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A CONVERGENCE THEOREM FOR APPROXIMATING
MINIMIZATION AND FIXED POINT PROBLEMS FOR

NON-SELF MAPPINGS IN HADAMARD SPACES

KAZEEM OLALEKAN AREMU, CHINEDU IZUCHUKWU,
OLAWALE KAZEEM OYEWOLE, AND OLUWATOSIN TEMITOPE MEWOMO

Abstract. We propose a modified Halpern-type algorithm involving a Lips-
chitz hemicontractive non-self mapping and the resolvent of a convex function
in a Hadamard space. We obtain a strong convergence of the proposed al-
gorithm to a minimizer of a convex function which is also a fixed point of a
Lipschitz hemicontractive non-self mapping. Furthermore, we give a numer-
ical example to illustrate and support our method. Our proposed method
improves and extends some recent works in the literature.

1. Introduction

Let (X, d) be a metric space and x, y ∈ X. A geodesic path c joining x to y
is an isometry c : I = [0, d(x, y)] → X such that c(0) = x, c(d(x, y)) = y, and
d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ I. The image of a geodesic path is called the
geodesic segment, which is denoted by [x, y] whenever it is unique. We say that a
metric space X is a geodesic space if for every pair of points x, y ∈ X, there is a
minimal geodesic from x to y. A geodesic triangle ∆(x1, x2, x3) in a geodesic metric
space (X, d) consists of three vertices (points in X) and three geodesic segments
joining each pair of vertices (the edges of ∆). For any geodesic triangle, there is
a comparison (Alexandrov) triangle ∆̄ ⊂ R2 such that d(xi, xj) = dR2(x̄i, x̄j) for
i, j ∈ {1, 2, 3}. A geodesic space X is a CAT(0) space if the distance between
an arbitrary pair of points on a geodesic triangle ∆ does not exceed the distance
between its pair of corresponding points on its comparison triangle ∆̄. If ∆ is a
geodesic triangle and ∆̄ is its comparison triangle in X, then ∆ is said to satisfy
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the CAT(0) inequality if for all points x, y of ∆ and x̄, ȳ of ∆̄,

d(x, y) = dR2(x̄, ȳ).

Let x, y, z be points in X and let y0 be the midpoint of the segment [y, z]; then the
CAT(0) inequality implies

d2(x, y0) ≤ 1
2d

2(x, y) + 1
2d

2(x, z)− 1
4d(y, z). (1.1)

Inequality (1.1) is known as the CN inequality of Bruhat and Tits [8]. A geodesic
space X is said to be a CAT(0) space if all geodesic triangles satisfy the CAT(0)
inequality. Equivalently, X is called a CAT(0) space if and only if it satisfies the
CN inequality. Examples of CAT(0) spaces include: Euclidean spaces Rn, Hilbert
spaces, simply connected Riemannian manifolds of nonpositive sectional curvature,
R-trees, Hilbert ball [16], hyperbolic spaces [38], among others. A complete CAT(0)
space is called a Hadamard space.

LetD be a nonempty, closed, and convex subset of a Hadamard spaceX. A point
x ∈ X is called a fixed point of a non-self mapping T : D → X if x = Tx. We
denote by F (T ) the set of fixed points of T . The mapping T is said to be:

(1) L-Lipschitz, if there exists L > 0 such that

d(Tx, Ty) ≤ Ld(x, y), for all x, y ∈ D;

if L = 1, then T is nonexpansive;
(2) quasi nonexpansive, if F (T ) 6= ∅ and

d(Tx, p) ≤ d(x, p), for all x ∈ X and p ∈ F (T );

(3) k-demicontractive, if F (T ) 6= ∅ and there exists k ∈ [0, 1) such that

d2(Tx, p) ≤ d2(x, p) + k d2(x, Tx), for all x, y ∈ D and p ∈ F (T );

(4) hemicontractive, if F (T ) 6= ∅ and

d2(Tx, p) ≤ d2(x, p) + d2(x, Tx), for all x, y ∈ D and p ∈ F (T ).

Clearly, every nonexpansive mapping with F (T ) 6= ∅ is quasi nonexpansive. The
class of 0-demicontractive mappings coincides with the class of quasi nonexpansive
mappings. The class of hemicontractive mappings contains the class of demicon-
tractive mappings and hence, the class of quasi nonexpansive mappings.

Approximation of fixed points of non-self mappings has mostly been studied
in Hilbert spaces and Banach spaces with the use of projections PD and sunny
nonexpansive retractions, respectively (see [32, 49, 51, 52] and references therein).
However, calculating the PD (for instance) in an iterative algorithm is generally
a very difficult task to accomplish because the expression of the PD is usually
not known and may require a self-approximating algorithm even when the PD is
the nearest point projection. To overcome this difficulty, Colao and Marino [10]
proposed a method that is devoid of the PD for a Krasnoselskii–Mann algorithm
involving a non-self nonexpansive mapping T in a real Hilbert space. The authors
imposed the conditions that the set D is strictly convex, T is inward, and the
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control sequence in the algorithm is calculated independently at each step. In fact,
they proved the following convergence theorem.
Theorem 1.1. Let D be a strictly convex, closed and nonempty subset of a real
Hilbert space H, and let T : D → H be a nonexpansive mapping that satisfies the
inward condition and F (T ) 6= ∅. Then the algorithm

x0 ∈ D,
α0 = max{ 1

2 , h(x0)},
xn+1 = αnxn + (1− αn)Txn,
αn+1 = max{αn, h(xn+1)}

is well defined and {xn} weakly converges to a point p ∈ F (T ). Moreover, if
∞∑
n=0

(1− αn) <∞, then {xn} converges strongly.

