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COFINITENESS OF LOCAL COHOMOLOGY MODULES
IN THE CLASS OF MODULES IN DIMENSION LESS
THAN A FIXED INTEGER

ALIREZA VAHIDI AND MAHDIEH PAPARI-ZAREI

ABSTRACT. Let n be a non-negative integer, R a commutative Noetherian
ring with dim(R) < n + 2, a an ideal of R, and X an arbitrary R-module. In
this paper, we first prove that X is an (FD<p,a)-cofinite R-module if X is
an a-torsion R-module such that Hompg (%, X) and Ext}z (%, X) are FD <,
R-modules. Then, we show that H (X) is an (FD<p, a)-cofinite R-module and
{p € Assp(Hi(X)) : dim (%) > n} is a finite set for all i when Ext’ (%,X)
is an FD«, R-module for all # < n + 2. As a consequence, it follows that
Assp(HE(X)) is a finite set for all i whenever R is a semi-local ring with
dim(R) < 3 and X is an FD«; R-module. Finally, we observe that the
category of (FD<p,a)-cofinite R-modules forms an Abelian subcategory of
the category of R-modules.

1. INTRODUCTION

We adopt throughout the following notation: let R denote a commutative Noe-
therian ring with non-zero identity, a and b ideals of R, M a finite (i.e., finitely
generated) R-module, X an arbitrary R-module which is not necessarily finite,
and n a non-negative integer. We refer the reader to [7, 8, 23] for basic results,
notations, and terminology not given in this paper.

Hartshorne, in [I4], defined an a-torsion R-module X to be a-cofinite if the
R-module Ext}; (£, X) is finite for all i, and asked the following questions.

Question 1.1. Does the category of a-cofinite R-modules form an Abelian sub-
category of the category of R-modules?

Question 1.2. Is H: (M) an a-cofinite R-module for all i?

The following question is also an important problem in local cohomology [I6],
Problem 4].

Question 1.3. Is Assg(H.(M)) a finite set for all i?
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There have been many attempts in the literature to study the above questions.
Hartshorne in [I4, Proposition 7.6 and Corollary 7.7] showed that the answer to
these questions is yes if R is a complete regular local ring and a is a prime ideal of R
with dim ( ) < 1. Huneke and Koh in [I7, Theorem 4.1] and Delfino in [I0, The-
orem 3] extended Hartshorne’s result [14, Corollary 7.7] and provided affirmative
answers to Questions[I.2)and [I.3]in more general local rings R and one-dimensional
ideals a. Delfino and Marley in [IT, Theorems 1 and 2], Yoshida in [25, Theo-
rem 1.1], Chiriacescu in [9, Theorem 1.4], and Kawasaki in [I8, Theorems 1 and §]
showed that the answer to Questions is yes if R is an arbitrary local ring
and a is an arbitrary ideal of R with d1m ( a) < 1. Finally, in [2I, Theorems 7.4
and 7.10] and [22, Theorems 2.6 and 2.10], Melkersson provided affirmative answers
to these questions for the case that R is an arbitrary ring and either dim(R) < 2
or a is an arbitrary ideal of R with dim ( a) <1

Recall that X is said to be an FD.,, (or in dimension < n) R-module if there is
a finite submodule Y of X such that dimp (5) < n [2,4]. From [26, Theorem 2.3],
the class of FD.,, R-modules is closed under taking submodules, quotients, and
extensions. We say that X is an (FD.,,, a)-cofinite R-module if X is an a-torsion
R-module and Ext’, (£,X) is an FD.,, R-module for all i [3, Definition 4.1].
Note that X is an a-cofinite R-module if and only if X is an (FD.q, a)-cofinite
R-module. Thus, as generalizations of Questions we have the following
questions (see [T Question] and [24, Questions 1.5, 1.6, and 1.8]). Here, the set
{p € Assp(X) : dim (££) > n} is denoted by Assp(X)>

Question 1.4. Does the category of (FD,,, a)-cofinite R-modules form an Abelian
subcategory of the category of R-modules?

Question 1.5. Is H,(M) an (FD_,,, a)-cofinite R-module for all i?
Question 1.6. Is Assgp(H.(M))>, a finite set for all i?

If R is a complete local ring with dim (£) < n + 1, then the answer to Ques-
tions[I.5| and [L.6]is yes from [I, Theorems 2.5 and 2.10]. In [24] Corollaries 3.3 and
4.5], the first author and Morsali removed the complete local assumption on R and
provided affirmative answers to Questlonsfor the case that dim ( ) <n+l,
which are generalizations of Melkersson’s results [22, Theorems 2.6 and 2.10]. In
this paper, as generalizations of Melkersson’s results [21, Theorems 7.4 and 7.10],
we show that the answer to Questions is also yes if dim(R) < n + 2. As
a consequence, we provide an affirmative answer to Question for the case that
R is a semi-local ring with dim(R) < 3. This result is a generalization of Marley’s
result in [I9] where he showed that the answer to Question |1.3|is yes if R is a local
ring with dim(R) < 3 (see [19, Proposition 1.1 and Corollary 2.5]).

