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ON THE IMAGE SET AND REVERSIBILITY OF SHIFT
MORPHISMS OVER DISCRETE ALPHABETS

JORGE CAMPOS, NEPTALÍ ROMERO, AND RAMÓN VIVAS

Abstract. We provide sufficient conditions in order to show that the image
set of a continuous and shift-commuting map defined on a shift space over an
arbitrary discrete alphabet is also a shift space. Additionally, if such a map is
injective, then its inverse is also continuous and shift-commuting.

1. Introduction

Shift spaces and their morphisms constitute a powerful tool for modeling several
phenomena in dynamical systems; this practice is known as symbolic dynamics.
They are also an important part of the platform for diverse disciplines like au-
tomata, coding, information and system theory. Depending on the context there
are two typical ways to establish them: either on bi-infinite sequences of symbols
indexed by the set of integer numbers Z, or by using one-sided infinite sequences
of symbols indexed by the set of natural numbers N. In this paper we shall deal
exclusively with the two-sided setting. Some classic textbooks on the subject are
[12] and [13].

The standard construction of shift spaces begins with a finite set of symbols: an
alphabet. However, in certain environments it is necessary to consider alphabets
with infinite symbols; such is the situation when the thermodynamic formalism
is developed for the so-called countable state Markov shifts (see, for example, [12]
and [21]). Shift spaces over alphabets with infinite symbols were also considered
by Gromov in his seminal work on endomorphisms of symbolic algebraic varieties
and topological invariants of dynamical systems (see [8] and [9]). These important
facts justify the attention given to the study of shift spaces over infinite alphabets.

In what follows an alphabet is any nonempty set A equipped with the discrete
topology. Given an alphabet A, the product space AZ is considered; this is the
set of all bi-infinite sequences over A endowed with the Cantor metric d, which is
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defined for all x = (xn)n∈Z and y = (yn)n∈Z in AZ by

d(x, y) =
{

0, if xn = yn for all n ∈ Z,
2−k, if x 6= y and k = min{|n| : xn 6= yn}.

This topological space is called the (two-sided) full shift over A. After that, we
consider the shift operator σ : AZ → AZ given by σ(x) = y, where yn = xn+1
for all n ∈ Z; it is a homeomorphism. Thus, a shift space over A (or a subshift
over A) is any nonempty closed subset of X of AZ which is shift-invariant, that is,
σ(X) = X; a shift morphism (or simply a morphism) on the shift space X ⊆ AZ

is any continuous and shift-commuting mapping Φ from X to some full shift UZ;
here the term ‘shift-commuting’ means Φ ◦ σ = σ ◦Φ, where σ indistinctly denotes
the shift map in both AZ and UZ.

Shift spaces can be equivalently introduced by using a set of special words con-
structed with the symbols in the alphabet; more precisely, a word or a block over
A is a finite sequence of symbols in A; the number of such symbols is the length of
the block. Let A∗ denote the set of blocks over A; it is said that a block w ∈ A∗
appears in x ∈ AZ if there exists an integer closed interval [i, j] ⊂ Z (i ≤ j) such
that the restriction x|[i,j] of x to [i, j] is just w; that is, x|[i,j] = xi · · ·xj = w. It is
well known that a nonempty set X ⊆ AZ is a shift space over A if and only if there
exists F ⊂ A∗ (not necessarily unique) such that x ∈ X if and only if no block
belonging to F appears in x. Such a set is called a forbidden set for X; obviously
F = ∅ if X is a full shift. There is another set of distinguished words for each shift
space. A word w ∈ A∗ is called allowed for the shift space X ⊆ AZ if it appears in
some point of X. The set L(X) of the allowed words for the shift space X is called
language of X; clearly L(X) = {w ∈ A∗ : w appears in x for some x in X}. The
language L(X) is characterized by the factorial and extendable properties, which
are, respectively:

(a) If w is a block in L(X) and u is a subblock of w, then u ∈ L(X).
(b) If w ∈ L(X), then there are nonempty blocks u, v ∈ L(X) such that the

concatenation block uwv is also in L(X).
Properties (a) and (b) characterize the languages of shift spaces; that is, given a
nonempty set L ⊂ A∗ satisfying (a) and (b), there is a unique shift space X ⊆ AZ

such that L = L(X). For every integer n ≥ 1, Ln(X) denotes the subset of L(X)
whose blocks have length n. It is not hard to show that X is a compact space if and
only if L1(X) is a finite set, i.e., the alphabet supporting X is a finite set. Notice
that the complement of L(X) is a forbidden set for X; indeed, it is the largest one.
Obviously, when X is the full shift, Ln(X) = An.

