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RECURRENT CURVATURE OVER FOUR-DIMENSIONAL
HOMOGENEOUS MANIFOLDS

MILAD BASTAMI, ALI HAJI-BADALI, AND AMIRHESAM ZAEIM

Abstract. Recurrent curvature properties are considered on four-dimensional
pseudo-Riemannian homogeneous manifolds with non-trivial isotropy, and also
on some geometric manifolds.

1. Introduction

It is well known that the most important geometric object living on a manifold
is the curvature tensor. Many different conditions may be applied on the curva-
ture tensor, and each of them is the geometric interpretation of an outer property.
Being parallel is a famous condition on the curvature tensor, which determines the
(locally) symmetric spaces. Locally symmetric manifolds have an important appli-
cation in various fields of sciences like applied physics. In this way, manifolds with
recurrent curvature, as a generalization of locally symmetric spaces, will find a spe-
cial place. Many authors focused their studies on spaces with recurrent curvature.
We present a brief survey about them.

Spaces with recurrent curvature were firstly introduced and characterized by
H. S. Ruse [10]. He investigated these spaces and showed that the necessary and
sufficient condition for a three-dimensional Riemannian manifold to have recurrent
curvature is to accept a parallel vector field. Also in dimension 2, he showed that
every Riemannian manifold has recurrent curvature.

A. G. Walker [13] made more extensive studies and proved several interesting
results; probably the most important was the characterization of three-spaces with
recurrent curvature, spaces known as strictly Walker manifolds.

In recent years, for the Lorentzian setting, several authors have studied three-
manifolds with recurrent curvature; for example, E. García-Río et al. obtained a
complete description of all locally homogeneous Lorentzian manifolds with recur-
rent curvature [5]. Using this classification, G. Calvaruso and A. Zaeim [1] inves-
tigated symmetries on this space and computed Ricci and curvature collineations
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on Lorentzian three-manifolds with recurrent curvature. A. Haji-Badali [7] inves-
tigated these spaces and showed that a Lorentzian three-manifold with recurrent
curvature does not accept non-trivial proper gradient Ricci solitons; he also ob-
tained a classification for Ricci almost solitons on these spaces.

Due to the previous research, we concentrate our work on the study of the re-
current curvature property of four-dimensional homogeneous pseudo-Riemannian
manifolds. These examples contain important classes of pseudo-Riemannian man-
ifolds and it is worthwhile to study different geometric properties. Our study is
based on the classification of four-dimensional homogeneous manifolds with non-
trivial isotropy, which was given by Komrakov in [9]. We complete this study by
checking the recurrent condition for these spaces, obtaining a new classification for
homogeneous four-dimensional pseudo-Riemannian manifolds with recurrent cur-
vature.

This paper is organized in the following way. The second section contains pre-
liminaries and some basic facts necessary for our study. Section 3 is devoted to
the main theorem of this study, i.e., the classification of homogeneous four-spaces
with recurrent curvature, and then we consider the geometry of each class in Sec-
tion 4. In the last section, the recurrent curvature property is considered on some
geometric manifolds with physical applications, e.g. Walker spaces.

2. Preliminaries

A pseudo-Riemannian manifold (M, g) is called homogeneous if for any pair of
points p, q ∈M , there exists an isometry ϕ onM such that ϕ(p) = q. Homogeneous
spaces with many interesting geometric properties are studied by several authors
[2, 3, 5, 9]. It is well known that a homogeneous space may be realized and studied
as a quotient space G/H, where G is the group of isometries, which acts transitively
on (M, g), and H is the isotropy subgroup.

We denote the Lie algebra of G and its subgroup H by g and h, respectively, and
by m we denote the subspace of g complementary to h. One of the most important
properties of homogeneous spaces is the existence of a one-to-one correspondence
between invariant metrics on M = G/H and non-degenerate symmetric bilinear
forms on m. The pair (g, h) uniquely defines the following map:

ψ : g→ gl(m), ψ(x)(y) = [x, y]m, for all x ∈ g, y ∈ m.

