A GENERALIZATION OF PRIMARY IDEALS AND STRONGLY PRIME SUBMODULES

AFROOZEH JAFARI, MOHAMMAD BAZIAR, AND SAEED SAFAEEYAN

ABSTRACT. We present *-primary submodules, a generalization of the concept of primary submodules of an R-module. We show that every primary submodule of a Noetherian R-module is *-primary. Among other things, we show that over a commutative domain R, every torsion free R-module is *-primary. Furthermore, we show that in a cyclic R-module, primary and *-primary coincide. Moreover, we give a characterization of *-primary submodules for some finitely generated free R-modules.

1. Introduction

Throughout this paper, all rings are commutative with identity and all modules are unital. A proper ideal I of a ring R is called a prime (resp. primary) ideal if whenever $ab \in I$, where $a,b \in R$, then either $a \in I$ or $b \in I$ (resp. $a \in I$ or $b^n \in I$ for some positive integer n). The notions of prime and primary ideals have been generalized to modules by various authors ([3], [4] and [6]). Let R be a ring, M an R-module and N a submodule of M. The annihilator of the R-module $\frac{M}{N}$ is denoted by (N:M). A proper submodule N of M is called prime (resp. primary) if whenever $rm \in N$, where $r \in R$, $m \in M$, then either $m \in N$ or $r \in (N:M)$ (resp. $m \in N$ or $r^n \in (N:M)$ for some positive integer n). For more details about prime and primary submodules one can see [2], [5], [7], [11] and [12]. For a proper submodule N of an R-module M and $a \in R$, set $(N:M) = \{m \in M \mid am \in N\}$. It is easy to show that $(N:M) = \{m \in M \mid am \in N\}$. It is easy to show that $(N:M) = \{m \in M \mid am \in N\}$. Where $m \in M$ is said to be classical primary, if $m \in M$, where $m \in M$, where $m \in M$, implies that $m \in N$ or $m \in M$ for some $m \in M$.

Strongly prime submodules have been introduced and studied in [8] and [9]. According to [8], a proper submodule N of an R-module M is said to be strongly prime provided that $(Rx + N : M)y \subseteq N$, for $x, y \in M$, implies that either $x \in N$ or $y \in N$.

In this paper we introduce and investigate *-primary submodules, which are a generalization of primary ideals and strongly prime submodules.

²⁰²⁰ Mathematics Subject Classification. 13C13, 13E05, 13E15.

 $[\]it Key\ words\ and\ phrases.$ Primary ideal; Primary submodule; *-prime submodule; *-primary submodule.

Definition 1.1. A proper submodule N of an R-module M is called *-primary (resp. *-prime) if $(Rx + N : M)y \subseteq N$ for $x, y \in M$ implies that either $y \in N$ or $(Rx + N : M)^k \subseteq (N : M)$ for some $k \in \mathbb{N}$ (resp. $y \in N$ or $(Rx + N : M) \subseteq (N : M)$). If the zero submodule of M is *-primary, M is called *-primary. Moreover the R-module M is called fully *-primary provided that every proper submodule of M is *-primary.

We have the following diagram which shows the relationship of strongly prime, prime, primary, *-prime and *-primary submodules.

strongly prime
$$\implies$$
 prime \implies primary \Downarrow *-prime \implies *-primary

We give an example which shows that the classical primary submodule and *-primary submodules are different. Considering \mathbb{Q} as a \mathbb{Z} -module, we observe that \mathbb{Z} is a *-primary submodule which is neither a classical primary nor a primary submodule. Moreover, for some prime number p, the submodule $p\mathbb{Z} \oplus 0$ is a classical primary submodule of $\mathbb{Z} \oplus \mathbb{Z}$ which is not a *-primary submodule (see Example 1.2).

In the next example we show that the class of *-primary submodules is quite different from the class of strongly prime submodules and the class of primary submodules.

Example 1.2. (a) Consider \mathbb{Q} as a \mathbb{Z} -module. For every proper submodule N of \mathbb{Q} , we have $(N:\mathbb{Q})=0$. So all proper submodules of \mathbb{Q} are *-prime and hence *-primary (one can easily extend this fact to divisible modules over a domain). We know that \mathbb{Q} has no nonzero prime (primary) submodule; therefore it has no nonzero strongly prime submodule.

