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A GENERALIZATION OF PRIMARY IDEALS AND STRONGLY
PRIME SUBMODULES

AFROOZEH JAFARI, MOHAMMAD BAZIAR, AND SAEED SAFAEEYAN

Abstract. We present ∗-primary submodules, a generalization of the concept
of primary submodules of an R-module. We show that every primary submod-
ule of a Noetherian R-module is ∗-primary. Among other things, we show that
over a commutative domain R, every torsion free R-module is ∗-primary. Fur-
thermore, we show that in a cyclic R-module, primary and ∗-primary coincide.
Moreover, we give a characterization of ∗-primary submodules for some finitely
generated free R-modules.

1. Introduction

Throughout this paper, all rings are commutative with identity and all modules
are unital. A proper ideal I of a ring R is called a prime (resp. primary) ideal if
whenever ab ∈ I, where a, b ∈ R, then either a ∈ I or b ∈ I (resp. a ∈ I or bn ∈ I
for some positive integer n). The notions of prime and primary ideals have been
generalized to modules by various authors ([3], [4] and [6]). Let R be a ring, M
an R-module and N a submodule of M . The annihilator of the R-module M

N is
denoted by (N : M). A proper submodule N of M is called prime (resp. primary)
if whenever rm ∈ N , where r ∈ R, m ∈ M , then either m ∈ N or r ∈ (N : M)
(resp. m ∈ N or rn ∈ (N : M) for some positive integer n). For more details about
prime and primary submodules one can see [2], [5], [7], [11] and [12]. For a proper
submodule N of an R-module M and a ∈ R, set (N :M a) = {m ∈ M | am ∈ N}.
It is easy to show that (N :M a) is a submodule of M . Following [1], a proper
submodule N of M is said to be classical primary, if abm ∈ N , where a, b ∈ R,
m ∈M , implies that am ∈ N or bnm ∈ N for some n ∈ N.

Strongly prime submodules have been introduced and studied in [8] and [9].
According to [8], a proper submodule N of an R-module M is said to be strongly
prime provided that (Rx+N : M)y ⊆ N , for x, y ∈M , implies that either x ∈ N
or y ∈ N .

In this paper we introduce and investigate ∗-primary submodules, which are a
generalization of primary ideals and strongly prime submodules.

2020 Mathematics Subject Classification. 13C13, 13E05, 13E15.
Key words and phrases. Primary ideal; Primary submodule; ∗-prime submodule; ∗-primary

submodule.

423

https://doi.org/10.33044/revuma.1783


424 A. JAFARI, M. BAZIAR, AND S. SAFAEEYAN

Definition 1.1. A proper submodule N of an R-module M is called ∗-primary
(resp. ∗-prime) if (Rx + N : M)y ⊆ N for x, y ∈ M implies that either y ∈ N or
(Rx+N : M)k ⊆ (N : M) for some k ∈ N (resp. y ∈ N or (Rx + N : M) ⊆ (N :
M)). If the zero submodule of M is ∗-primary, M is called ∗-primary. Moreover
the R-module M is called fully ∗-primary provided that every proper submodule
of M is ∗-primary.

We have the following diagram which shows the relationship of strongly prime,
prime, primary, ∗-prime and ∗-primary submodules.

strongly prime =⇒ prime =⇒ primary
⇓

∗-prime =⇒ ∗-primary

We give an example which shows that the classical primary submodule and
∗-primary submodules are different. Considering Q as a Z-module, we observe
that Z is a ∗-primary submodule which is neither a classical primary nor a primary
submodule. Moreover, for some prime number p, the submodule pZ⊕0 is a classical
primary submodule of Z⊕Z which is not a ∗-primary submodule (see Example 1.2).

In the next example we show that the class of ∗-primary submodules is quite
different from the class of strongly prime submodules and the class of primary
submodules.

Example 1.2. (a) Consider Q as a Z-module. For every proper submodule N of
Q, we have (N : Q) = 0. So all proper submodules of Q are ∗-prime and hence
∗-primary (one can easily extend this fact to divisible modules over a domain).
We know that Q has no nonzero prime (primary) submodule; therefore it has no
nonzero strongly prime submodule.