By using this map, we can determine bilinear forms g on m with respect to the
basis {e1, . . . , er, u1, . . . , un}, where {ej}rj=1 and {ui}ni=1 are bases for h and m,
respectively. Now, the necessary and sufficient condition for the bilinear form g to
be invariant is

tψ(x) ◦ g + g ◦ ψ(x) = 0, for all x ∈ g.

The Levi-Civita connection is computed by

Λ(x)(ym) = 1
2 [x, y]m + v(x, y), for all x, y ∈ g, (2.1)

where v : g× g→ m is the h-invariant symmetric mapping uniquely determined by
2g(v(x, y), zm) = g(xm, [z, y]m) + g(ym, [z, x]m), for all x, y, z ∈ g.
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Then, the curvature tensor is determined by

R : m×m→ gl(m)
(x, y)→ [Λ(x),Λ(y)]− Λ([x, y]),

(2.2)

and the Ricci tensor ρ of the metric g with respect to the basis {ui}4
i=1 is

ρ(ui, uj) = Σg(R(uk, ui)uj , uk). (2.3)

We recall the following definition.

Definition 2.1. A pseudo-Riemannian manifold (M, g) is called a recurrent cur-
vature manifold if there exists a 1-form ω such that the following relation holds:

∇R = ω ⊗R, (2.4)

where R is a (0, 4) curvature tensor.

Generally, for any tensor field T on (M, g) we can consider the spaces with
recurrent tensor field T by studying the existence of a 1-form ω such that ∇T = ω⊗
T . Trivially, a locally symmetric manifold, i.e., ∇R = 0, has recurrent curvature.

3. Four-dimensional homogeneous manifolds with
non-trivial isotropy

Now, we start with the classification of four-dimensional homogeneous manifolds
with non-trivial isotropy, which is given by Komrakov in [9], and from now on,
in this section and the following one, we will assume that (M = G/H, g) is an
arbitrary pseudo-Riemannian four-dimensional homogeneous manifold with non-
trivial isotropy, equipped with an invariant metric g.

Theorem 3.1. The homogeneous manifold (M, g) has non-trivially recurrent cur-
vature (not locally symmetric) if and only if one of the cases of Table 1 occurs,
where {θi}4

i=1 is the dual basis of {ui}4
i=1 and ωi are the components of the one-

form ω with respect to the basis {θi}4
i=1.

Proof. We start by the case-by-case study of homogeneous spaces with non-trivial
isotropy in [9]. Referring to [3], where a complete list of locally symmetric examples
is presented, we restrict our study to the non-locally symmetric cases.

We show the details for the case 1.11.01, and the other cases may be treated
in a similar way. As stated in the preliminaries, every invariant metric on the
homogeneous space M = G/H is in one-to-one correspondence with an invariant
inner product on m. For this case, there exists a basis {e1, u1, . . . , u4} of g; the
nonzero brackets are

[e1, u1] = u1, [e1, u3] = −u3, [u1, u3] = [u2, u4] = u2, [u3, u4] = u3,
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case invariant metric nonzero ωi and conditions

1.11 : 1
2aθ1θ3 + bθ2θ2 + 2cθ2θ4 + dθ4θ4,

a(c2 − bd) 6= 0
b = 0, ω4 = −2

1.11 : 2 " b = 0, ω4 = −2λ

1.12 : 1
aθ1θ1 + bθ2θ2 + 2cθ2θ4 + aθ3θ3 + dθ4θ4,

a(c2 − bd) 6= 0
b = 0, ω4 = −4

1.12 : 2 " b = 0, ω4 = −2p

1.31 : 5
−2aθ1θ4 + 2aθ2θ3 + bθ3θ3 + 2cθ3θ4 + dθ4θ4,

a 6= 0 µ = 2, λ = 0, ω4 = −4

" "
µ = 0, λ = λ, 2c+ dλ = 0,

ω3 = −2λ
1.31 : 7 " λ = 0, d+ 2c = 0, ω3 = −2
1.31 : 9 " λ = 1, ω4 = −2
1.31 : 12 " b = 0, ω4 = −2
" " λ = 1− µ, ω4 = −2
" " µ = 1

