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MONSTER GRAPHS ARE DETERMINED BY THEIR
LAPLACIAN SPECTRA

ALI ZEYDI ABDIAN, ALI REZA ASHRAFI, LOWELL W. BEINEKE,
MOHAMMAD REZA OBOUDI, AND GHOLAM HOSSEIN FATH-TABAR

Abstract. A graph G is determined by its Laplacian spectrum (DLS) if every
graph with the same Laplacian spectrum is isomorphic to G. A multi-fan
graph is a graph of the form (Pn1 ∪Pn2 ∪ · · · ∪Pnk )5K1, where K1 denotes
the complete graph of size 1, Pn1 ∪ Pn2 ∪ · · · ∪ Pnk is the disjoint union of
paths Pni , ni ≥ 1 and 1 ≤ i ≤ k; and a starlike tree is a tree with exactly one
vertex of degree greater than 2. If a multi-fan graph and a starlike tree are
joined by identifying their vertices of degree more than 2, then the resulting
graph is called a monster graph. In some earlier works, it was shown that all
multi-fan and path-friendship graphs are DLS. The aim of this paper is to
generalize these facts by proving that all monster graphs are DLS.

1. Basic definitions

As usual G = (V,E) will denote a simple graph having n vertices and m edges,
with V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. The complement of G, denoted
G, is a graph having all the vertices of G and an edge between two vertices v and
w if and only if there exists no edge between v and w in the original graph G.
degG(v) (dG(v) for short) is the degree of a vertex v in G. In this paper, G ∪ H
denotes the disjoint union of graphs G and H. The join G5 H of the graphs G
and H is obtained from G ∪H by joining each vertex of G to each vertex of H.

A multi-fan graph is a graph of the form (Pn1 ∪ Pn2 ∪ · · · ∪ Pnk
)5K1, where

K1 denotes the complete graph of size 1, Pn1 ∪Pn2 ∪ · · · ∪Pnk
is the disjoint union

of paths Pni
, ni ≥ 1 and 1 ≤ i ≤ k; and a starlike tree is a tree with exactly

one vertex of degree greater than 2. If a multi-fan graph and a starlike tree are
joined by identifying their vertices of degree more than 2, then the resulting graph
is called a monster graph. A monster graph with parameters n = (n1 + · · ·+nk) +
(nk+1 + · · ·+ nt) + 1, k, s = n1 + · · ·+ nk and t vertices of degree 1 is denoted by
M(n, k, s, t). If Pn1 = · · · = Pni

= P2, ni ≥ 1 and 1 ≤ i ≤ k, then the monster
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graph is called path-friendship [13]. The authors in [13, 10] showed independently
that all path-friendship graphs are DLS. Our proof is simpler and based on some
facts in [17].

Spectral graph theory is the study of eigenvalues and eigenvectors of matrices
associated with graphs. Suppose V (G) = {v1, . . . , vn}. The adjacency and Lapla-
cian matrices of G are denoted by A(G) and L(G), respectively. If A(G) = [aij ],
then, by definition, aij = 1 if and only if vi and vj are adjacent, and aij = 0
otherwise. On the other hand, if L(G) = [lij ], then lij = aij − dij , where dii is the
degree of vi and dij = 0 when i 6= j.

Let µ1, µ2, . . . , µt be the distinct eigenvalues of L(G) with multiplicities m1, m2,
. . . , mt, respectively. The Laplacian spectrum or L-spectrum of G is the multi-set
of eigenvalues of L(G) usually written in non-increasing order µ1(G) ≥ µ2(G) ≥
· · · ≥ µt(G) = 0. Van Dam and Haemers [16] conjectured that almost all graphs are
determined by their spectrum, that is, up to isomorphism they are the only graph
with that spectrum. However, very few graphs are known to have that property,
and so discovering new classes of such graphs is an interesting problem. Formally,
we define two graphs G and H to be L-cospectral if they have the same L-spectrum,
and a graph G is determined by its Laplacian spectrum, abbreviated by DLS, if no
other graphs are L-cospectral with G.

2. Preliminaries

In this section, some known results which are crucial throughout this paper are
given. We also review the most important results on DLS-graphs. Let us start by
the main properties of these graphs.