(b) ∗-primary submodules of the Z-module Zn are exactly the primary ideals of
the ring Zn.

(c) If (N : M) = m is a maximal ideal of R, then N is a ∗-primary submodule.
In particular, if N is a maximal submodule of M then N is a ∗-primary sub-
module. Moreover, if M is a finitely generated module in which for every proper
submodule N of M , (0 : M) = (N : M), then N is a ∗-primary submodule.

(d) In the Z-module Z ⊕ Z, submodules of the form 0 ⊕ mZ, mZ ⊕ 0 and
pZ ⊕ qZ are not ∗-primary, where p, q are distinct prime numbers and m ∈ Z.
((Z(1, q + 1) + pZ⊕ qZ : Z⊕ Z)(1, 0) ⊆ pZ⊕ qZ, (1, 0) /∈ pZ⊕ qZ and no power of
(Z(1, q + 1) + pZ⊕ qZ : Z⊕ Z) is contained in pqZ).

In Section 2, we show that in a Noetherian R-module, every primary submodule
is ∗-primary (Proposition 2.8); we also show that torsion free R-modules over com-
mutative domains are ∗-primary (Proposition 2.11). In Section 3, we show that for
any cyclic R-module M and submodule N of M , we have that N is strongly prime
if and only if N is a ∗-primary submodule with R

(N :M) a reduced ring (Proposi-
tion 3.1). Moreover, we show that over a cyclicR-module the ∗-primary submodules
are precisely primary submodules (Theorem 3.2). Finally, we investigate ∗-primary
submodules of a free R-module M of rank 2 (Proposition 3.7 and Theorem 3.9).
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2. ∗-primary submodules

In this section we obtain necessary and sufficient conditions under which a sub-
module N of M is ∗-primary.

For a submodule N of an R-module M set

ZN (M) = {y ∈M | (Rx+N : M)y ⊆ N for some x ∈M \N}.

Proposition 2.1. Let M be an R-module and N a proper submodule of M . The
following are equivalent:

(1) N is a ∗-primary submodule of M .
(2) For every submodule L of M and x ∈ M , if (Rx + N : M)L ⊆ N then

L ⊆ N or (Rx+N : M)n ⊆ (N : M) for some n ∈ N.
(3) For each y ∈ ZN (M) \N and x ∈ M \N such that (Rx + N : M)y ⊆ N ,

there exists an n ∈ N such that (Rx+N : M)n(M) ⊆ N .
(4) For each x ∈ M , either (Rx+N :M)

(N :M) is a nilpotent ideal or (N : (Rx + N :
M)) = N .

(5) M
N is a ∗-primary R-module.

Proof. (1⇒ 2) Let (Rx+N : M)L ⊆ N and L * N . Then there exists l ∈ L \N
such that (Rx + N : M)l ⊆ N . Now by (1), we have (Rx + N : M)n ⊆ (N : M)
for some n ∈ N.

(2⇒ 3) Assume that y ∈ ZN (M) \N , x ∈M \N and (Rx+N : M)y ⊆ N . Set
L = Ry. By (2) there exists a positive integer n ∈ N such that (Rx + N : M)n ⊆
(N : M) or, equivalently, (Rx+N : M)nM ⊆ N .

(3 ⇒ 4) For x ∈ N it is clear that (Rx+N :M)
(N :M) is a nilpotent ideal. Assume that

x ∈M \N and (N :M (Rx+N : M)) * N . Then there exists y ∈ (N :M (Rx+N :
M)) \ N . Therefore (Rx + N : M)y ⊆ N , and hence y ∈ ZN (M) \ N . By (3),
(Rx + N : M)n ⊆ (N : M) for some n ∈ N, which implies that (Rx+N :M)

(N :M) is a
nilpotent ideal.

(4 ⇒ 1) Suppose that y, x ∈ M are such that (Rx + N : M)y ⊆ N and y /∈ N .
By hypothesis, (Rx+N :M)

(N :M) is a nilpotent ideal, and hence for some positive integer n,
(Rx+N : M)n ⊆ (N : M).