2 , λ = λ, ω4 = −2
" " λ = µ− 1, ω4 = −2µ
" " λ = µ+ 1, ω4 = −2µ− 2
1.31 : 13 " λ = 1

2 , ω4 = −2
λ = 1

2 , ω4 = −1
λ = 3

2 , ω4 = −3
1.31 : 14 " λ = λ, ω4 = −2
1.31 : 19 " b = 0, ω4 = −2
1.31 : 21 " λ = λ, b = 0, ω4 = −2

λ = 1
2 , ω4 = −2

λ = 2, ω4 = −4
1.31 : 23 " ω4 = −2
1.31 : 24 " λ = 2, ω3 = −6
1.31 : 25 " λ = 2, ω3 = −6

1.41 : 2
−2aθ1θ3 + aθ2θ2 + bθ3θ3 + 2cθ3θ4 + dθ4θ4,

ad 6= 0 p = 1, ω4 = −2

1.41 : 9 " a = − d
(1+p)2 , r = (1 + p)(2 + p)
ω3 = −2p− 4

" " a = − d
4p2 , r = p(−1 + p)
ω3 = −2− 2p

" " dp = − 1
2 , r = −a+4d

4a
ω3 = −2

1.41 : 10 " ω3 = −2
1.41 : 12 or 13 " ω3 = −2, or

r = 1, 4a+ d = 0, ω3 = −2
2.21 : 2 or 3 2aθ1θ3 + 2aθ2θ4 + bθ2θ2, a 6= 0 ω2 = 2p or ω2 = 2
2.51 : 3 2aθ1θ3 + 2aθ2θ4 + bθ3θ3, a 6= 0 h = 0, ω3 = −2

" " r = h2

4 −
1
2h,

k = 0, ω4 = −2− h
2.51 : 4 " ω3 = −2
2.52 : 2 2aθ1θ3 + aθ2θ2 + bθ3θ3 + aθ4θ4, a 6= 0 s = 0, ω3 = −2

ω3 = −2
3.31 : 1 2aθ1θ3 + 2aθ2θ4 + bθ3θ3, a 6= 0 ω3 = −2
3.32 : 1 2aθ1θ3 + aθ2θ2 + bθ3θ3 + aθ4θ4, a 6= 0 ω3 = −2

Table 1. (M, g) with recurrent curvature tensor
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and the isotropy subalgebra is generated by h = span{e1}. If we take m =
span{u1, . . . , u4}, then the matrix related to ψ(e1), which was defined in the pre-
vious section, and the invariant metrics with respect to {ui}4

i=1 are

H1 =


1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

 and g =


0 0 a 0
0 b 0 c
a 0 0 0
0 c 0 d

,

and for the metric g to be nondegenerate it must satisfy a2(c2 − bd) 6= 0. There-
fore, using equation (2.1), we have the following components of the Levi-Civita
connection:

Λ1 =


0 − b

2a 0 a−c
2a

0 0 bd+ac−c2

2(bd−c2) 0
0 0 0 0
0 0 − ab

2(bd−c2) 0

, Λ2 =


− b

2a 0 0 0
0 bc

bd−c2 0 bd
bd−c2

0 0 b
2a 0

0 −b2

bd−c2 0 bc
bd−c2

,

Λ3 =


0 0 0 0

−bd+ac+c2

2(bd−c2) 0 0 0
0 b

2a 0 a+c
2a

− ab
2(bd−c2) 0 0 0

, Λ4 =


a−c
2a 0 0 0
0 c2

bd−c2 0 dc
bd−c2

0 0 −a−c2a 0
0 − bc

bd−c2 0 − c2

bd−c2

.