Furthermore, the authors posed the following question: Will Theorem 1.1 still
hold with all assumptions maintained if the nonexpansive mapping is replaced
with a more general class of mappings? Colao et al. [11] provided an affirmative
answer to this question by replacing the nonexpansive mapping with a k-strictly
pseudocontractive mapping in Theorem 1.1. They also obtained strong convergence
of the sequence {xn} to a fixed point of the k-strictly pseudocontractive mapping.

In 2017, Tufa and Zegeye [45] extended the work of Colao and Marino [10]
to the framework of Hadamard spaces. They proposed and studied the following
Krasnoloskii–Mann algorithm for multivalued nonexpansive non-self mappings: For
an arbitrary initial point x0 ∈ D, let the sequence {xn} be generated by

αn = max{ 1
2 , hy0(x0)},

xn+1 = αnxn ⊕ (1− αn)yn,
αn+1 = max{αn, hyn+1(xn+1)},

(1.2)

where yn ∈ Txn is such that d(yn, yn+1) ≤ D(Txn, Txn+1) and hyn
(xn) := inf{λ ≥

0 : λxn⊕ (1−λ)yn ∈ D}. They established that the sequence generated from (1.2)
converges to a fixed point of multivalued nonexpansive non-self mapping without
the use of metric projections or sunny nonexpansive retraction mappings. The
authors further studied (1.2) in [47] for multivalued demicontractive non-self map-
pings, which are more general than nonexpansive mappings. Recently, Tufa and
Zegeye [46] studied an Ishikawa-type algorithm involving a non-self multivalued
hemicontractive mapping T with the assumption that the mapping T is strongly
inward. They proposed the following algorithm: For an arbitrary initial point
x0 ∈ D, let the sequence {xn} be generated by

βn ∈ [max{βn−1, hun(xn)}, 1),
yn = βnxn ⊕ (1− βn)un,
α1 ∈ [max{β1, fu1z1(x1)}, 1),
xn+1 = αnxn ⊕ (1− αn)zn, n ≥ 2,
αn+1 ∈ [max{β1, funzn(xn)}, 1),

(1.3)
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where un ∈ Txn is such that hun(xn) := inf{λ ≥ 0 : λxn⊕(1−λ)un ∈ D}, zn ∈ Tyn
is such that d(un, zn) ≤ D(Txn, Tyn)+(1−βn)d(un, xn), and funzn

(xn) := inf{µ ≥
0 : µxn⊕ (1−µ)yn ∈ D}. They showed that (1.3) converges to a fixed point of the
multivalued hemicontractive non-self mapping in a Hadamard space.

Very recently, Zegeye and Tufa [50] proposed a new Halpern–Ishikawa type
algorithm for approximating fixed points of non-self mappings without the use of
metric projections or sunny nonexpansive retractions. They proposed the following
algorithm for an L-Lipschitz k-pseudocontractive mapping in a real Hilbert space:
For an arbitrary x0 ∈ D, the sequence {xn} generated by

λn ∈ [max{β, h(xn)}, 1),
yn = λnxn ⊕ (1− βn)Txn,
θn ∈ [max{λn, l(yn)}, 1),
xn+1 = αnu⊕ (1− αn)(θnxn + (1− θn)Tyn), n ≥ 0,

converges to a fixed point of the multivalued hemicontractive mapping, where β ∈(
1− 1

1+
√
L2+1

)
, h(xn) := inf{λ ≥ 0 : λxn+ (1−λ)Txn ∈ D}, and l(yn) := inf{θ ≥

0 : θxn + (1− θ)Tyn ∈ D}.
Let X be a geodesic space and let f be a proper, convex, and lower semi-

continuous functional (see details in Section 2) defined on X. If there exists a
point x ∈ X such that f(x) = min

y∈X
f(y), then x is called a minimizer of f .

The set of minimizers of f is denoted by arg min
x∈X

f(x) and the problem of find-

ing such minimizers is called minimization problem (MP). MP remains one of
the major problems in optimization theory that has been widely studied by many
authors. MPs play vital role in nonlinear analysis and geometry. They have no-
table applications in computer vision, machine learning, electronic structure com-
putation, system balancing and robot manipulation, and several iterative algo-
rithms have been studied for solving MPs and related optimization problems (see
[1, 4, 5, 19, 20, 22, 23, 24, 25, 26, 34, 33, 36, 42, 43, 44, 48] and references therein).
The Proximal Point Algorithm (PPA) is one of the most popular and effective
methods for solving MPs. The PPA was first introduced by Martinet [31] and was
further developed by Rockafellar [39]. The latter proved that the PPA converges
weakly to a minimizer of a proper, convex, and lower semicontinuous function in
the framework of real Hilbert spaces. In 2013, Bačák [6] introduced and studied
the PPA in the framework of Hadamard spaces, which he proposed as follows: For
an arbitrary x1 ∈ X, define a sequence iteratively by

xn+1 = Jfµn
(xn), (1.4)

where µn > 0 for all n ≥ 1 and Jfµn
: X → X is the Moreau–Yosida resolvent of a

proper, convex, and lower semicontinuous function defined as

Jfµn
(x) = arg min

y∈X

(
f(y) + 1

2µn
d2(y, x)

)
,
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for all x ∈ X. We note from [27] that Jfµn
is well defined. Under the conditions

that f has a minimizer in X and
∑∞
n=1 µn = ∞, Bačák established that (1.4)

∆-converges to the minimizer of f .
The problem of finding minimizers of convex functions which are also fixed points

of nonlinear mappings has recently been studied in the framework of Hadamard
spaces (see [3, 9, 21, 29, 40] and references therein). However, the mappings used
are mostly self mappings. In the case where the mappings are non-self, the metric
projection or sunny nonexpansive retraction is involved in the algorithm, which
usually affects the algorithm’s efficiency (see [17, 53] and references therein). Based
on this fact and motivations from Tufa and Zegeye [46, 50], the following research
question arises:
Question: Can we construct an algorithm for finding a minimizer of a convex
function which is also a fixed point of a non-self mapping in Hadamard spaces
without the use of metric projection?