In the main result of Section [2] we observe that if dim(R) < n + 2 and X
is an a-torsion R-module such that Hompg (%,X) and Ext}% (%,X) are FD.,
R-modules, then X is an (FD.,,, a)-cofinite R-module. Section [3|is devoted to
the study of Questions and We show that H(X) is an (FD.,, a)-cofinite
R-module and Assp(H,(X))s, is a finite set for all i whenever dim(R) < n+2 and
Ext’k (%, X) isan FD.,, R-module for all i < n+2 (e.g., X is an FD,, R-module).
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It follows that if R is a semi-local ring with dim(R) < 3 and Extl, (£,X) is an
FD.; R-module for all i <3 (e.g., X is an FD.; R-module), then H:(X) is an a-
weakly cofinite R-module and Assp(H% (X)) is a finite set for all i. Recall that X is
said to be an a-weakly cofinite R-module if X is an a-torsion R-module and the set
of associated prime ideals of any quotient module of Extzé %, X ) is finite for all 4
(see [12] Definition 2.1] and [I3] Definition 2.4]). In Section 4} with respect to Ques-
tion we prove that when dim(R) < n + 2, the category of (FD,,, a)-cofinite
R-modules forms an Abelian subcategory of the category of R-modules.

2. A CRITERION FOR COFINITENESS

The following two lemmas will be useful in the proof of the main result of this
section. Note that when bX = 0, X is an FD_.,, R-module if and only if X is an
FD_., %—module.

Lemma 2.1. Let t be a non-negative integer and let X be an R-module such

that bX = 0 and Exté% (WR[),X) is an FD., R-module for all i < t. Then

Exti% (FR[’,X) is an FD, %-module for alli <t.

Proof. We prove this by using induction on t. The case t = 0 is clear from the
isomorphisms

R a+b R
H o x)~(o: ~(0: ~ H 2 x).
omg <a+b’ ) ( X ) (0:x a+0) OmR<a+b’ )

Suppose that t > 0 and that t—1 is settled. It is enough to show that Ext’ (?Rb, X)
. b
isan FD.,, %—module, since Ext% (FRb’ X) isan FD., %—module foralli <t—1

by the induction hypothesis on ¢ — 1. From [23], Theorem 11.65], there is a spectral

sequence
R R R
EP? = Extt, (Tor? (=, —— ). X | = Ext%™7 ( —— X ).
= m (ol (20 ) X)) = e (L

Let r > 2 and set BLY := Im(EL"""" — EX°). Then B0 is an FD.,, £-module
because EL™"" ! is a subquotient of EL"""! that is an FD_, %—module by the
induction hypothesis and [I5], Proposition 3.4]. Thus, from the short exact sequence

0— B — EL* — ELY — 0,

EYC is an FD_,, £-module whenever E-¥; is an FD_,, £-module. There exists a
finite filtration

0=¢"H' C¢'H' C - C ¢'H' C $"H' = Ext}y (afh’X>

such that E’;” = % for all ¢, 0 < ¢ < t. By assumption, Extﬁ{ (a%, X) isan
R-module. Thus, as we noted at the beginning of this section, Ext’, ( FR[’, X ) is an
FD., #-module and hence ¢'H" is an FD.,, £-module. Therefore EYO ~ %
is an FD,, %—module and so Eifz is an FD,, %—module, because EL? = Eifz as
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BT =0 =ES T for all j > ¢+ 2. Thus BS” = Ext's (-2, X) is an FDo,,
b

%—module. O

Lemma 2.2. Let t be a non-negative mteger and let X be an R-module such that
bX =0 and EXtR (u+b,X) isanFD., & 5 -module for alli < t. Then ExtR ( X)
is an FD.,, R- module foralli < t.