So, by a direct computation over (2.2), the components of curvature tensor are
obtained as

R12 =


0 − b

2(2a2+bd−c2)
4a2(bd−c2) 0 − b((bd−c2)(a+c)+2a2c)

4a2(bd−c2)

0 0 (bd−ac−c2+2a2)b
4a(bd−c2) 0

0 0 0 0
0 0 b2

4(bd−c2) 0

,

R13 =


b(3bd−3c2−a2)

4a(bd−c2) 0 0 0
0 − cb

2(bd−c2) 0 − db
2(bd−c2)

0 0 b(−3bd+3c2+a2)
4a(bd−c2) 0

0 b2

2(bd−c2) 0 cb
2(bd−c2)

,

R14 =


0 − b((c2−bd)(a−c)+2a2c)

4a2(bd−c2) 0 − c
2(a2−c2)+bd(a2+c2)

4a2(bd−c2)
0 0 −bad+cbd+a2c−c3

4a(bd−c2) 0
0 0 0 0
0 0 b(a+c)

4(bd−c2) 0

,
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R23 =


0 0 0 0

− (bd+ac+2a2−c2)b
4a(bd−c2) 0 0 0

0 b2(2a2+bd−c2)
4a2(bd−c2) 0 b((c2−bd)(a−c)+2a2c)

4a2(bd−c2)
b2

4(bd−c2) 0 0 0

,

R24 =


b

2a 0 0 0
0 − cb

bd−c2 0 − bd
bd−c2

0 0 − b
2a 0

0 b2

bd−c2 0 bc
bd−c2

, and

R34 =


0 0 0 0

bd(a+c)+a2c−c3

4a(bd−c2) 0 0 0
0 − b((bd−c2)(a+c)+2a2c)

4a2(bd−c2) 0 − c
2(a2−c2)+bd(a2+c2)

4a2(bd−c2)
(a−c)b

4(bd−c2) 0 0 0

 ,

where Rij = R(ui, uj). Now, let ω = ω1θ
1 +ω2θ

2 +ω3θ
3 +ω4θ

4; a direct calculation
using (2.4) gives (∇R−ω⊗R)3142i = 1

2bωi. Since ω 6= 0, we immediately get b = 0
(the case ω = 0 means that (M, g) is locally symmetric). Applying b = 0 for the
remaining terms of (∇R − ω ⊗R)ijklm gives{

ωic
2(a2 − c2) = 0, i = 1, . . . , 3;

(ω4 + 2)(a2 − c2) = 0.

As a 6= ±c (the flat case), we have ω1 = ω2 = ω3 = 0 and ω4 = −2. �

4. Geometry of Theorem 3.1

An Einstein-like metric and a commutative curvature operator over the ho-
mogenous four-manifold (M, g) were presented in [14] and [8], respectively. Here,
we introduce a large class of some geometric examples in our classification of Theo-
rem 3.1. The Einstein manifold is one of the most important manifolds in geometry
and physics. It is well known that the manifold (M, g) is called Einstein if ρ = ηg
for a real constant η. Also, it is obvious that the manifold is flat if the curvature
tensor vanishes identically.

The Weyl conformal tensor W is a (0, 4) tensor field on (M, g) which is com-
pletely determined by its components in the following way:

Wijkh = Rijkh + 1
2(gikρjh + gjhρik − gihρjk − gjkρih)− Sc

6 (gikgjh−gihgjk), (4.1)

where Sc is the scalar curvature. A four-dimensional pseudo-Riemannian manifold
is called conformally flat if its Weyl conformal tensor W vanishes identically.