In this paper, we provide an affirmative answer to the research question above
by proposing a modified Halpern-type algorithm involving a Lipschitz hemicontrac-
tive non-self mapping and a resolvent of a convex function in a Hadamard space.
We obtain a strong convergence of the proposed algorithm to a minimizer of the
convex function which is also a fixed point of the Lipschitz hemicontractive non-self
mapping. Furthermore, we give a numerical example to support our method. Our
proposed method improves and extends some recent works in the literature.

2. Preliminaries

In this section, we state some known and useful definitions and results which
will be needed in the proof of our main theorem. In what follows, we denote strong
and ∆-convergence by “→” and “⇀”, respectively.

Definition 2.1. Let X be a Hadamard space. A function f : X → (−∞,∞] is
said to be

(i) convex, if

f(λx⊕ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀x, y ∈ X, λ ∈ (0, 1);

(ii) proper, if D := {x ∈ X : f(x) < +∞} 6= ∅, where D denotes the domain
of f ;

(iii) lower semicontinuous at a point x ∈ D, if

f(x) ≤ lim inf
n→∞

f(xn),

for each sequence {xn} in D such that lim
n→∞

xn = x;
(iv) lower semicontinuous on D, if it is lower semicontinuous at every point

in D.

Definition 2.2 ([27]). Let X be a Hadamard space and let f : X → (−∞,∞] be a
proper, convex, and lower semicontinuous function. For µ > 0, the Moreau–Yosida
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resolvent of f is defined as

Jfµ (x) = arg min
y∈X

(
f(y) + 1

2µd
2(y, x)

)
,

for all x ∈ X.

Lemma 2.3 ([27]). Let X be a Hadamard space and let f : X → (−∞,∞] be
proper, convex, and lower semicontinuous. For any µ > 0, the resolvent Jfµ of f is
nonexpansive.

Lemma 2.4 ([27]). Let X be a Hadamard space and let f : X → (−∞,∞] be
proper, convex, and lower semicontinuous. Then, the following identity holds:

Jfµx = Jfλ

(
µ− λ
µ

Jfµx⊕
λ

µ
x

)
for all x ∈ X and µ ≥ λ > 0.

Definition 2.5 ([47]). A subset D of a Hadamard space X is convex if D contains
every geodesic segment joining any two points. A convex subset D of X is said to
be strictly convex if for x, y ∈ ∂D and t ∈ (0, 1) we have

tx⊕ (1− t)y ∈ D̊,

where ∂D and D̊ denote boundary and interior points of D, respectively.

Definition 2.6 ([47]). Let D be a nonempty subset of a Hadamard space X and
let x ∈ D. A set ID(x) is said to be inward if for any x ∈ D,

ID(x) =
{
w ∈ X : w = x or y =

(
1− 1

λ

)
x⊕ 1

λ
w, for some y ∈ D, λ ≥ 1

}
.

The mapping T : D → X is called an inward mapping on D if for any x ∈ D one
has Tx ∈ ID(x).

Lemma 2.7 ([46]; see also [50]). Let D be a nonempty, closed, and convex subset
of a Hadamard space and let T : D → X be a mapping. Define h : D → R by
h(x) = inf{λ ≥ 0 : λx⊕ (1− λ)Tx ∈ D}. Then, for any x ∈ D, the following hold:

(i) h(x) ∈ [0, 1] and h(x) = 0 if and only if Tx ∈ D;
(ii) if β ∈ [h(x), 1], then βx⊕ (1− β)Tx ∈ D;
(iii) if T is inward, then h(x) < 1;
(iv) if Tx /∈ D, then h(x)⊕ (1− h(x))Tx ∈ ∂D.

Definition 2.8 ([7]). Let X be a Hadamard space and let (a, b) ∈ X × X be
denoted by

−→
ab and called a vector in X × X. A quasilinearization map 〈·, ·〉 :

(X ×X)× (X ×X)→ R is defined by

〈
−→
ab,
−→
cd〉 = 1

2
(
d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)

)
, ∀ a, b, c, d ∈ X.
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It is easy to see that 〈
−→
ba,
−→
cd〉 = −〈

−→
ab,
−→
cd〉, 〈

−→
ab,
−→
cd〉 = 〈−→ae,

−→
cd〉 + 〈

−→
eb,
−→
cd〉, and

〈
−→
ab,
−→
cd〉 = 〈

−→
cd,
−→
ab〉 for all a, b, c, d, e ∈ X. Recall that a geodesic space X is said to

satisfy the Cauchy–Schwarz inequality if

〈
−→
ab,
−→
cd〉 ≤ d(a, b)d(c, d), ∀ a, b, c, d ∈ X.

Definition 2.9. Let {xn} be a bounded sequence in a geodesic metric space X.
Then, the asymptotic center A({xn}) of {xn} is defined by

A({xn}) = {v̄ ∈ X : lim sup
n→∞

d(v̄, xn) = inf
v∈X

lim sup
n→∞

d(v, xn)}.

It is generally known that in a Hadamard space, A({xn}) consists of exactly
one point. A sequence {xn} in X is said to be ∆-convergent to a point v̄ ∈ X
if A({xnk

}) = {v̄} for every subsequence {xnk
} of {xn}. In this case, we write

∆- lim
n→∞

xn = v̄ (see [14]). The concept of ∆-convergence in metric spaces was first
introduced and studied by Lim [30]. Kirk and Panyanak [28] later introduced and
studied this concept in CAT(0) spaces, and proved that it is very similar to weak
convergence in a Banach space setting.