There is a simple way to obtain morphisms on a shift space X ⊆ AZ. If U is
an alphabet, m and n are integers with n−m ≥ 0 and ϕ : Lm+n+1(X)→ U is an
arbitrary function, then the map Φ : X → UZ defined by

Φ(x)i = ϕ
(
x|[i−m,i+n]

)
, for every x in X and each i ∈ Z, (1.1)

is a morphism on X. Every map so defined is called a sliding block code, the
function ϕ is known as a local rule inducing Φ, and the integers m and n are called
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respectively memory and anticipation of Φ. The local rule and the integers m and n
provide a sort of window of length n + m + 1: it slides through each element of
X to determine the value of each component of its image under the corresponding
sliding block code. Sometimes it is useful to consider wider windows: take integers
M and N with M ≥ m and N ≥ n; the language factorial property implies that
ϕ̂ : LM+N+1(X)→ U with ϕ̂(a−M · · · aN ) = ϕ(a−m · · · an) is well defined for every
a−M · · · aN ∈ LM+N+1(X) and it induces the same sliding block code as ϕ.

When X is the full shift AZ and U = A, the concept of sliding block code is
just the concrete definition of cellular automaton over the alphabet A. Gustav A.
Hedlund, in his influential article [10], proved that if A is finite, then the set of
cellular automata in AZ matches with the set of continuous and shift-commuting
self-mappings of AZ; so the cellular automata over finite alphabets were character-
ized. Since Hedlund credited Morton L. Curtis and Roger Lyndon as co-discoverers
of this characterization, the result is known as the Curtis–Hedlund–Lyndon theo-
rem. It remains true in the framework of shift spaces over finite alphabets:

Theorem 1.1 (Curtis–Hedlund–Lyndon theorem [13, Theorem 6.2.9]). Let X and
Y be shift spaces over finite alphabets. A map Ψ : X → Y is a sliding block code if
and only if it is continuous and shift-commuting.

This important theorem fails when the shift space is not compact. Take for
example the morphism Φ : NZ → NZ (N = {0, 1, 2, . . . }) given by

Φ(x)n =
∑
|j|≤xn

xj+n, for all x ∈ X and every n ∈ Z; (1.2)

it is continuous and shift-commuting but it cannot be expressed through a local rule
as in (1.1). In the study of shift spaces and their morphisms over finite alphabets
the compactness has a special role; in particular, it allows us to prove the following
two results which are part, together with the Curtis–Hedlund–Lyndon theorem, of
the folklore of symbolic dynamics and coding theory:

Theorem 1.2 ([13, Theorem 1.5.13]). If Φ : X → UZ is a shift morphism, then
Φ(X) is a closed subset of UZ; therefore, it is a shift space.

Theorem 1.3 ([13, Theorem 1.5.14]). If Φ : X → UZ is an injective shift mor-
phism, then the inverse map Φ−1 : Φ(X)→ X is a sliding block code.

These two results are known as closed image property and reversibility, respec-
tively. Like the Curtis–Hedlund–Lyndon theorem, both Theorem 1.2 and Theo-
rem 1.3 are not true in the non-compact context. We refer to [2, Example 1.10.3]
and [3, Lemma 5.1], where notable examples of bijective and non-reversible shift
morphisms over non-finite alphabets are shown. For its part, the following example
shows a non-surjective shift morphism on NZ whose image set is not a shift space.