- (b) *-primary submodules of the \mathbb{Z} -module \mathbb{Z}_n are exactly the primary ideals of the ring \mathbb{Z}_n .
- (c) If (N:M)=m is a maximal ideal of R, then N is a *-primary submodule. In particular, if N is a maximal submodule of M then N is a *-primary submodule. Moreover, if M is a finitely generated module in which for every proper submodule N of M, (0:M)=(N:M), then N is a *-primary submodule.
- (d) In the \mathbb{Z} -module $\mathbb{Z} \oplus \mathbb{Z}$, submodules of the form $0 \oplus m\mathbb{Z}$, $m\mathbb{Z} \oplus 0$ and $p\mathbb{Z} \oplus q\mathbb{Z}$ are not *-primary, where p,q are distinct prime numbers and $m \in \mathbb{Z}$. $((\mathbb{Z}(1,q+1)+p\mathbb{Z} \oplus q\mathbb{Z}:\mathbb{Z} \oplus \mathbb{Z})(1,0) \subseteq p\mathbb{Z} \oplus q\mathbb{Z}, (1,0) \notin p\mathbb{Z} \oplus q\mathbb{Z} \text{ and no power of } (\mathbb{Z}(1,q+1)+p\mathbb{Z} \oplus q\mathbb{Z}:\mathbb{Z} \oplus \mathbb{Z}) \text{ is contained in } pq\mathbb{Z}).$

In Section 2, we show that in a Noetherian R-module, every primary submodule is *-primary (Proposition 2.8); we also show that torsion free R-modules over commutative domains are *-primary (Proposition 2.11). In Section 3, we show that for any cyclic R-module M and submodule N of M, we have that N is strongly prime if and only if N is a *-primary submodule with $\frac{R}{(N:M)}$ a reduced ring (Proposition 3.1). Moreover, we show that over a cyclic R-module the *-primary submodules are precisely primary submodules (Theorem 3.2). Finally, we investigate *-primary submodules of a free R-module M of rank 2 (Proposition 3.7 and Theorem 3.9).

2. *-PRIMARY SUBMODULES

In this section we obtain necessary and sufficient conditions under which a sub-module N of M is *-primary.

For a submodule N of an R-module M set

$$Z_N(M) = \{ y \in M \mid (Rx + N : M)y \subseteq N \text{ for some } x \in M \setminus N \}.$$

Proposition 2.1. Let M be an R-module and N a proper submodule of M. The following are equivalent:

- (1) N is a *-primary submodule of M.
- (2) For every submodule L of M and $x \in M$, if $(Rx + N : M)L \subseteq N$ then $L \subseteq N$ or $(Rx + N : M)^n \subseteq (N : M)$ for some $n \in \mathbb{N}$.
- (3) For each $y \in Z_N(M) \setminus N$ and $x \in M \setminus N$ such that $(Rx + N : M)y \subseteq N$, there exists an $n \in \mathbb{N}$ such that $(Rx + N : M)^n(M) \subseteq N$.
- (4) For each $x \in M$, either $\frac{(Rx+N:M)}{(N:M)}$ is a nilpotent ideal or (N:(Rx+N:M)) = N.
- (5) $\frac{M}{N}$ is a *-primary R-module.

Proof. $(1 \Rightarrow 2)$ Let $(Rx + N : M)L \subseteq N$ and $L \nsubseteq N$. Then there exists $l \in L \setminus N$ such that $(Rx + N : M)l \subseteq N$. Now by (1), we have $(Rx + N : M)^n \subseteq (N : M)$ for some $n \in \mathbb{N}$.