Definition 2.10. Let D be a nonempty, closed, and convex subset of a Hadamard
space X. A mapping T : D → D is said to be ∆-demiclosed if, for any bounded
sequence {xn} in X such that ∆- lim

n→∞
xn = x and lim

n→∞
d(xn, Txn) = 0, one has

x = Tx.

Lemma 2.11 ([13]). Let X be a Hadamard space and let T : X → X be a nonex-
pansive mapping. Then T is ∆-demiclosed.

Lemma 2.12 ([15]). Every bounded sequence in a Hadamard space has a ∆-
convergent subsequence.

Lemma 2.13. Let X be a Hadamard space, and let x, y, z ∈ X and t, s ∈ [0, 1].
Then,

(i) d(tx⊕ (1− t)y, z) ≤ td(x, z) + (1− t)d(y, z) (see [15]);
(ii) d2(tx⊕ (1− t)y, z) ≤ td2(x, z) + (1− t)d2(y, z)− t(1− t)d2(x, y) (see [15]);
(iii) d2(tx⊕(1−t)y, z) ≤ t2d2(x, z)+(1−t)2d2(y, z)+2t(1−t)〈−→xz,−→yz〉 (see [12]).

Lemma 2.14 ([2]). Let X be a Hadamard space, {xn} a sequence in X, and x ∈ X.
Then {xn} ∆-converges to x if and only if

lim sup
n→∞

〈−−→xnx,−→yx〉 ≤ 0, for all y ∈ X.

Lemma 2.15 ([37]). Let X be a Hadamard space and {xn} a sequence in X. If
there exists a nonempty subset D such that

(i) lim
n→∞

d(xn, z) exists for every z ∈ D, and
(ii) if {xnk

} is a subsequence of {xn} which is ∆-convergent to x, then x ∈ D,
then there is a p ∈ D such that {xn} is ∆-convergent to p in X.
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Lemma 2.16 ([35]). Let {an} be a sequence of nonnegative real numbers satisfying

an+1 ≤ (1− αn)an + αnδn + γn, n ≥ 0,

where {αn}, {δn}, and {γn} satisfy the following conditions:

(i) {αn} ⊂ [0, 1],
∞∑
n=0

αn =∞;

(ii) lim sup
n→∞

δn ≤ 0;

(iii) γn ≥ 0 (n ≥ 0),
∞∑
n=0

γn <∞.

Then lim
n→∞

an = 0.

Lemma 2.17 ([41]). Let {an} be a sequence of nonnegative real numbers, such that
there exists a subsequence {nj} of {n} with anj

< anj+1 for all j ∈ N. Then there
exists a nondecreasing sequence {mk} ⊂ N, such that mk → ∞ and the following
properties are satisfied by all (sufficiently large) numbers k ∈ N:

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{i ≤ k : ai < ai+1}.

3. Main result

We begin this section with the hypotheses that will be needed in the construction
of our algorithm.

Let D be a nonempty, closed, and convex subset of a Hadamard space X and
let T : D → X be an inward mapping. We define a Halpern-type proximal point
algorithm as follows: Choose u, x0 ∈ D and let

h(x0) := inf{γ ≥ 0 : γx0 ⊕ (1− γ)Jfµn
x0 ∈ D} and γ0 ∈

[
max{β, h(x0)}, 1

)
;

l(u0) := inf{λ ≥ 0 : λu0 ⊕ (1− λ)Tu0 ∈ D} and λ0 ∈
[

max{γ0, l(u0)}, 1
)
;

κ(y0) := inf{θ ≥ 0 : θx0 ⊕ (1− θ)Ty0 ∈ D} and θ0 ∈
[

max{λ0, κ(y0)}, 1
)
.

Then, by Lemma 2.7, we have that u0 := γ0x0 ⊕ (1− γ0)Jfµx0 ∈ D, y0 := λ0u0 ⊕
(1− λ0)Tu0 ∈ D, and θ0u0 ⊕ (1− θ0)Ty0 ∈ D. Hence, it follows that

x1 := α0u⊕ (1− α0)(θ0u0 ⊕ (1− θ0)Ty0) ∈ D.

Therefore, by mathematical induction, we have

γn ∈
[

max{β, h(xn)}, 1
)
,

un = γnxn ⊕ (1− γn)Jfµn
xn,

λn ∈
[

max{γn, l(un)}, 1
)
,

yn = λnun ⊕ (1− λn)Tun,
θn ∈

[
max{λn, κ(yn)}, 1

)
,

xn+1 = αnu⊕ (1− αn)(θnun ⊕ (1− θn)Tyn), n ≥ 0,

(3.1)
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where h(xn) := inf{γ ≥ 0 : γxn ⊕ (1 − γ)Jfµn
xn ∈ D}, l(un) := inf{λ ≥ 0 :

λun ⊕ (1 − λ)Tun ∈ D}, κ(yn) := inf{θ ≥ 0 : θun ⊕ (1 − θ)Tyn ∈ D}, β ∈ (0, 1),
and {αn} is a sequence in (0, 1).

Remark 3.1. The choice of the parameters γn, λn, and θn is not made a priori
but determined at the intervals obtained at the n-th step. These intervals are
determined by the values of the resolvent of f for γn, the mapping T , and the
geometry of the set D for λn and θn. This is different from what we have in
[10, 11], where the parameters are uniquely determined and, consequently, take a
particular value at each step. In our case, we allow the parameters to take any
point on the intervals obtained at each step. This same idea was used in [46, 50].