Example 1.4. Let Ψ : NZ → NZ be the map given by

Ψ(x)j = xj−xj
+ xj+xj

, for all x ∈ NZ and every j ∈ Z.
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By direct verification it is shown that this map is a shift morphism. It is also easy
to see that the constant sequence (xn)n∈Z = 1Z (xn = 1 for all n) has no preimage
under Ψ. Now, for every integer k ≥ 1, we consider xk = (xkj )j∈Z ∈ NZ, where

xkj =


3k + 1− j, if −k ≤ j ≤ k,
0, if j ≥ k + 1,
1, if j ≤ −k − 1.

By taking the Ψ-image of each xk one obtains Ψ(xk)|[−k,k] = 12k+1 for all k ≥ 1;
therefore, Ψ(xk) → 1Z when k → +∞. This implies that the image set Ψ(NZ) is
not a shift space; also observe that (xk)k≥1 has no convergent subsequences.

Each one of the results in the trilogy —Theorem 1.1, Theorem 1.2 and The-
orem 1.3— has been validated in the world of cellular automata by omitting the
finiteness of the alphabet. For our aim it is necessary to make some brief comments
concerning this trilogy; let us begin by the last two theorems. According to our
knowledge of the literature on the subject, the most recent developments have been
reported by Ceccherini-Silberstein and Coornaert in [1] and [3]. In these articles
the authors consider as alphabet a vector space V and a group G substituting Z;
the vector space is endowed with the discrete topology and the Cartesian product
V G is equipped with the product topology. Clearly V G has the natural vectorial
structure induced by that of V . Then the concept of cellular automaton on V G is
introduced analogously to the classical case; see [2, Chapter 1] for details. In this
setting the following results are proved:
Theorem 1.5 ([1, Theorem 1.2, Corollary 1.6 and Corollary 1.7]). Let V be a
finite-dimensional space and let G be a group.

(a) If τ : V G → V G is a linear cellular automaton, then τ(V G) is closed in V G;
that is, τ has the closed image property.

(b) If τ : V G → V G is a bijective linear cellular automaton, then τ−1 is also a
cellular automaton, i.e., τ is reversible.

New proofs of (a) and (b) are presented in [3] by using the technical tool of
Mittag-Leffler’s lemma for projective sequences of sets. In that same article it is
mentioned that more general results than (a) were obtained by Gromov in [8].
Also in [3] it is proved that when the vector space V is infinite-dimensional, it is
possible to construct on V Z a linear cellular automaton without the closed im-
age property (see [3, Theorem 1.5]) and a non-reversible bijective linear cellular
automaton (see [3, Theorem 1.2]).

Related to the first result of the trilogy, we mention that in [20] a generaliza-
tion of the Curtis–Hedlund–Lyndon theorem for cellular automata over arbitrary
discrete alphabets is proved; this is based on the concept of barrier and extended
notions of local rule and sliding block code also introduced in [20]. Such gener-
alization is transferred without any difficulty to continuous and shift-commuting
mappings between shift spaces over such kind of alphabets. This extended version
of the Curtis–Hedlund–Lyndon theorem is part of the foundation on which the dis-
cussion in the present paper is developed; see Theorem 2.3 in the next section for
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its precise statement and concise commentaries about its proof. There are several
references where different versions of the pioneer Curtis–Hedlund–Lyndon theorem
are presented, for example [2], [6], [7], [16], [18], [19], [22] and [23]. In some of these
versions the topological structure (product topology) or the notions of shift space
and sliding block code are modified. We maintain the original relative product
topology on the shift spaces and the essence of the notion of local rule in order to
preserve the continuity and shift-commuting property as the underlying concepts
in the notion of sliding block code.

Having as conceptual basis the characterization of the continuous and shift-
commuting maps between shift spaces, i.e., the extended Curtis–Hedlund–Lyndon
theorem established in Theorem 2.3 below, the main goal in this paper is to give suf-
ficient conditions in order to guarantee the closed image property and reversibility
for such mappings.