- $(2 \Rightarrow 3)$ Assume that $y \in Z_N(M) \setminus N$, $x \in M \setminus N$ and $(Rx + N : M)y \subseteq N$. Set L = Ry. By (2) there exists a positive integer $n \in \mathbb{N}$ such that $(Rx + N : M)^n \subseteq (N : M)$ or, equivalently, $(Rx + N : M)^n M \subseteq N$.
- $(3\Rightarrow 4)$ For $x\in N$ it is clear that $\frac{(Rx+N:M)}{(N:M)}$ is a nilpotent ideal. Assume that $x\in M\setminus N$ and $(N:_M(Rx+N:M))\nsubseteq N$. Then there exists $y\in (N:_M(Rx+N:M))\setminus N$. Therefore $(Rx+N:M)y\subseteq N$, and hence $y\in Z_N(M)\setminus N$. By (3), $(Rx+N:M)^n\subseteq (N:M)$ for some $n\in \mathbb{N}$, which implies that $\frac{(Rx+N:M)}{(N:M)}$ is a nilpotent ideal.
- $(4 \Rightarrow 1)$ Suppose that $y, x \in M$ are such that $(Rx + N : M)y \subseteq N$ and $y \notin N$. By hypothesis, $\frac{(Rx+N:M)}{(N:M)}$ is a nilpotent ideal, and hence for some positive integer n, $(Rx + N : M)^n \subseteq (N : M)$.
- $(1 \Rightarrow 5)$ Let $\left(\frac{Rx+N}{N}: \frac{M}{N}\right)(y+N) = 0$. Since $\frac{\frac{M}{N}}{\frac{Rx+N}{N}} \cong \frac{M}{Rx+N}$, (Rx+N:M)(y+N) = 0. Then $(Rx+N:M)y \subseteq N$. By (1), we get $y \in N$ or $(Rx+N:M)^n \subseteq (N:M)$ for some $n \in \mathbb{N}$. So y+N=0 or $\left(\frac{Rx+N}{N}: \frac{M}{N}\right)^n \subseteq (0:\frac{M}{N})$.
- $M)^n \subseteq (N:M)$ for some $n \in \mathbb{N}$. So y+N=0 or $\left(\frac{Rx+N}{N}:\frac{M}{N}\right)^n \subseteq (0:\frac{M}{N})$. (5 \Rightarrow 1) Let $(Rx+N:M)y \subseteq N$. Then $\left(\frac{Rx+N}{N}:\frac{M}{N}\right)(y+N)=0$. By (5) we have y+N=N or $\left(\frac{Rx+N}{N}:\frac{M}{N}\right)^n \subseteq (0:\frac{M}{N})$. Hence $y \in N$ or $(Rx+N:M)^n \subseteq (N:M)$.

Proposition 2.2. Let M be an R-module and N a submodule of M with $Z_N(M) \neq M$. The following statements hold:

- (1) If (N:M) is a primary ideal of a Noetherian ring R, then N is a *-primary submodule.
- (2) $Z_N(M) = N$ if and only if (N : M) is a semiprime ideal of R and N is a *-primary submodule.
- *Proof.* (1) Let $(Rx + N : M)y \subseteq N$, $y \notin N$ and $(Rx + N : M)^n \nsubseteq (N : M)$ for every $n \in \mathbb{N}$. We have $(Rx+N : M)(Ry+N : M)M \subseteq (Rx+N : M)(Ry+N) \subseteq N$. Then $(Rx + N : M)(Ry + N : M) \subseteq (N : M)$. Since (N : M) is a primary ideal of R, we have $(Ry + N : M) \subseteq (N : M)$. So $(Ry + N : M)M \subseteq N$ and this is a contradiction.
- (2) Let $Z_N(M) = N$ and $(Rx + N : M)y \subseteq N$, where $x, y \in M$. If $x \in N$, we are done. Otherwise, $y \in Z_N(M) = N$. Consequently, suppose that $Z_N(M) \neq N$. There exists $y \in Z_N(M)$ such that $y \notin N$. By definition of $Z_N(M)$ there exists $x \in M \setminus N$ such that $(Rx + N : M)y \subseteq N$. Then $(Rx + N : M)^n \subseteq (N : M)$ and semiprimeness of (N : M) implies that $(Rx + N : M)M \subseteq N$. Therefore $Z_N(M) = M$ and this is a contradiction.

Proposition 2.3. Let M be an R-module and m be a maximal ideal of R. Then m^nM is a *-primary submodule of M ($m^nM \neq M$, $n \in \mathbb{N}$).

Proof. Let $(Rx + m^n M : M)y \subseteq m^n M$. If $(Rx + m^n M : M) \subseteq m$, then $(Rx + m^n M : M)^n M \subseteq m^n M$. So $(Rx + m^n M : M)^n \subseteq (m^n M : M)$. If $(Rx + m^n M : M) \nsubseteq m$, then there exists $a \in (Rx + m^n M : M)$ such that $a \notin m$. So ar + b = 1, $b \in m$. Hence $1 = 1^n = (ar + b)^n = b^n + sa$ for some $s \in R$. Thus $y = b^n y + say$, and therefore $y \in m^n M$.

In the next proposition we will consider the basic properties of *-primary sub-modules under module homomorphisms.

Proposition 2.4. Let M and M' be R-modules, $K \subseteq N \subseteq M$ and $f : M \to M'$ an epimorphism. The following statements hold:

- (1) If N' is a *-primary submodule of M', then $f^{-1}(N')$ is a *-primary submodule of M. $(f(M) \nsubseteq N')$.
- (2) If N is a *-primary submodule of M with ker $f \subseteq N$, then f(N) is a *-primary submodule of M'.
- (3) N is a *-primary submodule of M if and only if $\frac{N}{K}$ is a *-primary submodule of $\frac{M}{K}$.