Proof. From [23], Theorem 11.65], there is a spectral sequence

EDY = Exth, | TorX E,E , X | = Exth™ E,X .
I 9\b’a p a

Let 0 < j < i <t. By [15, Proposition 3.4], Eé_j"j is an FD_,, %—module. Hence
E'Z77 is an FD_, %—module as Ei_77 = E; 37 and E; %’ is a subquotient of
E5 7. There exists a finite filtration

0=¢T'H' CHH C--  C¢p'H C ¢°H' = Extl, (f,X)

such that E;j’j = % for all 3, 0 < 5 < 4. Now, from the short exact
sequences

0— ¢ 7"H — ¢ TH' — EJ7 — 0,
forall j,0<j <1, Extllé (%,X) is an FD_,, %—module. Therefore Ext% (%, X) is
an FD.,, R-module. O

We are now ready to state and prove the main result of this section, which plays
an important role in Sections [3] and [ to study Questions [T.4HI.6}

Theorem 2.3. Suppose that dim(R) < n + 2 and X is an a-torsion R-module
such that Homp (%,X) and Ext}% (%,X) are FD.,, R-modules. Then X is an
(FD<,,, a)-cofinite R-module.

Proof. Assume that a is nilpotent. Then a® = 0 for some integer t. By [I5]
Proposition 3.4], Hompg (a—Ff, X) is an FD_,, R-module and hence X = (0 :x a?) is
an (FD.,, a)-cofinite R-module. Now, assume that a is not nilpotent. Since I';(R)
is finite, there is an integer ¢ such that (0 :g a') = Tq(R). Set b := (0 :g a') and
Y = ol (FT) X t) It is easy to see that bY = 0, Y is an (a + b)-torsion R-module,
and dlm( z) <n+ 1. Since (0 :x a’), Hompg (%,X), and Ext%( X) are
FD., R—modules from [I5, Proposition 3.4], Hompg (FRb’ Y)
are FD_.,, R-modules by the short exact sequence

atb;

Y) and Exth (u+b,

0— (0:xa)—X—Y —0.

Thus, from [24, Corollary 2.3], Extlé ( prwl Y) is an FD_,, R-module for all . Hence

Extlé (%, Y) is an FD_,, R-module for all 4 by Lemmas and Therefore X
is an (FD<,, a)-cofinite R-module from the above short exact sequence. O

The following corollary is an immediate application of the above theorem.
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Corollary 2.4. Suppose that dim(R) < n + 2 and X is an arbitrary R-module
such that Hompg (%,X) and Ext} (%,X) are FD.,, R-modules. Then T'y(X) is
an (FD <y, a)-cofinite R-module.

Proof. By the short exact sequence

(X X — 0

0 —=TIy(X) — X — To(X) —0,
Homp (£,I¢(X)) and Exth (£,Ta(X)) are FD.,, R-modules. Thus the assertion
follows from Theorem 2.3 O

By putting n = 0 in Theorem [2:3] and Corollary 2:4] we have the following
results.

Corollary 2.5. Suppose that dim(R) < 2 and X is an a-torsion R-module such
that Homp (%, X) and Ext}% (%, X) are finite R-modules. Then X is an a-cofinite
R-module.

Corollary 2.6. Suppose that dim(R) < 2 and X is an arbitrary R-module such that
Homp (§7 X) and Ext}{ (%, X) are finite R-modules. Then I'q(X) is an a-cofinite
R-module.

3. COFINITENESS AND ASSOCIATED PRIMES OF LOCAL COHOMOLOGY MODULES

The following is the main result of this section; it shows that the answer to

Questions [1.5[and [1.6] is yes if dim(R) < n + 2.

Theorem 3.1. Suppose that dim(R) < n + 2 and X is an arbitrary R-module.
Then the following statements are equivalent:
(i) HQ(X) is an (FD <y, a)-cofinite R-module for all i;
(ii) Ext}% (£,X) is an FD.,, R-module for all i;
(iii) Exty (£,X) is an FD<,, R-module for all i <n + 2.

Proof. (i)=-(ii). This follows by [3, Theorem 2.1].

(iii)=-(i). We first show that if ¢ is a non-negative integer such that Ext', (£,X)
is an FD,, R-module for all i < ¢t++1, then H:(X) is an (FD,,, a)-cofinite R-module
for all ¢ < t. We prove this by using induction on ¢. The case t = 0 follows from
Corollary[2:4] Suppose that ¢ > 0 and that t—1 is settled. It is enough to show that
H.(X) is an (FD.,, a)-cofinite R-module, because H(X) is an (FD_,,, a)-cofinite
R-module for all ¢ <t — 1 from the induction hypothesis on ¢t — 1. By [3, Theorem
2.3], Homp (£,H}(X)) and Extp (£,H,(X)) are FD.,, R-modules. Therefore
H.(X) is an (FD.,, a)-cofinite R-module from Theorem This terminates the
induction argument. Thus H’ (X) is an (FD,,, a)-cofinite R-module for all i # n+2
from [7, Theorem 6.1.2]. By [3, Theorem 2.3], Homp (£, H}?(X)) is an FD_,
R-module. Also, from [7, Exercise 7.1.7], Suppg(H?™?(X)) € Max(R), because
each R-module can be viewed as the direct limit of its finite submodules. Thus
H?*?(X) is an (FD_,,, a)-cofinite R-module by [24, Lemma 2.1]. O
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Corollary 3.2. Suppose that dim(R) < n + 2, X is an arbitrary R-module, and
t is a non-negative integer such that Extlé (%,X) is an FD.,, R-module for all
i <t+1 (resp. for alli <n+2). Then H.(X) is an (FD<,,a)-cofinite R-module
for all i <t (resp. for alli). In particular, Assgr(H.(X))>n is a finite set for all
i <t (resp. for alli).