Theorem 4.1. If the homogeneous manifold (M, g) has non-trivially recurrent cur-
vature (not locally symmetric), as in Table 1, then some of their geometric prop-
erties (flatness, Ricci flatness non-flat, being Ricci parallel non-locally symmetric,
being Einstein non-Ricci-flat, and conformal flatness) are as in Table 2.
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case flat Ricci-flat
non-flat

Ricci parallel
non-locally symmetric

Einstein
non-Ricci-flat conformally flat

1.11 : 1 b = 0, a = ±c 7 7
b 6= 0 and

bd+ (a2 − c2) = 0
b = 0

1.11 : 2 b = 0, λ = 1
2 7 7

b 6= 0, λ = 1
2

4ηbd− 4ηc2 + 3b = 0
b = 0 or λ = 0, 1

2

1.12 : 1 7 7 7 bd− c2 − 4a2 = 0 b = 0

1.12 : 2 b = 0, p = 1 7 7
ηbd− ηc2 + 3b = 0

b 6= 0, p = 1
b = 0 or p = 0, 1

1.31 : 5
b+ d = 0,
µ = 2, λ = 0

b+ d 6= 0,
µ = 2, λ = 0

b+ d 6= 0,
µ = 2, λ = 0

7

bµ(µ− 1)− 2cλµ
+ dλ2 + dµ+ 2cλ = 0

or
λ = µ = 0,

or
2c+ dλ = 0, µ = 0

1.31 : 7 7 7 7 7 d− bλ+ 2c = 0
1.31 : 9 b = 0, λ = 1 b 6= 0, λ = 1 λ 6= 0,−1, b 6= 0 7 λ = 0,−1 or b = 0

1.31 : 12

µ = 0, λ = 1, or
µ = 1

2 , λ = 3
2 , or

µ = 1
2 , λ = − 1

2 , or
µ = 1, λ = 0, or

b = 0,
λ− µ± 1 = 0

b 6= 0,
λ− µ+ 1 = 0

or
b 6= 0,

λ− µ− 1 = 0

a 6= 0,
λ− µ+ 1 = 0

or
a 6= 0,

λ− µ− 1 = 0

7

b = 0,
λ− µ+ 1 = 0

µ = 1
2

1.31 : 13 7 λ = − 1
2 ,

3
2 λ = − 1

2 ,
3
2 7 7

1.31 : 14 7 λ = 0 or 1 λ = 0 or 1 7 7

1.31 : 19 7 7 7 7 b = 0
1.31 : 21 b = 0, λ = 0, 2 b 6= 0, λ = 2 b 6= 0, λ = 2 7 b = 0 or λ = 0, 1

2

1.31 : 23 7 X X 7 7

1.31 : 24 a− 4d = 0, λ = 2 a− 4d 6= 0, λ = 2 a− 4d 6= 0, λ = 2 7

a− 2dλ2 + 2dλ = 0,
or

λ = 2
3

1.31 : 25 a+ 4d = 0, λ = 2 a+ 4d 6= 0, λ = 2 a+ 4d 6= 0, λ = 2 7
a+ 2dλ2 − 2dλ = 0,

λ = 2
3

1.41 : 2 b = 0, p = 1 7 p = 5
3

p = 5
3 , 3τd+ 4 = 0

or
p 6= 1, b = 0, τd+ 3p2

−6p+ 3 = 0

b = 0 or p = 3

1.41 : 9
a+ d = 0, r = 3

4 ,

p = − 1
2

d+ 2ra+ 2pa
+ 2p2a = 0

d+ 2ra+ 2pa
+ 2p2a = 0

7
4ra+ a+ 4d = 0

p = − 1
2

1.41 : 10
r = p = 0, or
r = 0, p = −1

p2 + p− r = 0 p2 + p+ r = 0 7 p2 + p− r = 0

1.41 : 12 r = 0 7 7 7 r = 0
1.41 : 13 7 2ar + 2a+ d = 0 X 7 7

2.21 : 2 p = −2, 2 7 7 7 X

2.21 : 3 7 7 7 7 X

2.51 : 3 7 r − h2

4 + h
2 = 0 r − h2

2 + h
2 = 0 7 7

2.51 : 4 r = h2

4 + h
2 7 7 7 X

2.52 : 2 r2 + p = 0 = s r2 + p = 0 6= s r2 + p = 0 6= s 7 s = 0
3.31 : 1 p = 0 7 7 7 X