Proof. (1) Let $(Rx + f^{-1}(N') : M)y \subseteq f^{-1}(N')$, where $x, y \in M$. We claim that $(f(Rx) + N' : M')f(y) \subseteq N'$. Let $r \in (f(Rx) + N' : M')$. Then $f(rM) \subseteq f(Rx) + N'$. So for every $m_0 \in M$ there exists $r_0 \in R$ such that $f(rm_0 - r_0x) \in N'$. Hence $rm_0 \in f^{-1}(N') + Rx$. Therefore $rM \subseteq f^{-1}(N') + Rx$. So $ry \in f^{-1}(N')$, $rf(y) \in N'$, and hence $(f(Rx) + N : M)y \subseteq N$. Since N' is a *-primary submodule of M', we have that $f(y) \in N'$ or $(f(Rx) + N' : M')^n \subseteq (N' : M')$ for some $n \in \mathbb{N}$. Hence $y \in f^{-1}(N')$ or $(Rx + f^{-1}(N') : M)^n \subseteq (f^{-1}(N') : M)$.

(2) Let $(Rm'_1 + f(N) : M')m'_2 \subseteq f(N)$, where $m'_1, m'_2 \in M'$. Then there exist $m_1, m_2 \in M$ such that $m'_1 = f(m_1), m'_2 = f(m_2)$. We claim that $(Rm_1 + N : M)m_2 \subseteq N$. Let $r \in (Rm_1 + N : M)$; then $rf(M) \subseteq Rf(m_1) + f(N)$. By assumption, $rf(m_2) \in f(N)$. So $f(rm_2 - n_0) = 0$ for some $n_0 \in \mathbb{N}$ and hence $rm_2 \in N$. Since N is a *-primary submodule, we have that $m_2 \in N$ or $(Rm_1 + N : M)^n \subseteq (N : M)$ for some $n \in \mathbb{N}$. So $m'_2 = f(m_2) \in f(N)$ or $(Rf(m_1) + f(N) : M')^n \subseteq (f(N) : f(M))$ for some $n \in \mathbb{N}$.

(3) It is clear by (1) and (2).

Corollary 2.5. Let M, N, M_1 and M_2 be R-modules.

- (1) If $f: M \to N$ is an epimorphism and Rad(M) a *-primary submodule, such that $\ker f \subseteq Rad(M)$ and $\frac{M}{Rad(M)}$ is a semisimple R-module, then Rad(N) is a *-primary submodule of N.
- (2) Let N_1 , N_2 be submodules of M_1 , M_2 . Then N_1 , N_2 are *-primary if and only if $N_1 \oplus M_2$ and $M_1 \oplus N_2$ are *-primary submodules of $M_1 \oplus M_2$.

In Proposition 2.4 the surjectivity of f is necessary. For example, consider the homomorphism $\varphi: \mathbb{Z} \to \mathbb{Q}$ via $\varphi(x) = x$. The submodule $6\mathbb{Z}$ is a *-primary submodule in \mathbb{Q} , but it is not *-primary in \mathbb{Z} . For the homomorphism $f: \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$ via f(x) = (x,0), we have $2\mathbb{Z} \nleq \mathbb{Z}$ is a *-primary submodule but $f(2\mathbb{Z}) = 2\mathbb{Z} \oplus 0 \nleq \mathbb{Z} \oplus \mathbb{Z}$ is not a *-primary submodule. Also the condition $\ker \varphi \subseteq N$ is necessary. For example, for the surjective homomorphism $\varphi: \mathbb{Z} \to \mathbb{Z}_6$, the zero submodule of \mathbb{Z} is *-primary but the submodule $\varphi(0) = \overline{0} \nleq \mathbb{Z}_6$ is not *-primary.

If $N_1 \nleq M_1$ and $N_2 \nleq M_2$ are *-primary, then we cannot always say that $N_1 \oplus N_2 \nleq M_1 \oplus M_2$ is a *-primary submodule. For example, for every prime number $p \in \mathbb{Z}$, the submodule $p\mathbb{Z} \oplus 0 \nleq \mathbb{Z} \oplus \mathbb{Z}$ is not a *-primary submodule.

Fact 2.6. Let M be an R-module and N_1 and N_2 submodules of M.