Lemma 3.2. Let D be a nonempty, closed, and convex subset of a Hadamard
space X and let T : D → X be an L-Lipschitz hemicontractive inward mapping.
Let f : X → (−∞,∞] be a proper, convex, and lower semicontinuous function such
that β ∈

(
1− 1

1+
√
L2+1 , 1

)
. Suppose that Γ := F (T )∩ arg min

u∈X
f(y) 6= ∅. Then, the

sequence {xn} generated by (3.1) is bounded.

Proof. Let p ∈ Γ. Then by (3.1), Lemma 2.13 (ii), and the nonexpansivity of Jfµn
,

we have

d2(un, p) ≤ γnd2(xn, p) + (1− γn)d2(Jfµn
xn, p)− γn(1− γn)d2(Jfµn

xn, xn)
≤ γnd2(xn, p) + (1− γn)d2(xn, p)− γn(1− γn)d2(Jfµn

xn, xn)
≤ d2(xn, p)− γn(1− γn)d2(Jfµn

xn, xn).
(3.2)

From (3.1), (3.2), and the fact that T is hemicontractive, we obtain

d2(yn, p) ≤ λnd2(un, p) + (1− λn)d2(Tun, p)− λn(1− λn)d2(un, Tun)
≤ λnd2(un, p) + (1− λn)

[
d2(un, p) + d2(un, Tun)

]
− λn(1− λ)d2(un, Tun)

≤ d2(xn, p) + (1− λn)2d2(un, Tun).
(3.3)
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From (3.1), (3.2), and (3.3), we have

d2(xn+1, p) ≤ αnd2(u, p) + (1− αn)
×
[
θnd

2(un, p) + (1− θn)d2(Tyn, p)− θn(1− θn)d2(un, T yn)
]

≤ αnd2(u, p) + (1− αn)
×
[
θnd

2(xn, p) + (1− θn)
(
d2(yn, p) + d2(Tyn, yn)

)
− θn(1− θn)d2(un, T yn)

]
(3.4)

≤ αnd2(u, p) + (1− αn)
×
[
θnd

2(xn, p)
+ (1− θn)

(
d2(xn, p) + (1− λn)2d2(un, Tun) + d2(Tyn, yn)

)
− θn(1− θn)d2(un, Tyn)

]
= αnd

2(u, p) + (1− αn)
×
[
d2(xn, p) + (1− θn)

(
(1− λn)2d2(un, Tun) + d2(Tyn, yn)

)
− θn(1− θn)d2(un, Tyn)

]
. (3.5)

Observe that by using the Lipschitz property of T , we have

d2(yn, T yn) ≤ λnd2(un, Tyn) + (1− λn)d2(Tun, T yn)− λn(1− λn)d2(un, Tun)
≤ λnd2(un, Tyn) + (1− λn)L2d2(un, yn)− λn(1− λn)d2(un, Tun).

(3.6)

Substituting (3.6) in (3.5), we obtain

d2(xn+1, p)
≤ αnd2(u, p)

+ (1− αn)
[
d2(xn, p) + (1− θn)

(
(1− λn)2d2(un, Tun) + λnd

2(un, Tyn)
+ (1− λn)L2d2(un, yn)− λn(1− λn)d2(un, Tun)

)
− θn(1− θn)d2(un, Tyn)

]
= αnd

2(u, p) + (1− αn)d2(xn, p) + (1− αn)(1− θn)(λn − θn)d2(un, T yn)
+ (1− αn)

[
(1− θn)

(
(1− λn)2d2(un, Tun) + (1− λn)L2d2(un, yn)

− λn(1− λn)d2(un, Tun)
)]

≤ αnd2(u, p) + (1− αn)d2(xn, p) + (1− αn)(1− θn)(λn − θn)d2(un, T yn)
+ (1− αn)(1− θn)

[(
(1− λn)2d2(un, Tun) + (1− λn)3L2d2(un, Tun)

− λn(1− λn)d2(un, Tun)
)]

= αnd
2(u, p) + (1− αn)d2(xn, p)− (1− αn)(1− θn)(θn − λn)d2(un, T yn)

− (1− αn)(1− θn)(1− λn)
[
1− 2(1− λn)− L2(1− λn)2]d2(un, Tun).

(3.7)
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From the hypothesis, we have
1− 2(1− λn)− L2(1− λn)2 ≥ 1− 2(1− γn)− L2(1− γn)2,

1− 2(1− γn)− L2(1− γn)2 ≥ 1− 2(1− β)− L2(1− β)2 > 0,
θn ≥ λn.

Then
d2(xn+1, p) ≤ αnd2(u, p) + (1− αn)d2(xn, p).

Thus, by mathematical induction,
d2(xn+1, p) ≤ max{d2(u, p) + d2(x0, p)} for all n ≥ 0.

Therefore, {xn} is bounded and consequently {un}, {yn}, and {Tyn} are bounded.
�

Theorem 3.3. Let D be a nonempty, closed, and convex subset of a Hadamard
space X and let T : D → X be an L-Lipschitz hemicontractive inward mapping
such that T is ∆-demiclosed with β ∈

(
1− 1

1+
√
L2+1 , 1

)
. Let f : X → (−∞,∞] be

a proper, convex, and lower semicontinuous function. Suppose that Γ := F (T ) ∩
arg min
u∈X

f(y) 6= ∅, {µn} is a sequence such that µn ≥ µ > 0 for all n ≥ 1, and the

sequence {xn} is generated by (3.1) such that the following conditions hold:
(A1) lim

n→∞
αn = 0,

(A2)
∞∑
n=1

αn =∞,

(A3)
∞∑
n=1

(1− θn) <∞.

Then, the sequence {xn} converges strongly to an element of Γ.

Proof. We divide our proof into two cases:
Case 1. Assume that {d2(xn, p)} is a monotonically decreasing sequence. Then[

d2(xn, p)− d2(xn+1, p)
]
→ 0, as n→∞.