Theorem 2.1 ([12, 16, 17]). The following can be obtained from the Laplacian
spectrum of a graph:

(i) the number of vertices,
(ii) the number of edges,
(iii) the number of spanning trees,
(iv) the number of components,
(v) the sum of the squares of the degrees of the vertices.

The next theorem relates the Laplacian spectra of complementary graphs.

Theorem 2.2 ([2]). Let µ1 ≥ µ2 ≥ · · · ≥ µn = 0 and µ1 ≥ µ2 ≥ · · · ≥ µn = 0
be the Laplacian spectra of G and G, respectively. Then µi = n − µn−i for i =
1, 2, . . . , n− 1.

A walk is defined as a finite-length alternating sequence of vertices and edges.
The total number of edges covered in a walk is called the length of the walk. A
walk is said to be closed if the starting and ending vertices are identical, i.e. if the
walk starts and ends at the same vertex. For graphs G and H, we let NG(H) be
the number of subgraphs of G that are isomorphic to H. Further, let WG(i) be the
number of closed walks of length i in G and let W ′H(i) be the number of closed walks
of length i in H that contain all the edges of H. Then WG(i) =

∑
NG(H)W ′H(i),
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where the sum is taken over all connected subgraphs H of G for which W ′H(i) 6= 0.
This equation provides some formulas for calculating the number of some short
closed walks in a graph. Note that if tr(M) denotes the trace of a matrix M , then
WG(3) = tr(A3(G)).

Theorem 2.3 ([15]). Suppose G is a graph with exactly m edges. The number of
closed walks of lengths 2, 3, and 4 in G can be computed by the following formulas:

(i) WG(2) = 2m,
(ii) WG(3) = tr(A3(G)) = 6NG(C3),
(iii) WG(4) = 2m+ 4NG(P3) + 8NG(C4).

Suppose G is a simple graph with vertex set {v1, . . . , vn}. Turning to the degrees
of the vertices in graphs, as before, we let di = degG(vi), and assume that d1(G) ≥
d2(G) ≥ · · · ≥ dn(G). In addition, the eigenvalues of G are µ1(G) ≥ µ2(G) ≥ · · · ≥
µn(G) = 0.

Theorem 2.4 ([6]). If G is a graph with at least one edge, then µ1(G) ≥ d1(G)+1.
Moreover, if G is connected, then equality holds if and only if d1(G) = n− 1.

The next result uses the quantity θ(v) =
∑ deg(u)

deg(v) , where the sum is taken over
the neighbors u of the vertex v. A semi-regular bipartite graph is a bipartite graph
G with bipartition (A,B) in which every two vertices in A (and also in B) have
the same degree as each other.

Theorem 2.5 ([10, 12]). If G is a connected graph, then µ1(G) ≤ maxv(deg(v) +
θ(v)), with equality if and only if G is a regular or a semi-regular bipartite graph.

Theorem 2.6 ([10]). If G is a nontrivial graph, then µ1(G) ≤ d1(G) +d2(G); and
if G is connected, then µ2(G) ≥ d2(G).

Theorem 2.7 ([14]). The first four coefficients of the Laplacian polynomial of a
graph G, ϕ(G) =

∑
lix

i, are

l0 = 1, l1 = −2m, l2 = 2m2 −m− 1
2

n∑
i=1

d2
i ,

and

l3 = 1
3

(
−4m3 + 6m2 + 3m

n∑
i=1

d2
i −

n∑
i=1

d3
i − 3

n∑
i=1

d2
i + 6NG(C3)

)
.

The following result is an immediate consequence of Theorem 2.7.

Corollary 2.8. If G and H are L-cospectral graphs with the same degrees, then
they have the same number of triangles.

It follows from Theorems 2.1 and 2.7 that if G and G′ are L-cospectral graphs
with vertex degrees d1, d2, . . . , dn and d′1, d

′
2, . . . , d

′
n, respectively, then

tr(A3(G))−
n∑

i=1
d3

i = tr(A3(G′))−
n∑

i=1
d′3i .
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Based on this result, Liu and Huang [8] defined the following graph invariant for a
graph G:

ε(G) = tr(A3(G))−
n∑

i=1
(di − 2)3.

Theorem 2.9 ([8]). If G and H are L-cospectral, then ε(G) = ε(H).