- (1) If the intersection of two submodules is a *-primary submodule, then not all of them are necessarily *-primary; consider for example $M = \mathbb{Z} \oplus \mathbb{Z}$, $N_1 = 0 \oplus 2\mathbb{Z}$, $N_2 = 2\mathbb{Z} \oplus 0$. Also, the intersection of two *-primary submodules is not necessarily *-primary; for example, take \mathbb{Z}_6 as a \mathbb{Z} -module. $\langle \overline{2} \rangle$, $\langle \overline{3} \rangle$ are *-primary. But $\langle \overline{2} \rangle \cap \langle \overline{3} \rangle = \langle \overline{0} \rangle$ is not a *-primary submodule.
- (2) The property of being *-primary in submodules of M is not preserved under isomorphism (for example, $M = \mathbb{Z}$, $N_1 = 6\mathbb{Z}$, $N_2 = 2\mathbb{Z}$).

Proposition 2.7. Let M be an R-module such that for submodules A, B and C of M we have $A + (B \cap C) = (A + B) \cap (A + C)$; N a *-primary submodule of M; and K a submodule of M such that $K \nsubseteq N$ and (Rx + N : K) = (Rx + N : M) for every $x \in M$. Then $K \cap N$ is a *-primary submodule of K.

Proof. Let $(Rx + (K \cap N) : K)y \subseteq K \cap N$, where $x, y \in K$ and $y \notin K \cap N$. Then $y \notin N$. We claim that $(Rx + N : M)y \subseteq N$. Let $r \in (Rx + N : M)$; then $rK \subseteq Rx + N$. So $rK \subseteq (Rx + N) \cap (Rx + K) = Rx + (K \cap N)$. Hence $ry \in N$. Since N is a *-primary submodule, $(Rx + N : M)^n \subseteq (N : M)$ for some $n \in \mathbb{N}$. So $(Rx + N : M)^n \subseteq (N \cap K : K)$, and thus $(Rx + (K \cap N) : K)^n \subseteq (N \cap K : K)$. \square

In what follows, *-primary submodules of a Noetherian ring are investigated.

Proposition 2.8. Let R be a Noetherian ring and M an R-module. The following statements hold:

- (1) Primary submodules of M are *-primary.
- (2) For a submodule N of M, if $\sqrt{(N:M)}$ is a maximal ideal of R, then N is a *-primary submodule of M.
- *Proof.* (1) Suppose $x, y \in M$ and $(Rx + N : M)y \subseteq N$. Since N is a primary submodule, $y \in N$ or $\langle x_1, x_2, \dots, x_n \rangle = (Rx + N : M) \subseteq \sqrt{(N : M)}$. Then there exist $k_1, k_2, \ldots, k_n \in \mathbb{N}$ such that $x_1^{k_1} \in (N:M), \ldots, x_n^{k_n} \in (N:M)$. Then $(xR + N : M)^k \subseteq (N : M)$ for some $k \in \mathbb{N}$.

(2) It follows from (1).

In general, the converse of Proposition 2.8 (1) is not true (see Example 1.2).

Corollary 2.9. Let M be a Noetherian R-module. Then every primary submodule of M is *-primary.

For an R-module M and a submodule N of M, if (N:M) is a maximal ideal then it is clear that N is *-primary. The following example shows that in general if (N:M) is a prime ideal of R, we cannot expect N to be a *-primary submodule of M.

Example 2.10. Let $M = \mathbb{Z} \oplus \mathbb{Z}$ as a \mathbb{Z} -module and $N = 2\mathbb{Z} \oplus 0$. The ideal (N:M)=0 is a prime ideal of \mathbb{Z} but N is not a *-primary submodule. For $(\mathbb{Z}(2,2)+2\mathbb{Z}\oplus 0:\mathbb{Z}\oplus\mathbb{Z})(1,0)\subseteq 2\mathbb{Z}\oplus 0, (1,0)\notin 2\mathbb{Z}\oplus 0 \text{ and powers of } (\mathbb{Z}(2,2)+2\mathbb{Z}\oplus 0:\mathbb{Z}\oplus 0)$ $\mathbb{Z} \oplus \mathbb{Z}$) are nonzero.

A nonzero module is a compressible module if it can be embedded in each of its nonzero submodules.

Theorem 2.11. Let R be an integral domain, M an R-module and N a proper submodule of M. If $\frac{M}{N}$ is a torsion free or compressible module, then N is a *-prime (*-primary) submodule. Moreover, $T(M) \nleq M$ is a *-primary submodule.

Proof. Let L be a submodule of M and $x \in M$ such that $(Rx + N : M)L \subseteq N$ and L $\not\subseteq N$. Then $\left(\frac{Rx+N}{N}:\frac{M}{N}\right)\left(\frac{L}{N}\right)=N$. If $\frac{M}{N}$ is torsion free, then $\left(\frac{Rx+N}{N}:\frac{M}{N}\right)=0$. Hence $(Rx+N:M)=0\subseteq (N:M)$. If $\frac{M}{N}$ is compressible, there exists a monomorphism $f:\frac{M}{N}\to\frac{L}{N}$. Now $(Rx+N:M)f\left(\frac{M}{N}\right)\subseteq N$ implies that $(Rx+N:M)M\subseteq N$. Thus $(Rx+N:M)\subseteq (N:M)$.