3.32 : 1 p = 0 7 7 7 X

Table 2. Geometric properties of Theorem 4.1

Proof. We proceed similarly to the proof of Theorem 3.1; so, we present the details
for the cases 1.31.09 and 2.52.02, and other cases may be considered in a similar
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way. In Theorem 3.1, every invariant metric on the homogeneous space M = G/H
is in a one-to-one correspondence with an invariant inner product on m. First, we
consider the case 1.31.09. For this case, there exists a basis {e1, u1, . . . , u4} of g,
the nonzero brackets are

[e1, u3] = u1, [e1, u4] = u2, [u2, u3] = λu1,

[u2, u4] = −λe1 + (λ+ 1)u2, [u3, u4] = −λu3, λ ∈ R,

and the isotropy subalgebra is generated by h = span{e1}. If we take m =
span{u1, . . . , u4}, then the matrix H1 related to ψ(e1) and the invariant metric
with respect to {ui}4

i=1 are

H1 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 and g =


0 0 0 −a
0 0 a 0
0 a b c
−a 0 c d

,
and from the nondegeneracy of the metric g we have a4 6= 0. So, the Levi-Civita
connection (2.1) and the curvature operator are as follows:

Λ1 = 0, Λ2 =


0 0 λ

2 + 1
2 0

0 0 0 λ
2 + 1

2

0 0 0 0
0 0 0 0

,

Λ3 =


0 −λ2 + 1

2 −λba
−c(λ−1)

2a

0 0 0 −b(λ+1)
2a

0 0 0 −λ2 + 1
2

0 0 0 0

, Λ4 =


0 0 −c(λ−1)

2a 0
0 −λ2 −

1
2

−b(λ+1)
2a −λca

0 0 λ
2 + 1

2 0
0 0 0 0

,

and by using equation (2.2),

R24 =


0 0 −λ

2

4 + λ
2 −

1
4 0

0 0 0 −λ
2

4 + λ
2 −

1
4

0 0 0 0
0 0 0 0

,

R34 =


−λ

2

4 + λ
2 −

1
4 0 0 0

0 0 0 −bλ(λ+1)
a

− b(5λ2+2λ+1)
4a 0 0 −λ

2

4 + λ
2 −

1
4

−c(λ−1)2

4a 0 0 0

.
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Thus, by direct calculations, this case will be flat if the following equations are
satisfied: 

λ2

4 −
λ

2 + 1
4 = 0,

bλ(λ+ 1) = 0,
b(5λ2 + 2λ+ 1) = 0,
c(λ− 1)2 = 0.

Therefore, this case can be flat just if b = 0 and λ = 1 as it appeared in Table 2.
According to equation (2.3), the corresponding Ricci tensor is

ρ =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −λ

2

2 + λ− 1
2

.
So, this case is Ricci-flat if λ = 1, but if also b = 0 then the corresponding space is
flat, and also by taking direct covariant derivative over ρ, this case is Ricci parallel
if λ 6= 0,−1 and b 6= 0. Then, this case is Ricci parallel non-locally symmetric.
Now, the Einstein condition yields

dη − λ2

2 + λ− 1
2 = aη = bη = cη = 0,

which means that b 6= 0, λ = 1, and η = 0, which is also Ricci-flat. So, in this case,
there is no Einstein non-Ricci-flat example.