We end this section with the following useful result:

Theorem 2.10 ([11]). If u is a vertex of G and G − u is the subgraph obtained
from G by deleting u, then

µi(G) ≥ µi(G− u) ≥ µi+1(G)− 1, i = 1, 2, . . . , n− 1.

3. Main results

We start with some facts which have been proved so far.

Theorem 3.1 ([9]). All friendship graphs are DLS.

Theorem 3.2 ([5]). All starlike trees are DLS.

Theorem 3.3 ([10, 13]). All path-friendship graphs are DLS.

Theorem 3.4 ([9]). All multi-fan graphs are DLS.

Consider a monster graph G = M(n, k, s, t). Clearly d2(G) ∈ {1, 2, 3}. If
d2(G) = 1, then G = K1,n−1, which is DLS. If d2(G) = 2, then G is a path-
friendship graph that is DLS [10, 13]. So, we consider d2(G) = 3. In the following,
we show that all the monster graphs G with d2(G) = 3 are DLS.

Lemma 3.5. Consider the monster graph G = M(n, k, s, t) and let d2(G) = 3.
Then

(i) s+ t+ 1 ≤ µ1(G) < s+ t+ 4.
(ii) µ2(G) < 5.

Proof. (i) It follows from Theorems 2.4 and 2.5 that

s+ t+ 1 ≤ µ1(G) ≤ s+ t+ 1 + 4k + 3(s− 2k) + 2t
s+ t

= s+ t+ 1 + 3s− 2k + 2t
s+ t

= s+ t+ 1 + (2s+ 2t)
s+ t

+ (s− 2k)
s+ t

< s+ t+ 4.

(ii) The proof follows immediately from Theorem 2.10 and the fact that the
greatest Laplacian eigenvalue of a path is less than 4. �
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Let G be a connected graph with n vertices and m edges. The graph G is
called a k-cyclic graph if m = n + k − 1. Consider the monster graph G with
n = n(G) = (n1 + · · · + nk) + (nk+1 + · · · + nt) + 1 and thus m = m(G) =
(n1 − 1 + · · · + nk − 1) + (nk+1 − 1 + · · · + nt − 1) + t − k + (n1 + · · · + nk) =
n− 1− t+ t− k + n1 + · · ·+ nk = n− 1− k + n1 + · · ·+ nk. It can be easily seen
that m = m(G) = n+ (n1 + · · ·+nk−k)−1 and m = m(G) = n+ s−k−1, which
means that G is a (s− k)-cyclic graph.

Theorem 3.6. If H is L-cospectral with G = M(n, k, s, t), then they have the
same degree sequence.

Proof. By Lemma 3.5, µ2(H) < 5, and thus it follows from Theorem 2.6 that
d2(H) ≤ 4. Since H and G are L-cospectral, by Theorem 2.1, H is also connected,
and has the same order, size, and sum of the squares of its degrees as G. Let ni

denote the number of vertices of degree i in H, for i = 1, 2, . . . , d1(H). Then

d1(H)∑
i=1

ni = n(G), (3.1)

d1(H)∑
i=1

ini = 2m(G), (3.2)

d1(H)∑
i=1

i2ni = n′1 + 4n′2 + 9n′3 + d2
1(G), (3.3)

where n′i is the number of vertices of degree i (i = 1, 2, 3) belonging to G.
Set r = nk+1 + · · · + nt and n = s + r + 1. Clearly, n(G) = n, m(G) =

n+ s−k− 1 = 2s+ r−k, n′1 = t, n′2 = 2k+ r− t, n′3 = n− 1−2k− r = s− 2k and
d1(G) = s+ t. By adding up Eqs. (3.1), (3.2) and (3.3) with coefficients 2, −3, 1,
respectively we get

d1(H)∑
i=1

(i2 − 3i+ 2)ni = s(s+ 2t− 1) + (t− 1)(t− 2)− 4k. (3.4)