Corollary 2.12. Let R be an integral domain and M a torsion free R-module.

- (1) Every direct summand of M is *-primary.
- (2) For every maximal ideal m of R, the R-module M_m is *-primary as an R_m -module.

3. *-PRIMARY SUBMODULES IN SOME FINITELY GENERATED MODULES

In this section we characterize *-primary submodules in cyclic modules. Also we investigate *-primary submodules in the free R-module $R \oplus R$.

Proposition 3.1. Let M be a cyclic R-module and N a submodule of M. The following are equivalent:

- (1) N is a *-primary submodule and $\frac{R}{(N:M)}$ is a reduced ring.
- (2) N is a *-primary submodule and (N:M) is a semiprime ideal of R.
- (3) N is a strongly prime submodule of M.

Proof. $(3 \Rightarrow 1)$ Let M = Rx and let N be a strongly prime submodule of M. Let $a + (N : M) \neq (N : M)$ and $n \in \mathbb{N}$ the smallest natural number such that $(a + (N : M))^n \subseteq (N : M)$. Then there exists $r_0 \in R$ such that $ar_0x \notin N$. We have $(Ra^{n-1}x + N : M)ar_0x \subseteq N$. Since N is strongly prime, $a^{n-1}x \in N$. So $\langle a^{n-1}x \rangle \subseteq N$ and this is a contradiction.

$$(1 \Rightarrow 2)$$
 and $(2 \Rightarrow 3)$ are clear.

Theorem 3.2. Let M be a cyclic R-module and N a proper submodule of M. The following are equivalent:

- (1) N is a primary submodule.
- (2) N is a *-primary submodule.
- (3) (N:M) is a primary ideal.

Proof. $(2 \Rightarrow 3)$ Let M = Rx, $ab \in (N : M)$, $aM \nsubseteq N$ and $b^nM \nsubseteq N$ for every $n \in \mathbb{N}$. Then there exist $r_0, r_1 \in R$ such that $ar_0x \notin N$, $b^nr_1x \notin N$. We have $(Rbm + N : M)ar_0x \subseteq N$ for every $m \in M$. Since N is a *-primary submodule and $ar_0x \notin N$, $(Rbm + N : M)^k \subseteq (N : M)$ for some $k \in \mathbb{N}$. So $(Rbx + N : M)^kbx \subseteq N$. Therefore $b^kbx \in N$ and this is a contradiction.

 $(3\Rightarrow 2) \text{ Let } (Ry+N:M)z\subseteq N \text{ and } z\notin N. \text{ Then there exist } r,s\in R \text{ such that } (Rrx+N:Rx)sx\subseteq N. \text{ Hence}(Rrx+N:Rx)s\subseteq (N:x)=(N:Rx)=(N:M).$ Since (N:M) is primary, $(Rrx+N:Rx)\subseteq \sqrt{(N:M)}$ and $r^k\in (N:M)$ for some $k\in \mathbb{N}$. Let $t_1t_2\cdots t_k\in (Rrx+N:Rx)^k$. Then $t_1t_2\cdots t_{k-1}t_kRx\subseteq t_1t_2\cdots t_{k-1}(Rrx+N)\subseteq rt_1t_2\cdots t_{k-1}(Rx+N)\subseteq r^2t_1t_2\cdots t_{k-2}(Rrx+N)\subseteq r^kRrx+N\subseteq N.$

 $(3 \Leftrightarrow 1)$ Let N be a submodule of M = Rm. Then for every $n \in N$, n = rm, we have $r \in (N : M)$ and hence N = (N : M)M, which implies that every cyclic module is multiplication, and we are done.

Corollary 3.3. Let M be a cyclic R-module. Then M is *-primary if and only if ann(M) is a primary ideal of R.

Fact 3.4. Let M be a finitely generated \mathbb{Z} -module. Then $M \cong \mathbb{Z}_{p_1^{\alpha_1}} \oplus \mathbb{Z}_{p_2^{\alpha_2}} \oplus \cdots \oplus \mathbb{Z}_{p_k^{\alpha_k}} \oplus \mathbb{Z}_{p_k^{\alpha_k}}$

are positive integers. Obviously $\underline{\mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}}$ is *-primary and $\mathbb{Z}_{p_i^{\alpha_i}}$ are fully

*-primary for each i.