(1 ⇒ 5) Let
(

Rx+N
N : M

N

)
(y + N) = 0. Since

M
N

Rx+N
N

∼= M
Rx+N , (Rx + N :

M)(y + N) = 0. Then (Rx + N : M)y ⊆ N . By (1), we get y ∈ N or (Rx + N :
M)n ⊆ (N : M) for some n ∈ N. So y +N = 0 or

(
Rx+N

N : M
N

)n ⊆ (0 : M
N ).

(5 ⇒ 1) Let (Rx + N : M)y ⊆ N . Then
(

Rx+N
N : M

N

)
(y + N) = 0. By (5) we

have y + N = N or
(

Rx+N
N : M

N

)n ⊆ (0 : M
N ). Hence y ∈ N or (Rx + N : M)n ⊆

(N : M). �
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Proposition 2.2. Let M be an R-module and N a submodule of M with ZN (M) 6=
M . The following statements hold:

(1) If (N : M) is a primary ideal of a Noetherian ring R, then N is a ∗-primary
submodule.

(2) ZN (M) = N if and only if (N : M) is a semiprime ideal of R and N is a
∗-primary submodule.

Proof. (1) Let (Rx + N : M)y ⊆ N , y /∈ N and (Rx+N : M)n * (N : M) for
every n ∈ N. We have (Rx+N : M)(Ry+N : M)M ⊆ (Rx+N : M)(Ry+N) ⊆ N .
Then (Rx + N : M)(Ry + N : M) ⊆ (N : M). Since (N : M) is a primary ideal
of R, we have (Ry + N : M) ⊆ (N : M). So (Ry + N : M)M ⊆ N and this is a
contradiction.

(2) Let ZN (M) = N and (Rx + N : M)y ⊆ N , where x, y ∈ M . If x ∈ N , we
are done. Otherwise, y ∈ ZN (M) = N . Consequently, suppose that ZN (M) 6= N .
There exists y ∈ ZN (M) such that y /∈ N . By definition of ZN (M) there exists
x ∈ M \ N such that (Rx + N : M)y ⊆ N . Then (Rx+N : M)n ⊆ (N : M)
and semiprimeness of (N : M) implies that (Rx + N : M)M ⊆ N . Therefore
ZN (M) = M and this is a contradiction. �

Proposition 2.3. Let M be an R-module and m be a maximal ideal of R. Then
mnM is a ∗-primary submodule of M (mnM 6= M , n ∈ N).

Proof. Let (Rx + mnM : M)y ⊆ mnM . If (Rx + mnM : M) ⊆ m, then
(Rx+mnM : M)n

M ⊆ mnM . So (Rx+mnM : M)n ⊆ (mnM : M). If (Rx +
mnM : M) * m, then there exists a ∈ (Rx + mnM : M) such that a /∈ m. So
ar + b = 1, b ∈ m. Hence 1 = 1n = (ar + b)n = bn + sa for some s ∈ R. Thus
y = bny + say, and therefore y ∈ mnM . �

In the next proposition we will consider the basic properties of ∗-primary sub-
modules under module homomorphisms.

Proposition 2.4. Let M and M ′ be R-modules, K ⊆ N ⊆ M and f : M → M ′

an epimorphism. The following statements hold:
(1) If N ′ is a ∗-primary submodule of M ′, then f−1(N ′) is a ∗-primary sub-

module of M . (f(M) * N ′).
(2) If N is a ∗-primary submodule of M with ker f ⊆ N , then f(N) is a
∗-primary submodule of M ′.

(3) N is a ∗-primary submodule of M if and only if N
K is a ∗-primary submodule

of M
K .

Proof. (1) Let (Rx + f−1(N ′) : M)y ⊆ f−1(N ′), where x, y ∈ M . We claim
that (f(Rx) + N ′ : M ′)f(y) ⊆ N ′. Let r ∈ (f(Rx) + N ′ : M ′). Then f(rM) ⊆
f(Rx)+N ′. So for every m0 ∈M there exists r0 ∈ R such that f(rm0−r0x) ∈ N ′.
Hence rm0 ∈ f−1(N ′) + Rx. Therefore rM ⊆ f−1(N ′) + Rx. So ry ∈ f−1(N ′),
rf(y) ∈ N ′, and hence (f(Rx)+N : M)y ⊆ N . Since N ′ is a ∗-primary submodule
of M ′, we have that f(y) ∈ N ′ or (f(Rx) +N ′ : M ′)n ⊆ (N ′ : M ′) for some n ∈ N.
Hence y ∈ f−1(N ′) or (Rx+ f−1(N ′) : M)n ⊆ (f−1(N ′) : M).
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(2) Let (Rm′1 + f(N) : M ′)m′2 ⊆ f(N), where m′1,m
′
2 ∈ M ′. Then there