By Lemma 3.5, s+ t+ 1 ≤ µ1(G) < s+ t+ 4. It follows from Theorem 2.4 that
d1(H) + 1 ≤ µ1(H) = µ1(G) < s + t + 4, which leads to d1(H) ≤ s + t + 2. On
the other hand, by Lemma 3.5 and Theorem 2.6 one can conclude that s+ t+ 1 ≤
µ1(G) = µ1(H) ≤ d1(H) + d2(H) ≤ d1(H) + 4, which leads to d1(H) ≥ s+ t− 3.
Therefore, we have s+ t− 3 ≤ d1(H) ≤ s+ t+ 2. It follows from Theorem 2.9 that

6NH(C3)−
n∑

i=1
(di(H)− 2)3 = 6(s− k)− (−t+ s− 2k + (s+ t− 2)3). (3.5)
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Our main proof will consider some cases as follows:

1. d1(H) = s+ t− 3.
1.1. We first assume that ns+t−3 = 1. In this subcase, s+ t−3 = d1(H) >

3 ≥ d2(H). From (3.4) and by a straightforward calculation, we get

((s+ t− 3)2 − 3(s+ t− 3) + 2) + 2n3 = s(s+ 2t− 1) + (t− 1)(t− 2)− 4k.

It follows from Eqs. (3.1), (3.2) and (3.3) that n3 = 4s+ 3t− 2k − 9,
n1 = 3s+ 4t− 12 and n2 = −6s+ r + 2k − 7t+ 21. Consequently by
(3.5) we have NH(C3) = −3s2+23s−38−3t2+21t−6st−2k

2 . Obviously, for
s ≥ 4, NH(C3) < 0 and this is clearly a contradiction. Consider the
following cases:
(a) s = 1. Then for any natural number t we always have NH(C3) =
−9− k + −3t2+15t

2 < 0, an impossibility.
(b) s = 2. Then for any natural number t ≥ 2 we always have

NH(C3) = −2 − k + −3t2+9t
2 < 0 and this is a contradiction. If

t = 1 and k ≥ 2, then NH(C3) < 0, a contradiction. If t = k = 1,
then 0 = d1(H) > 3, a contradiction.

(c) s = 3. If t = 1, then 1 = d1(H) > 3, a contradiction. Now,
if t ≥ 2, then for any natural number t ≥ 2 we get NH(C3) =
2− k + −3t2+3t

2 < 0 and this is an impossibility.
1.2. ns+t−3 ≥ 2. Then s+ t− 3 = d1(H) = d2(H) ≤ 3, which implies that

the pair (s, t) equals (3, 1), (3, 2), (3, 3), (4, 1), or (4, 2). So we need
to consider the following five subcases:
(a) (s, t) = (3, 1). Therefore, 1 = d1(H) = d2(H). Therefore, H =

G = P2. On the other hand, n′1 = 1, which is a contradiction.
(b) (s, t) = (3, 2). Therefore, 2 = d1(H) = d2(H). If H is a path or a

cycle, then H = G and so n′3 = n3 = 0 or 3 − 2k = 0 or k = 1.5,
a contradiction.

(c) (s, t) = (3, 3). Therefore, 3 = d1(H) = d2(H). Hence n′3 = 3− 2k
and so k = 1. So, n3 = 11 and by (3.1) and (3.2) we have n1 = 5
and n2 = r − 12. Consequently, by (3.5) we get NH(C3) = − 22

3 ,
a contradiction.

(d) (s, t) = (4, 1). As a result, 2 = d1(H) = d2(H) and this means
that H is a path or a cycle, since H is a connected graph. Hence
H = G = Pn or H = G = Cn, for some natural number n ≥ 3.
On the other hand, n′1 = 1 and this is obviously a contradiction.

(e) (s, t) = (4, 2). Thus, 3 = d1(H) = d2(H). On the other hand,
2 ≤ n3 = 14 − 2k. Obviously, for 3 ≤ k ≤ 6 we will have n′3 < 0
and this is impossible. Consider the following two cases:

(i) k = 1. This means that n3 = 12, n1 = 8 and n2 = r − 15
and so NH(C3) = −7, a contradiction.