Let Kn = (1 − αn)(1 − θn)(1 − λn)[1 − 2(1 − λn) − L2(1 − λn)]. Then from (3.7)
we obtain

Knd
2(un, Tun) ≤ αnd2(u, p) + (1− αn)d2(xn, p)− d2(xn+1, p)

= αn
[
d2(u, p)− d2(xn, p)

]
+ d2(xn, p)− d2(xn+1, p).

Clearly Kn > 0; hence by condition (A1) we have that
d(un, Tun)→ 0, as n→∞. (3.8)

Similarly, from (3.7) we obtain
d(un, Tyn)→ 0, as n→∞. (3.9)

From (3.1) and (3.8), we have that
d(un, yn) ≤ (1− λn)d(un, Tun)→ 0, as n→∞. (3.10)
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Using (3.9) and (3.10), we obtain that

d(yn, Tyn)→ 0, as n→∞. (3.11)

Again, from (3.2), (3.3), and (3.4), we obtain

d2(xn+1,p)
≤ αnd2(u, p) + (1− αn)

[
θnd

2(un, p) + (1− θn)d2(Tyn, p)
]

≤ αnd2(u, p) + (1− αn)θnd2(un, p) + (1− αn)(1− θn)
[
d2(yn, p) + d2(Tyn, yn)

]
≤ αnd2(u, p) + (1− αn)θn

[
d2(xn, p)− γn(1− γn)d2(Jfµn

xn, xn)
]

+ (1− αn)(1− θn)
[
d2(xn, p) + (1− λn)2d2(un, Tun) + d2(Tyn, yn)

]
= αnd

2(u, p) + (1− αn)d2(xn, p)
+ (1− αn)(1− θn)

[
(1− λn)2d2(un, Tun) + d2(yn, Tyn)

]
− θnγn(1− γn)(1− αn)d2(Jfµn

xn, xn),

which implies

θnγn(1− γn)(1− αn)d2(Jfµn
xn, xn)

≤ αn
(
d2(u, p)− d2(xn, p)

)
+ d2(xn, p)− d2(xn+1, p)

+ (1− αn)(1− θn)
[
(1− λn)2d2(un, Tun) + d2(yn, T yn)

]
.

Then by condition (A1), (3.8), and (3.11), we obtain that

d(Jfµn
xn, xn)→ 0, as n→∞. (3.12)

Since µn ≥ µ > 0 for all n ≥ 1, from Lemma 2.4, Lemma 2.13 (i), (3.12), and the
nonexpansivity of Jfµ , we obtain that

d(Jfµxn, Jfµn
xn) = d

(
Jfµxn, J

f
µ

(
µn − µ
µn

Jfµn
xn ⊕

µ

µn
xn

))
≤ d

(
xn,

(
1− µ

µn
Jfµn

xn ⊕
µ

µn
xn

))
=
(

1− µ

µn

)
d(xn, Jfµn

xn)→ 0, as n→∞.

(3.13)

Thus, by (3.12) and (3.13), we obtain

d(Jfµxn, xn) ≤ d(Jfµxn, Jfµn
xn) + d(Jfµn

xn, xn)→ 0, as n→∞. (3.14)

Also from (3.1) and (3.12), we have

d(un, xn) ≤ (1− γn)d(Jfµn
xn, xn)→ 0, as n→∞. (3.15)

Hence from (3.10) and (3.15), we obtain

d(xn, yn)→ 0, as n→∞.
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Let cn = θnun ⊕ (1− θn)Tyn. By Lemma 2.13 (i), (3.9), and (3.15), we have

d(cn, xn) ≤ θnd(un, xn) + (1− θn)d(Tyn, xn)
≤ θnd(un, xn) + (1− θn)

[
d(Tyn, un) + d(un, xn)

]
→ 0, as n→∞.

(3.16)

Thus by condition (A1) and (3.16), we obtain

d(xn+1, xn) ≤ αnd(u, xn) + (1− αn)d(cn, xn)→ 0, as n→∞. (3.17)

Since T is L-Lipschitz, we have

d(xn, Txn) ≤ d(xn, xn+1) + d(xn+1, un) + d(un, Tun) + d(Tun, Txn)
≤ d(xn, xn+1) + αnd(u, un) + (1− αn)d(cn, un)

+ d(un, Tun) + Ld(un, xn)
≤ d(xn, xn+1) + αnd(u, un) + (1− αn)

(
d(cn, xn)

+ d(xn, un)
)

+ d(un, Tun) + Ld(un, xn).

Therefore by condition (A1), (3.17), (3.16), (3.15), and (3.8), we obtain

d(xn, Txn)→ 0, as n→∞. (3.18)

By Lemma 2.12 and Lemma 3.2, we have that there exists a subsequence {xnk
}

of {xn} such that {xnk
} ∆-converges to z. Then, from (3.18) and the assumption

that T is ∆-demiclosed, we obtain that z ∈ F (T ). Furthermore, it follows from
(3.15) that there exists a subsequence {unk

} of {un} such that {unk
} ∆-converges

to z. Also, since Jfµ is nonexpansive, we obtain from (3.14) and Lemma 2.11 that
z ∈ F (Jfµ ). Therefore, we conclude that z ∈ Γ.

It follows from Lemma 2.15 that there exists z ∈ Γ such that {xn} ∆-converges
to z. Thus, by Lemma 2.14, we obtain

lim sup
n→∞

〈−→uz,−−→xnz〉 ≤ 0, ∀u ∈ X. (3.19)

Furthermore, we use the quasilinearization properties to obtain

〈−→uz,−→cnz〉 = 〈−→uz,−−→cnxn〉+ 〈−→uz,−−→xnz〉
≤ d(u, z)d(cn, xn) + 〈−→uz,−−→xnz〉.