exist m1,m2 ∈ M such that m′1 = f(m1), m′2 = f(m2). We claim that (Rm1 +
N : M)m2 ⊆ N . Let r ∈ (Rm1 + N : M); then rf(M) ⊆ Rf(m1) + f(N).
By assumption, rf(m2) ∈ f(N). So f(rm2 − n0) = 0 for some n0 ∈ N and
hence rm2 ∈ N . Since N is a ∗-primary submodule, we have that m2 ∈ N or
(Rm1 +N : M)n ⊆ (N : M) for some n ∈ N. So m′2 = f(m2) ∈ f(N) or
(Rf(m1) + f(N) : M ′)n ⊆ (f(N) : f(M)) for some n ∈ N.

(3) It is clear by (1) and (2). �

Corollary 2.5. Let M , N , M1 and M2 be R-modules.
(1) If f : M → N is an epimorphism and Rad(M) a ∗-primary submodule,

such that ker f ⊆ Rad(M) and M
Rad(M) is a semisimple R-module, then

Rad(N) is a ∗-primary submodule of N .
(2) Let N1, N2 be submodules of M1, M2. Then N1, N2 are ∗-primary if and

only if N1 ⊕M2 and M1 ⊕N2 are ∗-primary submodules of M1 ⊕M2.

In Proposition 2.4 the surjectivity of f is necessary. For example, consider
the homomorphism ϕ : Z → Q via ϕ(x) = x. The submodule 6Z is a ∗-primary
submodule in Q, but it is not ∗-primary in Z. For the homomorphism f : Z→ Z⊕Z
via f(x) = (x, 0), we have 2Z � Z is a ∗-primary submodule but f(2Z) = 2Z⊕ 0 �
Z ⊕ Z is not a ∗-primary submodule. Also the condition kerϕ ⊆ N is necessary.
For example, for the surjective homomorphism ϕ : Z→ Z6, the zero submodule of
Z is ∗-primary but the submodule ϕ(0) = 0 � Z6 is not ∗-primary.

If N1 � M1 and N2 � M2 are ∗-primary, then we cannot always say that
N1 ⊕ N2 � M1 ⊕ M2 is a ∗-primary submodule. For example, for every prime
number p ∈ Z, the submodule pZ⊕ 0 � Z⊕ Z is not a ∗-primary submodule.

Fact 2.6. Let M be an R-module and N1 and N2 submodules of M .
(1) If the intersection of two submodules is a ∗-primary submodule, then not

all of them are necessarily ∗-primary; consider for example M = Z ⊕ Z,
N1 = 0 ⊕ 2Z, N2 = 2Z ⊕ 0. Also, the intersection of two ∗-primary
submodules is not necessarily ∗-primary; for example, take Z6 as a Z-
module. 〈2〉, 〈3〉 are ∗-primary. But 〈2〉 ∩ 〈3〉 = 〈0〉 is not a ∗-primary
submodule.

(2) The property of being ∗-primary in submodules of M is not preserved under
isomorphism (for example, M = Z, N1 = 6Z, N2 = 2Z).

Proposition 2.7. Let M be an R-module such that for submodules A, B and C
of M we have A+ (B ∩C) = (A+B)∩ (A+C); N a ∗-primary submodule of M ;
and K a submodule of M such that K * N and (Rx+N : K) = (Rx+N : M) for
every x ∈M . Then K ∩N is a ∗-primary submodule of K.

