2 w3 =—6
1.31:25 ! A=2,w3=—6
a9 —2a0%0% + a0%6% + b030° + 2c6°0* + d6*0*, o 1, a2
ad #0
1.41:9 ! u,:—ﬁﬂ'z(l—kp)(?—}—p)
w3 =—2p—4
! ' (L:—Al%‘r:p(—l+p)
w3 =—-2-2p
! ! dp:—;r:—%fd
w3 = —2
1.4': 10 ' w3 =—2
1.4' 112 0r 13 ' w3 = —2, or
r=1,4a+d=0, w3 =—2
2.2':20r3 206003 + 2a026* 4+ b0%62, a # 0 wy =2por wy =2
2.51:3 20003 4 2a020* + b030%, a #0 h=0, wg=—2
Y Y r= hT. — %hﬁ
k=0,wy=-2—-h
2,58 ' wz=—2
2.5%: 200603 + 6?62 + b6%03 + ah*0*, a £ 0 s=0, w3 =—2
wy = —2
33001 2a0 03 + 2a620* + b930%, a # 0 w3 =—2
3.32:1 2a0'0% + ah?6% + b6°60° + ab*6*, a # 0 w3 =—2
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and the isotropy subalgebra is generated by h = span{e;}. If we take m =
span{ui, ..., us}, then the matrix related to ¥(e;), which was defined in the pre-
vious section, and the invariant metrics with respect to {u;}?_; are

10 0 0 00 a0
00 0 0 0 b 0 ¢
Hi=190 -1 0 and g=1 o o o |
00 0 0 0 ¢ 0 d

and for the metric g to be nondegenerate it must satisfy a?(c?
fore, using equation (2.1]), we have the following components
connection:

0 L& 0 = L0
bd+ac—c? be
A = 0 0 2(—gd£czc) 0 Ao = 0 bd—c?
! 0 0 0 o | 7 0 0
ab —b?
0 0 T 2(bd—c?) 0 0 bd—c?
0 0O 0 O “{ac 0
_ 2 2
po— | HEEE 0 000 Lo 0 =
Oab 2a 0 (12—26 0 Obc
“Sta—ey 0 0 O 0 —pZ=

—bd) # 0. There-
of the Levi-Civita

0

dc
bd—c?

T bd—c2

So, by a direct computation over (2.2)), the components of curvature tensor are

obtained as

0 — b2 (2a2+bd—c?) 0 _ b((bd—c?)(a+c)+2a%c)
4a?(bd—c?) 4a?(bd—c?)
0 0 (bd—ac—c?+2a?)b 0
Ris = 4a(bd—c?) ,
0 0 0 0
b2
0 0 %) 0
b(3bd—3c? —a?)
4a(bdic2;l 0 0 0
0 cb 0 @
2(bd—c2) 2(bd—c2)
Rz = b(—3bd+3c%+a?) )
0 0 T da(d—?) 0
0 b’ 0 cb
2(bd—c?) 2(bd—c?)
0 b((c®—bd)(a—c)+2a3c) 0 c?(a®—c?)+bd(a’+c?)
- 4a?(bd—c?) B 4a?(bd—c?)
0 0 —bad+cbd+a’c—c? 0
Ry = 4a(bd—c?) ,
0 0 0 0
b(a+c)
0 0 d—cD) 0
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0 0 0 0
(bd+ac+2a2—02)b
B 4a(bd—c?) 0 0 0
R23 - 0 b2(2a2+bd762) 0 b((c27bd)(afc)+2a2c) )
y 4a?(bd—c?) 4a?(bd—c?)
b
=) 0 0 0
2 0 0 0
Roy = U bdc—bc2 0 - bdlflc2 d
#““lo 0o & 0 A
b? ¢ be
0 bd—c? 0 bd—c?
0 0 0 0
bd(a+c)+achc3
4a(bd—c?) 0 0 0
R3y = 0 _ b((bd—c?)(a4c)+2a%c) 0 — c?(a?—c?)+bd(a®+c?) )
(a—c)b 4a?(bd—c?) 4a?(bd—c?)
I(bd—c2) 0 0 0

where R;; = R(u;,u;j). Now, let w = w10 +w20% + w303 +w40*; a direct calculation
using gives (VR—w®R)3142; = $bw;. Since w # 0, we immediately get b = 0
(the case w = 0 means that (M, g) is locally symmetric). Applying b = 0 for the
remaining terms of (VR —w ® R);jkim gives

wict(a®> =) =0, i=1,...,3;
(wg +2)(a® = c*) = 0.