Conformal flatness is obtained if the equation (4.1) vanishes. So, we have

bλ(λ+ 1) = 0;

therefore, this case is conformally flat if λ = 0 or λ = −1 or b = 0.
Now, we consider the case 2.52.02, where there exists a basis {e1, e2, u1, . . . , u4}

of g, the nonzero brackets are

[e1, u2] = u1, [e1, u3] = −u2, [e2, u3] = u4, [e2, u4] = −u1, [u1, u3] = u1,

[u2, u3] = (p+ s)e1 + re2 + u2 − 2ru4, [u2, u4] = 2ru1,

[u3, u4] = −re1 + (p− s)e2 − 2ru2 − u4, p, r, s ∈ R, r, s ≥ 0,

and the isotropy subalgebra is generated by h = span{e1, e2}. If we take m =
span{u1, . . . , u4}, then the matrices H1 and H2 related to ψ(ei) and the invariant
metric with respect to {ui}4

i=1 are

H1 =


0 1 0 0
0 0 −1 0
0 0 0 0
0 0 0 0

, H2 =


0 0 0 −1
0 0 0 0
0 0 0 0
0 0 1 0

, g =


0 0 a 0
0 a 0 0
a 0 b 0
0 0 0 a

,
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and for the metric g to be nondegenerate we must have a4 6= 0. Using equation
(2.1) gives

Λ1 = 0, Λ2 =


0 −1 0 r
0 0 1 0
0 0 0 0
0 0 −r 0

,

Λ3 =


−1 0 − b

a 0
0 0 0 −r
0 0 1 0
0 r 0 0

, Λ4 =


0 −r 0 −1
0 0 r 0
0 0 0 0
0 0 1 0

,
and also by (2.2) we have the curvature operators

R23 =


0 −r2 − p− s 0 0
0 0 r2 + p+ s 0
0 0 0 0
0 0 0 0

,

R34 =


0 0 0 r2 + p− s
0 0 0 0
0 0 0 0
0 0 −r2 − p+ s 0

.
It is obvious that if r2 + p+ s = 0 and r2 + p− s = 0 then the metric is flat. The
corresponding Ricci tensor is

ρ =


0 0 0 0
0 0 0 0
0 0 2r2 + 2p 0
0 0 0 0

;

therefore, this case is Ricci-flat if r2 + p = 0, and to have non-flat examples we
must have s 6= 0. The same computation shows that this condition also holds for
the Ricci parallel non-flat case.

The Einstein condition in this case translates to

aη − 2r2 + 2p = 0, aη = 0, bη = 0,

so, as a 6= 0, we must have r2 + p = 0; so the metric will be flat. The conformal
flatness in this case means that

as = 0;
since a 6= 0, this case is conformally flat if s = 0. �

If in (2.4), instead of the curvature tensor we use the Ricci tensor, the space is
called Ricci recurrent.

Corollary 4.2. The homogenous manifold (M = G/H, g) is non-trivially Ricci
recurrent if it is of the cases 1.31 : 21 and 1.41 : 11 with ω1 = ω2 = ω3 = 0,
ω4 = −2, and ω1 = ω2 = 0, ω3 = −2, ω4 = 0, respectively.
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5. Strict Walker recurrent curvature manifolds

The existence of parallel distributions on manifolds is a strong condition to sim-
plify their geometric study. Of course, in the Riemannian geometry, the restriction
of the metric to the mentioned distribution is non-degenerate, but the condition
will be confined to the pseudo-Riemannian geometry when the metric restriction
to the parallel distribution is degenerate. Walker manifolds were firstly introduced
by A. G. Walker in 1950. He could find a canonical form for a Walker metric, by
introducing local coordinates where the metric takes a very special shape [11, 12].
Following Walker’s studies, there exist local coordinates (x1, x2, x3, x4) on the four-
dimensional manifold M , such that the Walker metric is of indefinite signature
(−−++) with the metric

g(x1,x2,x3,x4) =


0 0 1 0
0 0 0 1
1 0 a(x1, x2, x3, x4) c(x1, x2, x3, x4)
0 1 c(x1, x2, x3, x4) b(x1, x2, x3, x4)

, (5.1)

where a(x1, x2, x3, x4), b(x1, x2, x3, x4), c(x1, x2, x3, x4) are arbitrary smooth func-
tions onM , and the parallel distribution is generated by