Proof. Let (Rx + (K ∩ N) : K)y ⊆ K ∩ N , where x, y ∈ K and y /∈ K ∩ N .
Then y /∈ N . We claim that (Rx + N : M)y ⊆ N . Let r ∈ (Rx + N : M); then
rK ⊆ Rx+ N . So rK ⊆ (Rx+ N) ∩ (Rx+ K) = Rx+ (K ∩N). Hence ry ∈ N .
Since N is a ∗-primary submodule, (Rx+N : M)n ⊆ (N : M) for some n ∈ N. So
(Rx+N : M)n ⊆ (N ∩K : K), and thus (Rx+ (K ∩N) : K)n ⊆ (N ∩K : K). �
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In what follows, ∗-primary submodules of a Noetherian ring are investigated.

Proposition 2.8. Let R be a Noetherian ring and M an R-module. The following
statements hold:

(1) Primary submodules of M are ∗-primary.
(2) For a submodule N of M , if

√
(N : M) is a maximal ideal of R, then N is

a ∗-primary submodule of M .

Proof. (1) Suppose x, y ∈ M and (Rx + N : M)y ⊆ N . Since N is a primary
submodule, y ∈ N or 〈x1, x2, . . . , xn〉 = (Rx + N : M) ⊆

√
(N : M). Then there

exist k1, k2, . . . , kn ∈ N such that xk1
1 ∈ (N : M), . . . , xkn

n ∈ (N : M). Then
(xR+N : M)k ⊆ (N : M) for some k ∈ N.

(2) It follows from (1). �

In general, the converse of Proposition 2.8 (1) is not true (see Example 1.2).

Corollary 2.9. Let M be a Noetherian R-module. Then every primary submodule
of M is ∗-primary.

For an R-module M and a submodule N of M , if (N : M) is a maximal ideal
then it is clear that N is ∗-primary. The following example shows that in general
if (N : M) is a prime ideal of R, we cannot expect N to be a ∗-primary submodule
of M .

Example 2.10. Let M = Z ⊕ Z as a Z-module and N = 2Z ⊕ 0. The ideal
(N : M) = 0 is a prime ideal of Z but N is not a ∗-primary submodule. For
(Z(2, 2)+2Z⊕0 : Z⊕Z)(1, 0) ⊆ 2Z⊕0, (1, 0) /∈ 2Z⊕0 and powers of (Z(2, 2)+2Z⊕0 :
Z⊕ Z) are nonzero.

A nonzero module is a compressible module if it can be embedded in each of its
nonzero submodules.

Theorem 2.11. Let R be an integral domain, M an R-module and N a proper
submodule of M . If M

N is a torsion free or compressible module, then N is a ∗-prime
(∗-primary) submodule. Moreover, T (M) �M is a ∗-primary submodule.

Proof. Let L be a submodule of M and x ∈M such that (Rx+N : M)L ⊆ N and
L * N . Then

(
Rx+N

N : M
N

) (
L
N

)
= N . If M

N is torsion free, then
(

Rx+N
N : M

N

)
=

0. Hence (Rx + N : M) = 0 ⊆ (N : M). If M
N is compressible, there exists

a monomorphism f : M
N → L

N . Now (Rx + N : M)f
(

M
N

)
⊆ N implies that

(Rx+N : M)M ⊆ N . Thus (Rx+N : M) ⊆ (N : M). �

Corollary 2.12. Let R be an integral domain and M a torsion free R-module.
(1) Every direct summand of M is ∗-primary.
(2) For every maximal ideal m of R, the R-module Mm is ∗-primary as an

Rm-module.
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3. ∗-primary submodules in some finitely generated modules

In this section we characterize ∗-primary submodules in cyclic modules. Also
we investigate ∗-primary submodules in the free R-module R⊕R.
Proposition 3.1. Let M be a cyclic R-module and N a submodule of M . The
following are equivalent:

(1) N is a ∗-primary submodule and R
(N :M) is a reduced ring.

(2) N is a ∗-primary submodule and (N : M) is a semiprime ideal of R.
(3) N is a strongly prime submodule of M .

Proof. (3 ⇒ 1) Let M = Rx and let N be a strongly prime submodule of M .
Let a + (N : M) 6= (N : M) and n ∈ N the smallest natural number such that
(a+ (N : M))n ⊆ (N : M). Then there exists r0 ∈ R such that ar0x /∈ N . We
have (Ran−1x + N : M)ar0x ⊆ N . Since N is strongly prime, an−1x ∈ N . So
〈an−1x〉 ⊆ N and this is a contradiction.