Proof. The first assertion follows from the proof of Theorem [3.1] The last assertion
follows by the first one and [8, Exercise 1.2.28]. O

We have the following corollaries by taking n = 0 in Theorem and Corol-
lary

Corollary 3.3 (see [2I, Theorem 7.10]). Suppose that dim(R) < 2 and X is an
arbitrary R-module. Then the following statements are equivalent:
(i) H:(X) is an a-cofinite R-module for all i;
(ii) Exty (%,X) is a finite R-module for all i;
(iii) BExth (%,X) is a finite R-module for all i < 2.

Corollary 3.4. Suppose that dim(R) < 2 and X is an arbitrary R-module such
that Exty (£, X) is a finite R-module for all i < 2. Then Assgr(Hy(X)) is a finite
set for all i.

If R is a local ring with dim (£) < 2, then the answer to Question is
yes by Bahmanpour—Naghipour’s result [0, Theorem 3.1] (see also [20, Theorem
3.3(c)]). In [24] Corollary 5.6], the first author and Morsali generalized this result
to arbitrary semi-local rings. In the next result, by putting n = 1 in Corollary
we provide an affirmative answer to Question for the case that R is a semi-local
ring with dim(R) < 3. Note that our result is a generalization of Marley’s result
in [19], where he showed that if R is a local ring with dim(R) < 3 and M is a finite
R-module, then Assg(H(M)) is a finite set for all i (see [I9, Proposition 1.1 and
Corollary 2.5]). Note also that, if R is a semi-local ring and X is an (FD.1,a)-
cofinite R-module, then X is an a-weakly cofinite R-module by [5, Theorem 3.3].

Corollary 3.5. Suppose that R is a semi-local ring with dim(R) < 3, X is an
arbitrary R-module, and t is a non-negative integer such that Ext’,é (%,X) is an
FD_1 R-module for alli <t+1 (resp. for all i <3). Then H.(X) is an a-weakly
cofinite R-module for all i <t (resp. for all i). In particular, Assg(H.(X)) is a
finite set for all i <t (resp. for alli).

4. ABELIANNESS OF THE CATEGORY OF COFINITE MODULES

The following theorem is the main result of this section; it shows that the answer
to Question [1.4]is also yes if dim(R) < n + 2.

Theorem 4.1. Ifdim(R) < n+2, then the category of (FD,,, a)-cofinite R-modules
forms an Abelian subcategory of the category of R-modules.

Rev. Un. Mat. Argentina, Vol. 62, No. 1 (2021)



COFINITENESS OF LOCAL COHOMOLOGY MODULES 197

Proof. The proof is similar to that of [24] Theorem 3.1]. We bring it here for the
sake of completeness. Assume that X and Y are (FD.,,, a)-cofinite R-modules and
f: X — Y is an R-homomorphism. We show that ker f, im f, and coker f are
(FD<p, a)-cofinite R-modules. From the short exact sequence

0 — imf —Y — coker f — 0,

Hompg (%, im f) isan FD_,, R-module. Hence Homp (%, ker f) and Ext}% (%, ker f)
are FD.,, R-modules by the short exact sequence

0—kerf — X —imf — 0.

Therefore ker f is an (FD.,,, a)-cofinite R-module by Theorem m Thus im f and
coker f are (FD.,,, a)-cofinite R-modules from the above short exact sequences. [

As an immediate application of the above theorem, we have the following corol-
lary.

Corollary 4.2. Suppose that dim(R) < n+2, N is a finite R-module, and X is
an (FD<,,, a)-cofinite R-module. Then Ext},(N, X) and Torf‘(N7 X) are (FD<p, a)-
cofinite R-modules for all j.

We have the following results by taking n = 0 in Theorem [{.1]and Corollary [£.2]

Corollary 4.3 (see [2I, Theorem 7.4]). If dim(R) < 2, then the category of
a-cofinite R-modules forms an Abelian subcategory of the category of R-modules.

Corollary 4.4. Suppose that dim(R) < 2, N is a finite R-module, and X is an
a-cofinite R-module. Then Ext), (N, X) and Torf(N, X) are a-cofinite R-modules
for all j.
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