{
∂
∂x1

, ∂
∂x2

}
. Chaichi et al.

have considered in [4] curvature properties of four-dimensional Walker metrics.
Furthermore, note that the plane field is strictly parallel if and only if the defining

functions are independent from the coordinates (x1, x2), i.e.,

a(x1, x2, x3, x4) = a(x3, x4),
b(x1, x2, x3, x4) = b(x3, x4),
c(x1, x2, x3, x4) = c(x3, x4);

then the corresponding metric will be called strict Walker metric. The Levi-Civita
connection of the strict Walker manifolds is as follows:

∇∂x3
∂x3 = 1

2
∂a

∂x3

∂x1 +
(
∂c

∂x3

− 1
2
∂a

∂x4

)
∂x2 ,

∇∂x3
∂x4 = ∇∂x4

∂x3 = 1
2

(
∂a

∂x4

∂x1 + ∂b

∂x3

∂x2

)
,

∇∂x4
∂x4 =

(
∂c

∂x4

− 1
2
∂b

∂x3

)
∂x1 + 1

2
∂b

∂x4

∂x2 .

According to [4], a strict Walker metric defined globally on R4 has vanishing
Christoffel symbols, so it is geodesically complete (cf. [6, Lemma 2.1]).

The nonzero components of the curvature tensor of any strict Walker metric are
given by

R(∂x4 , ∂x3)∂x4 = 2A ∂x1 and R(∂x3 , ∂x4)∂x3 = 2A ∂x2 ,

where A = ∂2b
∂x32 − 2 ∂2c

∂x3∂x4
+ ∂2a

∂x42 .
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Then, we consider the recurrent curvature condition for a strict Walker metric.
Let

ω = ω1(x1, x2, x3, x4)dx1 + ω2(x1, x2, x3, x4)dx2

+ ω3(x1, x2, x3, x4)dx3 + ω4(x1, x2, x3, x4)dx4.

Now, by applying the recurrent curvature condition (2.4), we have

Aω1(x1, x2, x3, x4) = 0,
Aω2(x1, x2, x3, x4) = 0,
∂A
∂x3
−Aω3(x1, x2, x3, x4) = 0,

∂A
∂x4
−Aω4(x1, x2, x3, x4) = 0.

Since A 6= 0 (the case A = 0 implies the trivial flat condition), satisfying the
recurrent curvature condition is equivalent to establishing the following:

ω1 = ω2 = 0, ω3 = 1
A
∂A
∂x3

, ω4 = 1
A
∂A
∂x4

. (5.2)

So, we have proved the next theorem.

Theorem 5.1. A geodesically complete four-dimensional strict Walker manifold
which is globally defined on R4 has recurrent curvature if and only if it satisfies the
system of equations (5.2).

In the same coordinate system, the functions a and c can be further specialized
to satisfy a(x3, x4) ≡ 0, c(x3, x4) ≡ 0 (cf. [11]). So, A reduces to A = ∂2b

∂x32 .
Therefore, for a special non-flat example, we present the following one.

Example 5.2. The geodesically complete strict Walker metric in R4, with vanish-
ing a and c and b as

b = f(x4)x2
3 + g(x4)x3 + h(x4),

for arbitrary smooth functions f 6= 0, g, and h, has recurrent curvature (∇R =
ω ⊗R) with the following 1-form ω on R4:

ω = f ′(x4)
f(x4) dx4.

6. Conclusion

Homogeneous examples of pseudo-Riemannian manifolds which have recurrent
curvature without Riemannian counterpart have been presented. Especially, there
are some open questions like the existence of some common underlying structure
(presumably the existence of a parallel field of degenerate lines/planes). Here just
for an example we investigate the existence of recurrent manifolds within the frame-
work of strictly Walker metrics in dimension four. This allows us the construction
of simple examples which are not locally homogeneous in signature (2, 2), but a
full description is still an open question.
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