(1⇒ 2) and (2⇒ 3) are clear. �

Theorem 3.2. Let M be a cyclic R-module and N a proper submodule of M . The
following are equivalent:

(1) N is a primary submodule.
(2) N is a ∗-primary submodule.
(3) (N : M) is a primary ideal.

Proof. (2 ⇒ 3) Let M = Rx, ab ∈ (N : M), aM * N and bnM * N for
every n ∈ N. Then there exist r0, r1 ∈ R such that ar0x /∈ N , bnr1x /∈ N .
We have (Rbm + N : M)ar0x ⊆ N for every m ∈ M . Since N is a ∗-primary
submodule and ar0x /∈ N , (Rbm+N : M)k ⊆ (N : M) for some k ∈ N. So
(Rbx+N : M)k

bx ⊆ N . Therefore bkbx ∈ N and this is a contradiction.
(3⇒ 2) Let (Ry+N : M)z ⊆ N and z /∈ N . Then there exist r, s ∈ R such that

(Rrx+N : Rx)sx ⊆ N . Hence(Rrx+N : Rx)s ⊆ (N : x) = (N : Rx) = (N : M).
Since (N : M) is primary, (Rrx + N : Rx) ⊆

√
(N : M) and rk ∈ (N : M)

for some k ∈ N. Let t1t2 · · · tk ∈ (Rrx+N : Rx)k. Then t1t2 · · · tk−1tkRx ⊆
t1t2 · · · tk−1(Rrx+N) ⊆ rt1t2 · · · tk−1(Rx+N) ⊆ r2t1t2 · · · tk−2(Rrx+N) ⊆ · · · ⊆
rkRrx+N ⊆ N .

(3 ⇔ 1) Let N be a submodule of M = Rm. Then for every n ∈ N , n = rm,
we have r ∈ (N : M) and hence N = (N : M)M , which implies that every cyclic
module is multiplication, and we are done. �

Corollary 3.3. Let M be a cyclic R-module. Then M is ∗-primary if and only if
ann(M) is a primary ideal of R.
Fact 3.4. Let M be a finitely generated Z-module. Then M ∼= Zp

α1
1
⊕Zp

α2
2
⊕· · ·⊕

Zp
αk
k
⊕ Z⊕ Z⊕ · · · ⊕ Z︸ ︷︷ ︸

n times

, where p1, . . . , pk are prime numbers and α1, α2, . . . , αk

are positive integers. Obviously Z⊕ Z⊕ · · · ⊕ Z︸ ︷︷ ︸
n times

is ∗-primary and Zp
αi
i

are fully

∗-primary for each i.
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By means of the following proposition, which has an essential role in the re-
mainder of this section, we can determine some ∗-primary submodules of a finitely
generated free R-module F . We give its proof for the sake of completeness.

Proposition 3.5 ([10, Proposition 2.3]). Let R be a domain and let {ai}n
i=1 ⊆ R

be such that R = Ra1 +Ra2 + · · ·+Ran. Then R(a1, . . . , an) is a direct summand
of the free R-module F = Rn.

Proof. R = Ra1 + Ra2 + · · ·+ Ran. Then there exist s1, s2, . . . , sn ∈ R such that
1 = s1a1 + s2a2 + · · ·+ snan. Let N = {(x1, x2, . . . , xn) ∈ F | s1x1 + s2x2 + · · ·+
snxn = 0}. Consider the functions f : R→ Rn defined by f(r) = r(a1, . . . , an) and
g : Rn → R defined by g(r1, . . . , rn) = s1r1 +s2r2 + · · ·+snrn. The homomorphism
(g ◦ f) is the identity. Then R(n) = Im f ⊕ ker g = R(a1, . . . , an)⊕N . �

In the following, we will study ∗-primary submodules in some finitely gener-
ated free modules; we get the same results obtained by Pusat-Yılmaz for prime
submodules in [10].