(3.20)

Hence, we obtain from (3.16) and (3.19) that

lim sup
n→∞

〈−→uz,−→cnz〉 ≤ 0. (3.21)

Also, by condition (A1) and inequality (3.21), we get

lim sup
n→∞

(
αnd

2(u, z) + 2(1− αn)〈−→uz,−→cnz〉
)
≤ 0. (3.22)
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Next, we show that {xn} converges strongly to z. By (3.2), (3.3), and Lemma 2.13
(iii), we have

d2(xn+1, z)
≤ α2

nd
2(u, z) + (1− αn)2d2(cn, z) + 2αn(1− αn)〈−→uz,−→cnz〉

≤ α2
nd

2(u, z) + (1− αn)2[θnd2(un, z) + (1− θn)d2(Tyn, z)
]

+ 2αn(1− αn)〈−→uz,−→cnz〉
≤ α2

nd
2(u, z) + (1− αn)2[θnd2(xn, z) + (1− θn)

(
d2(yn, z) + d2(yn, T yn)

)]
+ 2αn(1− αn)〈−→uz,−→cnz〉
≤ α2

nd
2(u, z) + (1− αn)2

×
[
θnd

2(xn, z) + (1− θn)
(
d2(xn, z) + (1− λn)2d2(un, Tun) + d2(yn, Tyn)

)]
+ 2αn(1− αn)〈−→uz,−→cnz〉
≤ α2

nd
2(u, z) + (1− αn)2d2(xn, z) + (1− αn)2(1− θn)

×
[
(1− λn)2d2(un, Tun) + d2(yn, T yn)

]
+ 2αn(1− αn)〈−→uz,−→cnz〉
≤ (1− αn)d2(xn, z) + αn

(
αnd

2(u, z) + 2(1− αn)〈−→uz,−→cnz〉
)

+ (1− αn)(1− θn)
[
(1− λn)d2(un, Tun) + d2(yn, T yn)

]
≤ (1− αn)d2(xn, z) + αn

(
αnd

2(u, z) + 2(1− αn)〈−→uz,−→cnz〉
)

+ (1− θn)M,

(3.23)

where

M := sup
n≥1

{
d2(un, Tun) + d2(yn, T yn)

}
.

Hence, by (3.22), condition (A3), and applying Lemma 2.16 to (3.23), we conclude
that {xn} converges strongly to z.

Case 2. Suppose that {d2(xn, p)} is not a monotone decreasing sequence. Then,
there exists a subsequence {d2(xni , p)} of {d2(xn, p)} such that

{d2(xni , p)} < {d2(xni+1, p)} for all i ∈ N.

Then, by Lemma 2.17, there exists a nondecreasing sequence {mk} ⊂ N such that
mk →∞ and

{d2(xmk
, p)} < {d2(xmk+1 , p)} and {d2(xk, p)} < {d2(xk+1, p)}, (3.24)
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for all k ∈ N. Thus, by (3.2), (3.3), (3.8), and (3.10), we have

0 ≤ lim
k→∞

(
d2(xmk+1 , p)− d2(xmk

, p)
)

≤ lim sup
n→∞

(
d2(xn+1, p)− d2(xn, p)

)
≤ lim sup

n→∞

(
αnd

2(u, p) + (1− αn)d2(cn, p)− d2(xn, p)
)

≤ lim sup
n→∞

(
αnd

2(u, p) + (1− αn)
(
θnd

2(un, p) + (1− θn)d2(Tyn, p)
)
− d(xn, p)

)
≤ lim sup

n→∞

(
αnd

2(u, p) + (1− αn)

×
(
θnd

2(xn, p) + (1− θn)
(
d2(yn, p) + d2(Tyn, yn)

))
− d2(xn, p)

)
≤ lim sup

n→∞

(
αnd

2(u, p) + (1− αn)

×
(
θnd

2(xn, p) + (1− θn)
(
d2(xn, p) + (1− λn)2d2(un, Tun)

+ d2(Tyn, yn)
))
− d2(xn, p)

)
≤ lim sup

n→∞

(
αnd

2(u, p) + (1− αn)d2(xn, p)− d2(xn, p)

+ (1− λn)2d2(un, Tun) + d2(Tyn, yn)
)

≤ lim sup
n→∞

(
αnd

2(u, p) + (1− αn)d2(xn, p)− d2(xn, p)
)
,

which implies that

lim
k→∞

(
d2(xmk+1 , p)− d2(xmk

, p)
)

= 0. (3.25)

Following the same argument as in Case 1, we see that

lim
k→∞

(
αmk

d2(u, z) + 2(1− αmk
)〈−→uz,−−−→cmk

z〉
)
≤ 0. (3.26)

Also by (3.23), we have

d2(xmk+1 , z) ≤ (1− αmk
)d2(xmk

, z) + αmk
(αmk

d2(u, z) + 2(1− αmk
)〈−→uz,−−−→cmk

z〉)
+ (1− θmk

)
[
d2(umk

, Tumk
) + d2(ymk

, T ymk
)
]
.