Since the sufficient conditions that we will establish for our purposes are some-
what technical, it is necessary to clarify this technicality for a better understanding
of the discussion, which even delays the precise establishment of the central results
of this work. We have organized the rest of the article as follows. In Section 2 we
begin by reviewing the concept of barrier on shift spaces and the extended notions
of local rule and sliding block code; these were introduced in [20] as the platform
to extend the classic Curtis–Hedlund–Lyndon theorem to cellular automata on ar-
bitrary discrete alphabets (see [20, Theorem 4]), its translation to continuous and
shift-commuting maps between shift spaces is Theorem 2.3. Then two special types
of barriers are introduced; they are linked to the maps characterized in Theorem 2.3
and determine a wide subset of them on which sufficient conditions will be estab-
lished for the fulfillment of the closed image property and reversibility. Additionally
a crucial lemma is proved. These preliminaries will allow us to establish and prove
the main results of the article: Theorem 3.1, Theorem 3.7 and Theorem 3.8; this
is precisely the content of the third and final section.

Acknowledgements. The authors would like to thank the referee for helpful
comments and suggestions which led to the improvement of the manuscript.

2. The extended environment and technical preliminaries

First we recall that the product topology on the full shift AZ has as a basis
the set of cylinders C(h) = {x ∈ AZ : x|dom(h) = h}, where h is an A-valued
function with domain dom(h), a finite subset of Z, and x|dom(h) is the restriction
of x : Z → A to dom(h); we denote by F (A) the set of such functions h and by
abuse of notation we also say that dom(h) is the domain of the cylinder C(h).

Definition 2.1. Let X ⊆ AZ be a shift space. A barrier on X is a partition of X
whose elements CX(h) are of the form X ∩ C(h); they are called cylinders in X.

This concept was inspired by the notion of barrier introduced by Nash-Williams
in his study [17] on well-quasi-ordered sets; for this subject see also [4] and [5].

We present some helpful observations about barriers on a shift space X ⊆ AZ:
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(a) The set of barriers on X is partially ordered by the finer-than relation: a
barrier B′ is finer than the barrier B if for every B′ ∈ B′ there is B ∈ B such
that B′ ⊆ B. When B′ is finer than B it is also said that B′ is a refinement of
B or that B is coarser than B′. Given a barrier B, it is always possible to get a
finer one; to see that, observe that if CX(h) is a cylinder in X and ` /∈ dom(h),
then CX(h) is the disjoint union of cylinders CX(ha), where ha is the extension
of h to dom(h) ∪ {`} with ha(`) = a going through the set of symbols such that
C(ha) ∩ X 6= ∅. In particular, if B is a barrier on X such that for some interval
[i, j] ⊂ Z the inclusion dom(h) ⊂ [i, j] holds for every CX(h) ∈ B, then there is a
refinement B′ of B such that [i, j] is the domain of each cylinder in B′.

(b) Take integers m,n,N with N = m + n + 1 ≥ 1. The set of all allowed
N -blocks LN (X) can be identified with a barrier whose cylinders have the same
domain [−m,n]; in fact, every allowed N -block w = w0 · · ·wN−1 in X is identified
with the cylinder CX(hw), where hw : [−m,n] → A and hw(−m + `) = w` for all
0 ≤ ` ≤ N − 1.

Definition 2.2. Let A and U be alphabets. An U-extended local rule in the shift
space X ⊆ AZ (or simply local rule in X) is any U-valued function whose domain
is a barrier on X. Given a local rule ϕ : B → U in X, the map induced by ϕ is the
transformation Ψ : X → UZ defined by

Ψ(x)n = ϕ(CX(hx,n)), for every x ∈ X and n ∈ Z, (2.1)

where CX(hx,n) is the cylinder in B containing σn(x), σ being the shift map on AZ.

We emphasize that if B is the barrier described in paragraph (b) above, then the
action in (2.1) matches that expressed in (1.1). So, the map induced by an extended
local rule extends the classical notion of sliding block code. From now on we use
the term extended sliding block code (ESBC for short) for every transformation Ψ
as defined in (2.1). In this extended setting the classical Curtis–Hedlund–Lyndon
theorem [13, Theorem 6.2.9] remains valid:

Theorem 2.3 (Curtis–Hedlund–Lyndon theorem). Let A and U be arbitrary dis-
crete alphabets and let X ⊆ AZ be a shift space. A map from X to UZ is a shift
morphism if and only if it is an ESBC.