(ii) k = 2. Therefore, n3 = 10, n1 = 8 and n2 = r − 13. This
means that NH(C3) = −8, which is impossible.
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2. d1(H) = s+ t− 2.
2.1. ns+t−2 = 1. In this case, s+ t− 2 = d1(H) > 3 ≥ d2(H). From (3.4)

and by a straightforward calculation, we get

((s+ t− 2)2 − 3(s+ t− 2) + 2) + 2n3 = s(s+ 2t− 1) + (t− 1)(t− 2)− 4k,

from which it follows that n3 = 3s+ 2t− 2k − 5. It now follows from
(3.2) and (3.3) that n2 = −5t− 4s+ r+ 2k+ 12 and n1 = 3t+ 2s− 7.
Set f1(t) = −(t − 3)2 and f2(t, s, k) = −s2 + 7s − 2st − k. From
(3.5) we deduce that NH(C3) = f1(t) + f2(t, s, k). If t ≥ 4, then
f1(t) + f2(t, s, k) < 0. Consider the following three cases:
(a) t = 1. Then NH(C3) = −(s−1)(s−4)−k. For s ≥ 4, NH(C3) < 0

and this is a contradiction. If (s, t) = (2, 1), then d1(H) = 1 > 3,
which is impossible. If (s, t) = (3, 1), then d1(H) = 2 > 3, which
is impossible.

(b) t = 2. Then NH(C3) = −s2 + 3s− 1− k. For s ≥ 3, NH(C3) < 0
and this is a contradiction. If (s, t) = (2, 2), then d1(H) = 2 >
3, a contradiction. If (s, t) = (1, 2), then d1(H) = 1 > 3, a
contradiction.

(c) t = 3. Then NH(C3) = −s2 + s − k and so we always have
NH(C3) < 0, which is impossible.

2.2 ns+t−2 ≥ 2. Then s+ t− 2 = d1(H) = d2(H) ≤ 3, which implies that
the pair (s, t) equals (3, 1), (3, 2), or (4, 1). So we need to consider the
following three subcases:
(a) (s, t) = (3, 1). Therefore, 2 = d1(H) = d2(H). If H is a path,

then H = G is a path and so n′3 = n3 = 0 or 3− 2k = 0 or k = 3
2 ,

a contradiction. If H is a cycle, then H = G. On the other hand,
0 = n1 = n′1 = 1, which is impossible.

(b) (s, t) = (3, 2). Therefore, 3 = d1(H) = d2(H). It follows from
(3.4) that n3 = 9 − 2k. By (3.1) and (3.2) we get n1 = 5 and
n2 = r + 2k − 10. Consequently, NH(C3) = −k − 1 < 0, a
contradiction.

(c) (s, t) = (4, 1). In this subcase, 3 = d1(H) = d2(H). Since 0 ≤
n′3 = 4 − 2k, k ∈ {1, 2}. If k = 1, then it follows from (3.4) that
n3 = 8 and by (3.1) and (3.2) we get n2 = −7 + r and n1 = 4. By
(3.5), NH(C3) = − 7

3 , which is impossible. If k = 2, then it follows
from (3.4), (3.1) and (3.2) that n3 = 6, n2 = −5 + r and n1 = 4.
Now it follows from (3.5) that NH(C3) = − 8

3 , a contradiction.
3. d1(H) = s+ t− 1.

3.1. ns+t−1 = 1. By an argument similar to that for (3.5), we get

((s+ t− 1)2 − 3(s+ t− 1) + 2) + 2n3 = s(s+ 2t− 1) + (t− 1)(t− 2)− 4k.

Hence, n3 = 2s+ t− 2k − 2. Combining (3.2) and (3.3), we find that
the roots are n1 = 2t + s − 3 and n2 = −3t − 2s + r + 2k + 5. Set
f1(t) = −(t − 2)(t − 3) and f2(t, s, k) = −s2 + 7s − 2st − 2k. From
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(3.5) we deduce that NH(C3) = f1(t)+f2(t,s,k)
2 . For t ≥ 3, NH(C3) < 0

and this is a contradiction. Now, we consider the following subcases:
(a) t = 1. Then NH(C3) = −s2+5s−2k−2

2 . For s ≥ 5 we have a
contradiction. Consider the following subcases:

(i) s = 1. Then d1(H) = 1 > 3, which is impossible.
(ii) s = 2. Then d1(H) = 2 > 3, a contradiction.
(iii) s = 3. Then d1(H) = 3 > 3, an impossibility.
(iv) s = 4. For k ≥ 2, NH(C3) < 0 and this is a contradiction. If

k = 1, d1(H) = 4 and n4 = 1. It follows from (3.1), (3.2) and
(3.3) that n1 = 3, n2 = r− 4, n3 = 5. On the other hand, H
is a 3-cyclic graph and also NH(C3) = 0. By Theorem 2.9
0− (8 + 2) = 3− (27 + 1), a contradiction.