As a # +c (the flat case), we have w) = wy = w3 = 0 and wy = —2. O

4. GEOMETRY OF THEOREM 3.1

An Einstein-like metric and a commutative curvature operator over the ho-
mogenous four-manifold (M, g) were presented in [14] and [8], respectively. Here,
we introduce a large class of some geometric examples in our classification of Theo-
rem[3:1] The Einstein manifold is one of the most important manifolds in geometry
and physics. It is well known that the manifold (M, g) is called Einstein if p = ng
for a real constant 7. Also, it is obvious that the manifold is flat if the curvature
tensor vanishes identically.

The Weyl conformal tensor W is a (0,4) tensor field on (M, g) which is com-
pletely determined by its components in the following way:

1 Sc
Wijkh = Rijkn + = (gikpin + ginPix — Ginpjk — 9ikPin) — — (GikGjn—9ingjk ), (4.1)

2 6
where Sc is the scalar curvature. A four-dimensional pseudo-Riemannian manifold
is called conformally flat if its Weyl conformal tensor W vanishes identically.

Theorem 4.1. If the homogeneous manifold (M, g) has non-trivially recurrent cur-
vature (not locally symmetric), as in Table |l then some of their geometric prop-
erties (flatness, Ricci flatness non-flat, being Ricci parallel non-locally symmetric,
being Einstein non-Ricci-flat, and conformal flatness) are as in Table @
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Ricci-flat Ricei parallel Einstein
case flat X o conformally flat
non-flat non-locally symmetric non-Ricci-flat
b # 0 and
1111 b=0,a=+c x x 70 b=0
bd + (a? = ?) =0
b#0, A=1
L1t:2 b=0,A=13% X X 70 2 b=0orA=0,3%
4nbd — 4nc® +3b =0
11%:1 X X X bd —c? —4a®? =0 b=0
; bd —nc? +3b =0
112:2 b=0,p=1 x x bd = e+ 3b b=0orp=0,1
b#0,p=1
bu(p — 1) — 2eAp
+d\2 +dp+2eA =0
135 b+d=0, b+d#0, b+d#0, X or
n=2 A=0 n=2 A=0 pn=2 A=0 A=p=0,
or
2c+d =0, pn=0
1.31:7 X X X X d—b\+2c=0
139 b=0,A=1 b#£0, A= N£0,—1,b#0 X A=0,—lorb=0
pn=0,A=1, or
) 3 b#0, a#0,
p=3z, A=3, or
i 1 A—p+1=0 A—p+1=0 b=0,
g9 H=mA=—g o
1.3':12 or or X A—p+1=0
pn=1, A=0, or 1
b—0 b#0, a#0, =7z
s A—p—1=0 A—p—1=0
Apt1=0 " s
1.3':13 X A=-4,3 A=-1,% X X
1.3':14 X A=0orl A=0or1l X X
1.31: 19 X X X X b=0
13121 b=0,A=0,2 b£0,A=2 b£0,A=2 X b=0or A=0,%
1.31:23 X v v X X
a—2d\?* 4 2d\ = 0,
1.31:24 a—4d=0, =2 a—4d#0, A =2 a—4d#0, A =2 X or
A=2
2d\? — 2d\ = 0,
1.3':25 a+4d=0,A=2 a+4d#0, A\ =2 a+4d#0, N =2 X ot 5 :
=3
p=13,3rd+4=0
- or
1.41:2 b=0,p=1 X p=3 . b=0orp=3
b P=3 p#1,b=0, 7d + 3p> ?
—6p+3=0
149 a+d=0, 7':%. d+ 2ra + 2pa d+2ra+2pa X dra+a+4d=0
- p=-1% +2p%a=0 +2p%a=0 p=-1
=p=0, ol
1.4':10 rep=ne pPP+p—r=0 pPP+p+r=0 x P4p—r=0
r=0,p=-1
1.4':12 r=0 X X X r=0
1.4 :13 X 2ar+2a+d=0 v X X
2.2 :2 p=-2,2 X X X v
2.21:3 X X X X v
25':3 X T L X X
2514 r=" 4k x X X v
2.5%2:2 rP+p=0=s P+p=0#s P +p=0+#s X s=0
3.30:1 p=0 X X X v
3.32:1 p=0 X X X v

TABLE 2. Geometric properties of Theorem [4.1|

Proof. We proceed similarly to the proof of Theorem [3.1} so, we present the details
for the cases 1.3'.09 and 2.52.02, and other cases may be considered in a similar
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way. In Theorem every invariant metric on the homogeneous space M = G/H
is in a one-to-one correspondence with an invariant inner product on m. First, we
consider the case 1.31.09. For this case, there exists a basis {e1,u1,...,us} of g,
the nonzero brackets are

ler,us) = uy, [er,usq] = ug, [ug,us] = Au,
[UQ,U4] = —Xej + ()\ + I)UQ, [U3,U4] =—-)Auz, MNER,

and the isotropy subalgebra is generated by h = span{e;}. If we take m =
span{u,...,uqs}, then the matrix H; related to 1(e;) and the invariant metric
with respect to {u;}}_; are