A proof of this theorem is easily obtained by paraphrasing the proof of Theorem 4
in [20], which characterizes the cellular automata on arbitrary discrete alphabets.
We only highlight the following facts:
• If Ψ : X → UZ is the ESBC induced by ϕ : B → U , then it is a shift

morphism. In fact, it is enough to observe that for all n ∈ Z the n-coordinate
function Ψn : X → U of Ψ satisfies Ψn = Ψ0 ◦ σn, and the 0-coordinate function is
constant in each cylinder of B.
• Let Ψ : X → UZ be a morphism. Since in X any nonempty open set is the

disjoint union of cylinders in X, it follows that the set of preimages Ψ−1
0 ({b}),

with b varying in Ψ0(X), determines a barrier on X and Ψ0 defines a local rule
inducing Ψ; obviously Ψ0 is constant in each cylinder of such a barrier.

Rev. Un. Mat. Argentina, Vol. 63, No. 1 (2022)



ON THE IMAGE SET AND REVERSIBILITY OF SHIFT MORPHISMS 175

Example 2.4. To illustrate, we return to the morphism Ψ : NZ → NZ defined by
(1.2). It is clear that the 0-coordinate of Ψ is given by Ψ0(x) =

∑
|j|≤x0

xj for all
x = (xn)n∈Z ∈ NZ. Hence, Ψ−1

0 ({m}) =
{
x ∈ NZ :

∑
|j|≤x0

xj = m
}

for all m ∈ N.
In other words, if w is a block with odd length and Cw denotes the cylinder of
all x ∈ NZ such that x|[−k,k] = w, then the preimage Ψ−1

0 ({m}) is the disjoint
union of the cylinders Cw, where w = w−w0 · · ·w0 · · ·ww0 and

∑
|j|≤w0

wj = m.
Therefore the collection B0 of cylinders Cw, with m varying in N, is a barrier on
NZ and the local rule ϕ : B0 → N, with ϕ(Cw) =

∑
|j|≤w0

wj , induces Ψ. Note that
Ψ−1

0 ({0}) = C0 = {x ∈ NZ : x0 = 0} and it is the union of the cylinders C(hv),
where v ∈ N and hv : {0, 1} → N is given by hv(0) = 0 and hv(1) = v. If in B0 one
substitutes C0 by the collection of these new cylinders C(hv), a finer barrier B1 is
obtained and ϕ acting on B1 also induces Ψ; clearly Ψ0(C(hv)) = 0 for all v ∈ N.
We also observe that B0 is the maximum of all the barriers on NZ inducing Ψ; this
follows from the following fact: If C(h) is a cylinder on N such that Ψ0 is constant
on C(h), then there exist a Z-interval [−N,N ] and a block w ∈ N2N+1 such that
[−N,N ] ⊆ dom(h) and h|[−N,N ] = w.

We now introduce two type of barriers and a particular class of sequences related
to an ESBC. These notions are fundamental for the rest of the article.

Definition 2.5. Let Ψ : X → UZ be an ESBC.
(i) A barrier B on X is said to be attached to Ψ if the 0-coordinate function

of Ψ is constant on every cylinder of B.
(ii) If there exists a barrier B attached to Ψ such that for every ` ∈ Ψ0(X) the

number of cylinders in B with Ψ0(B) = ` is finite, then it is said that both
Ψ and B are of finite degree.

(iii) A sequence (xk)k∈Z ⊂ X is called distinguished for Ψ if (Ψ(xk))k∈Z is
convergent. The set of distinguished sequences for Ψ is denoted by X(Ψ).

It is easy to see that a barrier B on X is attached to an ESBC Ψ : X → UZ if
and only if it is induced by the local rule ϕ : B → U defined, for each C ∈ B, by
ϕ(C) = Ψ0(C). In this way, the barriers attached to an ESBC are the domains of
the local rules inducing it.