(b) t = 2. ThenNH(C3) = −s2+3s−2k
2 . If (s, k) = (1, 1), then d1(H) =

2 > 3, which is impossible. If (s, k) = (2, 1), then d1(H) = 3 > 3,
which is impossible. For other cases NH(C3) < 0 and this is a
contradiction.

3.2 ns+t−1 ≥ 2. Then s + t − 1 = d1(H) = d2(H) ≤ 3 and so (s, t) ∈
{(1, 1), (2, 1), (3, 1), (1, 3), (1, 2), (2, 2)}.
(a) (s, t) = (1, 1). Then d1(H) = d2(H) = 1. This means that

H = K2 and so G = K2. But (s, t) = (1, 1) implies that n′1 = 1,
an impossibility.

(b) (s, t) = (2, 1). Then d1(H) = d2(H) = 2. If H is a path, then
H = G and so n1 = n′1 = 1, a contradiction. If H is a cycle, then
H = G. On the other hand, 0 = n1 = n′1 = 1, which is impossible.

(c) (s, t) = (3, 1). Therefore, 3 = d1(H) = d2(H). It follows from
(3.4) that 2 ≤ n3 = 6 − 2k. Therefore, k ∈ {1, 2}. If k = 1, then
n3 = 4 and so n1 = 2 and n2 = r − 2. By Theorem 2.9 −6 = −1,
a contradiction. If k = 2, then n′3 < 0, a contradiction.

(d) (s, t) = (1, 3). Clearly, 0 ≤ n′3 = 1− 2k and so k = 0, a contradic-
tion.

(e) (s, t) = (1, 2). Then d1(H) = d2(H) = 2. If H is a path, then
H = G is a path and so 1− 2k = 0 or k = 1

2 , which is impossible.
If H is a cycle, then H = G. On the other hand, 0 = n1 = n′1 = 2,
a contradiction.

(f) (s, t) = (2, 2). Then d1(H) = d2(H) = 3. Since n′3 = 2−2k, k = 1.
This implies that n′3 = 0, a contradiction, since we consider the
graph G with d2(G) = 3.

4. d1(H) = s+ t. By (3.4) one can deduce that
((s+ t)2 − 3(s+ t) + 2) + 2n3 = s(s+ 2t− 1) + (t− 1)(t− 2)− 4k.
From this it follows that n3 = s− 2k. Combining (3.2) and (3.3), we find
that n1 = t and n2 = r+ 2k− t. Therefore, the degrees of H are the same
as those of G. In this case, it follows from (3.5) that NH(C3) = s − k.
Note that if (s, k) = (2, 1), then d1(H) = 3. On the other hand, n3 = 0, a
contradiction. So, we always have d1(H) ≥ 4 or ns+t = 1.

Rev. Un. Mat. Argentina, Vol. 63, No. 2 (2022)



MONSTER GRAPHS ARE DLS 421

5. d1(H) = s+ t+ 1. From (3.4) we deduce that
((s+ t+ 1)2 − 3(s+ t+ 1) + 2) + 2n3 = s(s+ 2t− 1) + (t− 1)(t− 2)− 4k,

from which it follows that n3 = −t− 2k + 1 < 0, which is impossible.
6. d1(H) = s+ t+ 2. Similar to Case 5, we will have a contradiction.

Hence the result. �

Corollary 3.7. Every graph H L-cospectral with the monster graph G has exactly
s− k triangles and as a result all cycles belonging to H are triangles.

Proof. By Equation (3.5) and Theorem 3.6, NH(C3) = s− k. On the other hand,
H is a (s− k)-cyclic graph. Therefore, one can deduce that all cycles belonging to
H are triangles. �

Corollary 3.8. Any graph H L-cospectral with a monster graph is a monster graph.