By means of the following proposition, which has an essential role in the remainder of this section, we can determine some *-primary submodules of a finitely generated free R-module F. We give its proof for the sake of completeness.

Proposition 3.5 ([10, Proposition 2.3]). Let R be a domain and let $\{a_i\}_{i=1}^n \subseteq R$ be such that $R = Ra_1 + Ra_2 + \cdots + Ra_n$. Then $R(a_1, \ldots, a_n)$ is a direct summand of the free R-module $F = R^n$.

Proof. $R = Ra_1 + Ra_2 + \cdots + Ra_n$. Then there exist $s_1, s_2, \ldots, s_n \in R$ such that $1 = s_1a_1 + s_2a_2 + \cdots + s_na_n$. Let $N = \{(x_1, x_2, \ldots, x_n) \in F \mid s_1x_1 + s_2x_2 + \cdots + s_nx_n = 0\}$. Consider the functions $f: R \to R^n$ defined by $f(r) = r(a_1, \ldots, a_n)$ and $g: R^n \to R$ defined by $g(r_1, \ldots, r_n) = s_1r_1 + s_2r_2 + \cdots + s_nr_n$. The homomorphism $(g \circ f)$ is the identity. Then $R^{(n)} = \operatorname{Im} f \oplus \ker g = R(a_1, \ldots, a_n) \oplus N$.

In the following, we will study *-primary submodules in some finitely generated free modules; we get the same results obtained by Pusat-Yılmaz for prime submodules in [10].

Proposition 3.6. Let R be a commutative ring and $F = R^{(n)}$ a finitely generated free R-module. The following statements hold:

- (1) If R is a domain and $\{a_i\}_{i=1}^n \subseteq R$ such that $R = Ra_1 + Ra_2 + \cdots + Ra_n$, then $R(a_1, \ldots, a_n)$ is a *-primary submodule of F.
- (2) Let $\{c_1, c_2, \ldots, c_n\} \subseteq F$ and $A = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$. If $R \det(A)$ is a maximal ideal of R, then $N = Rc_1 + Rc_2 + \cdots + Rc_n$ is a *-primary submodule of F.

Proof. (1) By Proposition 3.5, we have that $\frac{F}{R(a_1,\ldots,a_n)} \cong N$ is a torsion free module; then by Theorem 2.11 the submodule $R(a_1,\ldots,a_n)$ is *-primary.

(2) By [10, Proposition 3.7] $R \det(A) \subseteq (N:F) \subseteq \sqrt{R \det(A)}$. Since $R \det(A)$ is a maximal ideal of R, (N:M) is too, and therefore N is *-primary.

Proposition 3.7. Let R be a commutative ring and let $a_i, b_i \in R$ (i = 1, 2) be such that $R = Rb_1 + Rb_2$. Then $R(a_1, a_2) + R(b_1, b_2)$ is a *-primary submodule of $F = R \oplus R$ if and only if $R(a_1b_2 - a_2b_1)$ is a primary ideal of R.

Proof. There exist elements $s_1, s_2 \in R$ such that $1 = s_1b_1 + s_2b_2$. Then by Proposition 3.5, $F = L \oplus L'$, where $L = R(b_1, b_2)$ and $L' = \{(x, y) \in F \mid s_1x + s_2y = 0\}$. We have $R(-s_2, s_1) \subseteq L'$. Now $F = L + R(-s_2, s_1)$. It follows that $L' = (L \cap L') + R(-s_2, s_1) = R(-s_2, s_1)$. Now $F = L \oplus L'$ and $N = L \oplus (N \cap L')$ give that $\frac{F}{N} \cong \frac{L'}{N \cap L'} = \frac{R(-s_2, s_1)}{Rd(-s_2, s_1)} \cong \frac{R}{Rd}$. Thus by Proposition 2.4, N is a *-primary submodule of F if and only if Rd is a primary ideal of R.

In the above proposition the condition that $\{b_1, b_2\}$ is a spanning set of R is a necessary condition. For, set $F = \mathbb{Z} \oplus \mathbb{Z}$, $N = \mathbb{Z}(6,6) + \mathbb{Z}(15,15)$; then $(\mathbb{Z}(1,2) + N : \mathbb{Z} \oplus \mathbb{Z})(1,1) \subseteq N$, $(1,1) \notin N$ and $3^n \neq 0$ for every $n \in \mathbb{N}$.

Corollary 3.8. In the \mathbb{Z} -module $\mathbb{Z} \oplus \mathbb{Z}$, the submodule $\mathbb{Z}(a_1, a_2)$ such that a_1, a_2 are coprime is a *-primary submodule.