00 1 0 0 0 0 —a
000 1 0 0 a O
Hi=149 00 0 and g=1 o 4 . |
0O 0 0 O —a 0 ¢ d

and from the nondegeneracy of the metric g we have a* # 0. So, the Levi-Civita
connection ([2.1) and the curvature operator are as follows:

A1
00 3+% 0
00 0 35+13
A =0, Ao = 2t |
0 0 0 0
0 0 0 0
A b —c(A—1 —e(A—1
0 _§+% a (2(1 ) 0 0 (2(1 ) 0
—b(A+1 A1 —b(A+1 Ae
A3: 0 0 0 (Qa ) A4: 0 272 (Qa : T a
A 1 ’ A 1 )
0 0 0 -2+1 0 0 A+l 0
0 0 0 0 0 0 0 0
and by using equation ([2.2)),
A2 a1
00 -3 +3-1 0
A2 A1
Ro=| 0 ° 0 Tty
0 0 0 0 ’
0 0 0 0
= I 0
" 0 0 0 D
34 = b(5A2+22+1 A2 a1
—(47”) 00 —F+5-—1
N (0 0
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RECURRENT CURVATURE OVER 4D HOMOGENEOUS MANIFOLDS 251

Thus, by direct calculations, this case will be flat if the following equations are
satisfied:

Ao 1

T2 t1T

bA(A+1) =0,

b(5A2 + 20 +1) =0,

c(A—1)2=0.

0,

Therefore, this case can be flat just if b =0 and A = 1 as it appeared in Table 2
According to equation (2.3), the corresponding Ricci tensor is

00 0 0
00 0 0

P=1 0 0 0 0
000 —2+x-1

So, this case is Ricci-flat if A = 1, but if also b = 0 then the corresponding space is
flat, and also by taking direct covariant derivative over p, this case is Ricci parallel
if A #20,—1 and b # 0. Then, this case is Ricci parallel non-locally symmetric.
Now, the Einstein condition yields
A2 1
dn—?—i—)\—i:an:bn:cnzo,
which means that b # 0, A = 1, and n = 0, which is also Ricci-flat. So, in this case,
there is no Einstein non-Ricci-flat example.
Conformal flatness is obtained if the equation (4.1]) vanishes. So, we have

AN+ 1) =0;
therefore, this case is conformally flat if A=0or A = —1 or b = 0.
Now, we consider the case 2.52.02, where there exists a basis {eq, €2, u1,...,us}
of g, the nonzero brackets are
[617 U2] = Ui, [617 U3] = —U2, [627 U3] = U4, [62; U4] = —Uui, [U’17 u3] = Ui,

[ug, us] = (p+ s)er + rea + ug — 2rug, [ug,uq] = 2ruy,
[U’Sa 7.L4} = —re; + (p - 5)62 - 27’“2 — Ua, p,T,8 € Ra r,s 2> 07
and the isotropy subalgebra is generated by h = span{e;,es}. If we take m =

span{uy, ..., us}, then the matrices H; and Ha related to ¢(e;) and the invariant
metric with respect to {u;}1_; are

01 0 0 000 -1 00 a 0

00 -1 0 000 0 0 a 0 0
M=o 0 0 0] =looo ol 9“laowb ol

00 0 0 001 0 00 0 a
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and for the metric g to be nondegenerate we must have a* # 0. Using equation

(1) gives

0O -1 0 r
0 O 1 0
A1_07 AQ_ 0 0 0 0 ’
0 0 —r O
-10 =% o0 0 —r 0 -1
0 0 0 -—r 0 0 » O
As o0 1 0 | M=l 0 0 o |
0 » O 0 0 0 1 0
and also by (2.2)) we have the curvature operators
0 —r2—p—s 0 0
R | 0 0 P+p+s 0
SEO 0 0 0|
0 0 0 0
00 0 P +p—s
0 0 0 0
RBaa=1 ¢ ¢ 0 0
00 —r2—p+s 0

It is obvious that if 72 +p + s =0 and r? + p — s = 0 then the metric is flat. The
corresponding Ricci tensor is

o O O

p:

o o oo

0
0

2r2 +2p
0

O O OO

0

therefore, this case is Ricci-flat if »2 + p = 0, and to have non-flat examples we
must have s # 0. The same computation shows that this condition also holds for
the Ricci parallel non-flat case.

The Einstein condition in this case translates to

an—2r2 +2p =0, an=0, byn=0,
so, as a # 0, we must have r? + p = 0; so the metric will be flat. The conformal
flatness in this case means that
as = 0;
since a # 0, this case is conformally flat if s = 0. (|

If in (2.4)), instead of the curvature tensor we use the Ricci tensor, the space is
called Ricci recurrent.