Proposition 3.6. Let R be a commutative ring and F = R(n) a finitely generated
free R-module. The following statements hold:

(1) If R is a domain and {ai}n
i=1 ⊆ R such that R = Ra1 + Ra2 + · · ·+ Ran,

then R(a1, . . . , an) is a ∗-primary submodule of F .

(2) Let {c1, c2, . . . , cn} ⊆ F and A =


c1
c2
...
cn

. If R det(A) is a maximal ideal

of R, then N = Rc1 +Rc2 + · · ·+Rcn is a ∗-primary submodule of F .

Proof. (1) By Proposition 3.5, we have that F
R(a1,...,an)

∼= N is a torsion free module;
then by Theorem 2.11 the submodule R(a1, . . . , an) is ∗-primary.

(2) By [10, Proposition 3.7] R det(A) ⊆ (N : F ) ⊆
√
R det(A). Since R det(A)

is a maximal ideal of R, (N : M) is too, and therefore N is ∗-primary. �

Proposition 3.7. Let R be a commutative ring and let ai, bi ∈ R (i = 1, 2) be
such that R = Rb1 +Rb2. Then R(a1, a2) +R(b1, b2) is a ∗-primary submodule of
F = R⊕R if and only if R(a1b2 − a2b1) is a primary ideal of R.

Proof. There exist elements s1, s2 ∈ R such that 1 = s1b1 + s2b2. Then by Propo-
sition 3.5, F = L⊕ L′, where L = R(b1, b2) and L′ = {(x, y) ∈ F | s1x+ s2y = 0}.
We have R(−s2, s1) ⊆ L′. Now F = L + R(−s2, s1). It follows that L′ =
(L ∩ L′) + R(−s2, s1) = R(−s2, s1). Now F = L ⊕ L′ and N = L ⊕ (N ∩ L′)
give that F

N
∼= L′

N∩L′ = R(−s2,s1)
Rd(−s2,s1)

∼= R
Rd . Thus by Proposition 2.4, N is a ∗-primary

submodule of F if and only if Rd is a primary ideal of R. �
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In the above proposition the condition that {b1, b2} is a spanning set of R is a
necessary condition. For, set F = Z⊕Z, N = Z(6, 6)+Z(15, 15); then (Z(1, 2)+N :
Z⊕ Z)(1, 1) ⊆ N , (1, 1) /∈ N and 3n 6= 0 for every n ∈ N.

Corollary 3.8. In the Z-module Z ⊕ Z, the submodule Z(a1, a2) such that a1, a2
are coprime is a ∗-primary submodule.

The converse of Proposition 3.6 (2) is generally not true. For consider F = Z⊕Z
and N = Z(2, 6)+Z(1, 3). By Proposition 3.7, the submodule N of F is a ∗-primary
submodule but the zero ideal is not maximal.

Theorem 3.9. Let R be a Noetherian domain and R(detA) a nonzero primary

ideal of R, where A =
(
a1 a2
b1 b2

)
. Then N = R(a1, a2) + R(b1, b2) is a ∗-primary

submodule of R⊕R.

Proof. Let (R(x1, x2) + N : R ⊕ R)(y1, y2) ⊆ N and (R(x1, x2) +N : R⊕R)n *
(N : M) for every n ∈ N. Since R is a Noetherian ring, there exists r ∈
(R(x1, x2) +N : R⊕R) such that rk /∈ (N : M) for every k ∈ N and r(y1, y2) ∈ N .
Then r(y1, y2) = s1(a1, a2) + s2(b1, b2) for some elements si ∈ R (i = 1, 2).

In matrix notation, we have r(y1, y2) = (s1, s2)
(
a1 a2
b1 b2

)
= (s1, s2)A. Then

r(y1, y2) adjA = (s1, s2)A adjA = (s1, s2) detA. Let adjA =
(
b11 b12
b21 b22

)
. Then

r(y1, y2)
(
b11 b12
b21 b22

)
= (s1, s2)D, where D = detA. So r(y1b1j + y2b2j) = Dsj ∈

〈D〉 for j = 1, 2. Since 〈D〉 is a primary ideal of R, (y1, y2)B = D(t1, t2). Therefore
(y1, y2) = t1(a1, a2) + t2(b1, b2) ∈ N . �
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