The converse of Proposition 3.6 (2) is generally not true. For consider $F = \mathbb{Z} \oplus \mathbb{Z}$ and $N = \mathbb{Z}(2,6) + \mathbb{Z}(1,3)$. By Proposition 3.7, the submodule N of F is a *-primary submodule but the zero ideal is not maximal.

Theorem 3.9. Let R be a Noetherian domain and $R(\det A)$ a nonzero primary ideal of R, where $A = \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix}$. Then $N = R(a_1, a_2) + R(b_1, b_2)$ is a *-primary submodule of $R \oplus R$.

Proof. Let $(R(x_1, x_2) + N : R \oplus R)(y_1, y_2) \subseteq N$ and $(R(x_1, x_2) + N : R \oplus R)^n \nsubseteq (N : M)$ for every $n \in \mathbb{N}$. Since R is a Noetherian ring, there exists $r \in (R(x_1, x_2) + N : R \oplus R)$ such that $r^k \notin (N : M)$ for every $k \in \mathbb{N}$ and $r(y_1, y_2) \in N$. Then $r(y_1, y_2) = s_1(a_1, a_2) + s_2(b_1, b_2)$ for some elements $s_i \in R$ (i = 1, 2). In matrix notation, we have $r(y_1, y_2) = (s_1, s_2) \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix} = (s_1, s_2)A$. Then $r(y_1, y_2) = (s_1, s_2)A$ adj $r(x_1, x_2) = (s_1, s_2)A$. Let adj $r(x_1, x_2) = (s_1, s_2)A$. Then $r(y_1, y_2) = (s_1, s_2)A$ adj $r(x_1, x_2) = (s_1, s_2)A$ adj $r(x_1, x_2) = (s_1, s_2)A$. Then $r(y_1, y_2) = (s_1, s_2)A$ adj $r(x_1, x_2) = (s_1, s_2)A$ adj $r(x_1,$

ACKNOWLEDGEMENTS

The authors owe a great debt to the referee for having carefully read an earlier version of this paper and made significant suggestions for improvement.

References

- M. Baziar and M. Behboodi, Classical primary submodules and decomposition theory of modules, J. Algebra Appl. 8 (2009), no. 3, 351–362. MR 2535994.
- [2] M. Behboodi, R. Jahani-Nezhad and M. H. Naderi, Classical quasi-primary submodules, Bull. Iranian Math. Soc. 37 (2011), no. 4, 51–71. MR 2915450.
- [3] J. Dauns, Prime modules, J. Reine Angew. Math. 298 (1978), 156–181. MR 0498715.
- [4] C.-P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Paul. 33 (1984), no. 1, 61–69. MR 0741378.
- [5] R. L. McCasland and P. F. Smith, Prime submodules of Noetherian modules, Rocky Mountain J. Math. 23 (1993), no. 3, 1041–1062. MR 1245463.
- [6] R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra 20 (1992), no. 6, 1803–1817. MR 1162609.
- [7] M. E. Moore and S. J. Smith, Prime and radical submodules of modules over commutative rings, Comm. Algebra 30 (2002), no. 10, 5037–5064. MR 1940479.
- [8] A. R. Naghipour, Strongly prime submodules, Comm. Algebra 37 (2009), no. 7, 2193–2199. MR 2536911.

- [9] A. R. Naghipour, Some results on strongly prime submodules, J. Algebr. Syst. 1 (2014), no. 2, 79-89. https://doi.org/10.22044/jas.2014.228
- [10] D. Pusat-Yılmaz, On prime submodules of finitely generated free modules, Turkish J. Math. 27 (2003), no. 2, 329–342. MR 1986917.
- [11] P. F. Smith, Primary modules over commutative rings, $Glasg.\ Math.\ J.\ 43$ (2001), no. 1, 103–111. MR 1825725.
- [12] G. Ulucak and R. N. Uregen, A note on primary and weakly primary submodules, Eur. J. Pure Appl. Math. 9 (2016), no. 1, 48–56. MR 3462801.

$A froozeh\ Jafari$

Department of Mathematics, Yasouj University, Yasouj, 75914, Iran afroozehjafari@gmail.com

$Mohammad\ Baziar {\color{red} 0}{\color{black} \boxtimes}$

Department of Mathematics, Yasouj University, Yasouj, 75914, Iran mbaziar@yu.ac.ir

Saeed Safaeeyan

Department of Mathematics, Yasouj University, Yasouj, 75914, Iran safaeeyan@yu.ac.ir

Received: October 14, 2019 Accepted: June 30, 2020