Corollary 4.2. The homogenous manifold (M = G/H,g) is non-trivially Ricci
recurrent if it is of the cases 1.3% : 21 and 1.4 : 11 with w; = ws = w3 = 0,
wyg = —2, and w; = ws =0, wg = =2, wy = 0, respectively.
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5. STRICT WALKER RECURRENT CURVATURE MANIFOLDS

The existence of parallel distributions on manifolds is a strong condition to sim-
plify their geometric study. Of course, in the Riemannian geometry, the restriction
of the metric to the mentioned distribution is non-degenerate, but the condition
will be confined to the pseudo-Riemannian geometry when the metric restriction
to the parallel distribution is degenerate. Walker manifolds were firstly introduced
by A. G. Walker in 1950. He could find a canonical form for a Walker metric, by
introducing local coordinates where the metric takes a very special shape [IT], [12].
Following Walker’s studies, there exist local coordinates (x1, x2, 3, x4) on the four-
dimensional manifold M, such that the Walker metric is of indefinite signature
(= — ++) with the metric

1 0

0 1
a(x1, e, x3,24) (X1, T2, T3,2y)
c(x1, 2, 23,24) b(x1,22,T3,T4)

: (5.1)

g(iv17$27$3714) =

o= O O
_ o O O

where a(z1, z2, x3,24), b(x1, T2, 3, 24), (21, X2, T3, x4) are arbitrary smooth func-
tions on M, and the parallel distribution is generated by {0%1’ 8%2 } Chaichi et al.
have considered in [4] curvature properties of four-dimensional Walker metrics.

Furthermore, note that the plane field is strictly parallel if and only if the defining
functions are independent from the coordinates (x1,x2), i.e.,

a<$17$2;$37374) = a($3ax4)7
b(xl,]}g, 33‘3,.1‘4) = b(.1337$4),
c(z1, 22, 73, 74) = c(x3, T4);

then the corresponding metric will be called strict Walker metric. The Levi-Civita
connection of the strict Walker manifolds is as follows:

Vo, s = 18aazl+<8018a)am’

2 Oy, Oy 20u,
1/ da ab
vafﬁ 83:4 - vam48353 - 5 (%8581 + (913’8;82)7

oc 1 6b)8$ 1 0b O

81,: —— — — — —
Vo, O, (am 2 Oy, 1+28m4

According to [], a strict Walker metric defined globally on R* has vanishing
Christoffel symbols, so it is geodesically complete (cf. [0l Lemma 2.1]).

The nonzero components of the curvature tensor of any strict Walker metric are
given by

R(8y,,05,)05, = 2A05, and  R(0y,,0s,)0s, = 2A0s,,

where A =

8%b 8%c 8%a
O0z32 2 dx301T4 + Oz42 "
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Then, we consider the recurrent curvature condition for a strict Walker metric.
Let

w = wy (1,2, 3, Ta)dr1 + Wa(T1, T2, T3, Ta)dTa
+ w3 (1, T2, T3, Ta)drs + wa(T1, T2, T3, Ta)dT4.

Now, by applying the recurrent curvature condition (2.4)), we have

Awi (1,72, 23,24) =0,
AwQ(x17x271"37$4) = 07
% — Aws(z1,22,23,14) = 0,
% — ALU4(£171, $2,$3,’I’4) = 0

Since A # 0 (the case A = 0 implies the trivial flat condition), satisfying the
recurrent curvature condition is equivalent to establishing the following:
1 0A4 1 0A

= Ao T Aow 52

w1 =ws =0, w3
So, we have proved the next theorem.

Theorem 5.1. A geodesically complete four-dimensional strict Walker manifold
which is globally defined on R* has recurrent curvature if and only if it satisfies the

system of equations (5.2)).
In the same coordinate system, the functions a and ¢ can be further specialized
2
to satisfy a(zs,z4) = 0, c(xs,z4) = 0 (cf. [II]). So, A reduces to A = aist'
Therefore, for a special non-flat example, we present the following one.

Example 5.2. The geodesically complete strict Walker metric in R*, with vanish-
ing a and c and b as

b= f(za)z] + g(za)z3 + h(z4),
for arbitrary smooth functions f # 0, g, and h, has recurrent curvature (VR =
w ® R) with the following 1-form w on R*:

_ ['(wa)
f(x4)

6. CONCLUSION

d£84

Homogeneous examples of pseudo-Riemannian manifolds which have recurrent
curvature without Riemannian counterpart have been presented. Especially, there
are some open questions like the existence of some common underlying structure
(presumably the existence of a parallel field of degenerate lines/planes). Here just
for an example we investigate the existence of recurrent manifolds within the frame-
work of strictly Walker metrics in dimension four. This allows us the construction
of simple examples which are not locally homogeneous in signature (2,2), but a
full description is still an open question.
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