Since d2(xmk
, z) < d2(xmk+1 , z), we obtain

d2(xmk
, z) ≤ αmk

d2(u, z) + 2(1− αmk
)〈−→uz,−−−→cmk

z〉
+ (1− θmk

)
[
d2(umk

, Tumk
) + d2(ymk

, Tymk
)
]
,

which implies from (3.26) that

d(xmk
, z)→ 0, as k →∞. (3.27)

It follows from (3.24), (3.25), and (3.27) that lim
k→0

d(xk, z) = 0. Therefore, we
conclude from both cases that {xn} converges strongly to z ∈ Γ. �

If we set Jfµn
≡ I, where I is an identity mapping in Theorem 3.3, we obtain

the following results.
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Corollary 3.4. Let D be a nonempty, closed, and convex subset of a Hadamard
space X. Let T : D → X be an L-Lipschitz hemicontractive inward mapping
such that T is ∆-demiclosed and Γ := F (T ). For arbitrary u, x0 ∈ D, let the
sequence {xn} be generated as follows:

γn ∈ [β, 1),
un = γnxn ⊕ (1− γn)xn,
λn ∈

[
max{γn, l(xn)}, 1

)
,

yn = λnxn ⊕ (1− λn)Tun,
θn ∈

[
max{λn, κ(yn)}, 1

)
,

xn+1 := αnu⊕ (1− αn)(θnun ⊕ (1− θn)Tyn), n ≥ 0,

where l(xn) := inf{λ ≥ 0 : λxn ⊕ (1 − λ)Txn ∈ D}, κ(yn) := inf{θ ≥ 0 : θxn ⊕
(1−θ)Tyn ∈ D}, β ∈

(
1− 1

1+
√
L2+1 , 1

)
, and {αn} is a sequence in (0, 1) such that

conditions (A1)–(A3) are satisfied. Then {xn} converges strongly to an element
of Γ.

Corollary 3.5. Let D be a nonempty, closed, and convex subset of a Hadamard
space X. Let T : D → X be a nonexpansive inward mapping and let f : X →
(−∞,∞] be a proper, convex, and lower semicontinuous function. Suppose that
Γ := F (T ) ∩ arg min

u∈X
f(y) 6= ∅, and for arbitrary u, x0 ∈ D, let the sequence {xn}

be generated as follows:

γn ∈
[

max{β, h(xn)}, 1
)
,

un = γnxn ⊕ (1− γn)Jfµn
xn,

λn ∈
[

max{γn, l(un)}, 1
)
,

yn = λnun ⊕ (1− λn)Tun,
θn ∈

[
max{λn, κ(yn)}, 1

)
,

xn+1 := αnu⊕ (1− αn)(θnun ⊕ (1− θn)Tyn), n ≥ 0,

where h(xn) := inf{γ ≥ 0 : γxn ⊕ (1 − γ)Jfµn
xn ∈ D}, l(un) := inf{λ ≥ 0 :

λun⊕(1−λ)Tun ∈ D}, κ(yn) := inf{θ ≥ 0 : θxn⊕(1−θ)Tyn ∈ D}, β ∈
( √

2
1+
√

2 , 1
)

,
and {αn} is a sequence in (0, 1) such that conditions (A1)–(A3) are satisfied. Then
{xn} converges strongly to an element of Γ.

4. Numerical example

In this section, we give a numerical example to illustrate our result in a Hadamard
space (non-Hilbert space).

Example 4.1 ([18]). Let X = R2 be endowed with a metric dX : R2 × R2 →
[0,−∞) defined by

dX(x, y) =
√

(x1 − y1)2 + (x2
1 − x2 − y2

1 + y2)2.
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Then, (R2, dX) is a Hadamard space with the geodesic joining x to y given by

(1− t)x⊕ ty =
(
(1− t)x1 + ty1, ((1− t)x1 + ty1)2 − (1− t)(x2

1 − x2)− t(y2
1 − y2)

)
.

Let D = {(x1, x2) ∈ R2 : x2
1 + (x2 − 1

2 )2 ≤ 1}. Clearly, D is a nonempty, closed,
and convex subset of R2. Now, define T : D → R2 by T (x1, x2) = (x1, 2x2

1 −
x2); then, T is nonexpansive in (D, dX) with F (T ) = {(0, 0), (1, 1)}. Hence, T
is hemicontractive. Let f : R2 → R be defined by f(x1, x2) = 100((x2 + 1) −
(x1 + 1)2)2 + x2

1. Then f is a proper, convex, and lower semicontinuous function
in (R2, dX) but not convex in the classical sense.

Take β = 7
10 , µn = n+4

n+1 , and αn = 1
n+3 , for n ≥ 1. Then the hypotheses hold

for

h(xn) = inf{γ ≥ 0 : γxn ⊕ (1− γ)Jfµn
xn ∈ D},

l(un) = inf{λ ≥ 0 : λun ⊕ (1− λ)Tun ∈ D},
κ(yn) = inf{θ ≥ 0 : θxn ⊕ (1− θ)Tyn ∈ D}.

Hence, Algorithm (3.1) becomes

γn ∈
[

max{ 7
10 , h(xn)}, 1

)
,

un = γnxn ⊕ (1− γn)Jfµn
xn,

λn ∈
[

max{γn, l(un)}, 1
)
,

yn = λnun ⊕ (1− λn)Tun,
θn ∈

[
max{λn, κ(yn)}, 1

)
,

xn+1 := 1
n+3u⊕

(
1− 1

n+3

)
(θnun ⊕ (1− θn)Tyn).

Case 1A: u = (1,−1)T , x0 = ( 1
2 ,

1
4 )T ;

Case 1B: u = (−1, 1)T , x0 = (− 1
2 ,

1
4 )T ;

Case 2A: u = (−1, 2)T , x0 = ( 1
4 , 3)T ;

Case 2B: u =
(
1, 1

2
)T , x0 =

( 1
4 ,−

1
2
)T .

matlab version R2019a is used to obtain the graphs of errors against number
of iterations. Using different choices of the initial points u and x1 (that is, Case
1A–Case 2B), we obtain the numerical results in Figure 1. We see that the error
values converge to 0, which implies that choosing arbitrary starting points the
sequence {xn} converges to an element in the solution set Γ.
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Figure 1. Errors vs Iteration number (n): Case 1A (top left);
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right).
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