Proof. Any connected component is either a tree (and as a result here is a path) or
a k-cyclic graph, k ≥ 1. Since all cycles belonging to H are triangles, if one of its
components consists of a triangle then the number of triangles belonging to H is
greater than s−k, a contradiction. Therefore, all connected components are paths
and as a result all triangles have a common vertex. �

Before proving our main result, we state some essential lemmas and notations.

Lemma 3.9 ([7]). Let v be a vertex of a connected graph G and suppose that
v1, . . . , vs are pendant vertices of G which are adjacent to v. Let G∗ be the graph
obtained from G by adding any t

(
1 ≤ t ≤ s(s−1)

2
)

edges among v1, v2, . . . , vs. Then
we have µ1(G) = µ1(G∗).

Lemma 3.10 ([5]). No two non-isomorphic starlike trees are L-cospectral.

Let H be a monster graph and let v be a vertex with maximum degree in H.
Now, we remove an edge of any of the triangles, except in edges adjacent to v; then
we have a starlike tree, say S(H). Also, G = G(k, l1, l2, . . . , lt) is a monster graph
with k paths which construct s−k triangles and t paths with lengths li which meet
in the maximum degree G, where i = 1, 2, . . . , t; see Figure 1.

Note that in the proof of Lemma 3.10, it is easy to see that if S1 = S(l1, . . . , lt)
and S2 = S(j1, . . . , jt) are two non-isomorphic starlike trees, then µ1(S1) 6= µ1(S2),
where l1 ≥ l2 ≥ · · · ≥ lt ≥ 1 and j1 ≥ j2 ≥ · · · ≥ jt ≥ 1.

Corollary 3.11. Let G = G(k, l1, l2, . . . , lt) and H = H(k, j1, j2, . . . , jt) be two
monster graphs. If S(G) and S(H) are two non-isomorphic starlike trees corre-
sponding to G and H, respectively, then µ1(S(G)) 6= µ1(S(H)).

Lemma 3.12. If G and H are two L-cospectral monster graphs, then S(H) =
S(G).

Proof. By Lemma 3.9, µ1(S(H)) = µ1(H) and µ1(S(G)) = µ1(G). If S(H) 6=
S(G), then Corollary 3.11 implies that µ1(S(H)) 6= µ1(S(G)) and so µ1(H) 6=
µ1(G), a contradiction. �
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Figure 1. The monster graphM(n, k, s, t) and its connected com-
ponents after removing the vertex v.

By Theorem 3.6, Corollary 3.8 and Lemma 3.12 we have the following theorem.

Theorem 3.13. All monster graphs are DLS.

Proof. Let monster graphs G and H be L-cospectral. By Theorem 3.6, G and
H have the same degree sequence and by Lemma 3.12, S(H) = S(G). Hence,
(∪t

l=k+1Pik
) = (∪t

l=k+1Pjk
) = A; see Figure 1. On the other hand, by Theorem 3.6

we assume that v and v′ denote the vertices with maximum degree in G and H,
respectively. Therefore, G− v = ∪k+t

l=1Pil
= (∪k

l=1Pil
) ∪A and H − v′ = ∪k+t

l=1Pjl
=

(∪k
l=1Pjl

)∪A. We claim that (∪k
l=1Pjl

) = (∪k
l=1Pil

). Our proof is by induction on k,
which is the number of paths. Suppose k = 1. By the fact that NH(C3) = NG(C3),
Lemma 3.12 and Theorem 3.6, we get G = H and the proof is straightforward.

Let the claim be true for k − 1 and let us prove it for k. We show that if
two graphs G and H are L-cospectral and they consist of k paths E = (∪k

l=1Pjl
)

and F = (∪k
l=1Pil

), respectively, then E = F . Since G and H are L-cospectral,
by induction hypothesis we deduce that k − 1 paths from k paths E and F are
equal. Without loss of generality, we can assume that (∪k−1

l=1 Pjl
) = (∪k−1

l=1 Pil
). It

is sufficient to show that Pjk
= Pik

. Since NH(C3) = NG(C3) = s− k, Pjk
= Pik

.
Therefore, (∪k

l=1Pjl
) = (∪k

l=1Pil
) or E = F and so H = G. This completes the

proof. �
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The next corollary follows immediately from Theorems 2.2 and 3.13.

Corollary 3.14. The complement of a monster graph is DLS.
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