When the alphabets are finite every sliding block code is of finite degree. Not
every barrier attached to a finite degree ESBC is of finite degree; such is the case
of the barriers B0 and B1 described in Example 2.4. On the other hand, not every
ESBC is of finite degree; this is shown in the following example, which also shows
that there exist distinguished sequences without convergent subsequences.

Example 2.6. Let Ψ : NZ → NZ be the ESBC given by

Ψ(x)j = xj−xj + xj+xj , for all x ∈ NZ and every j ∈ Z.

Let us see that Ψ is not of finite degree. First, take `,m, a, b ∈ N such that a+b = `;
for this collection of natural numbers define h : {−m, 0,m} → N by h(−m) = a,
h(0) = m and h(m) = b. It is clear that for every x ∈ C(h) one has Ψ0(x) = `, so
the set of cylinders thus defined constitutes a barrier B attached to Ψ. Also observe
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that B is not of finite degree. Now take any cylinder C(h′) such that for some ` ∈ N
the equality Ψ0(x) = ` holds for each x ∈ C(h′). Suppose that 0 /∈ dom(h′) and pick
m /∈ dom(h′) ∪ {0}, so the m-coordinate of x ∈ C(h′) with x0 = m is restricted
to x−m + xm = `. This contradicts the fact that the m-coordinate of points in
C(h′) varies throughout N even when the 0-coordinate is m. Thus 0 necessarily
belongs to dom(h′) and so x−h′(0) + xh′(0) = ` for all x ∈ C(h′), which forces that
−h′(0), h′(0) ∈ dom(h′). Consequently, C(h′) is contained in some cylinder C(h)
as described above, and therefore every barrier attached to Ψ is a refinement of B,
which clearly implies that Ψ is not of finite degree.

Next, it is not hard to see that (xn)n∈Z = 1Z (i.e., xn = 1 for all n ∈ Z) has
no preimage under Ψ. Now, for every integer k ≥ 1 consider xk = (xkj )j∈Z ∈ NZ

defined for each j ∈ Z as follows:

xkj =


3k + 1− j, if −k ≤ j ≤ k,
0, if j ≥ k + 1,
1, if j ≤ −k − 1.

After a direct calculation one has Ψ(xk)|[−k,k] = 12k+1 for all k ≥ 0, and therefore
Ψ(xk)→ 1Z when k → +∞. This shows that the sequence (xk)k≥1 is distinguished
for Ψ but it has no convergent subsequences.

In what follows, a sequence of elements in a shift space will be called nice if it
has convergent subsequences. An immediate fact is the following:

If Ψ : X → UZ is an ESBC and every distinguished sequence by Ψ is nice, then Ψ
has the closed image property; i.e., Ψ(X) is a shift space.

We stress that the converse of this assertion is false; this is shown in Example 3.3
below. By restricting our attention to ESBCs of finite degree, we will give sufficient
conditions, more technical than the totality of distinguished nice sequences, for an
ESBC to have the closed image property. Furthermore, these same conditions will
guarantee the reversibility of bijective ESBCs. For this purpose the following lemma
is crucial. Before continuing, we need to introduce some notation to make sentences
more readable. First we recall that F (A) is the set of all A-valued functions whose
domains are finite subsets of Z. Let X ⊆ AZ be a shift space and let σ be the shift
map on AZ. Observe that for any n ∈ Z and every cylinder C(h) in AZ, σ−n(C(h))
is also a cylinder; we denote it by C(h[n]), where h[n] is the n-translation of h, that
is,

dom(h[n]) = dom(h) + n and h[n](j + n) = h(j), for all j ∈ dom(h).

On the other hand, it is easy to see that if {hα}α∈Γ is a collection in F (A)
satisfying

⋂
α∈Γ C(hα) 6= ∅, then hα(m) = hβ(m) holds for all α, β ∈ Γ and

every integer m in dom(hα) ∩ dom(hβ). This last property allows us to define⊕
α∈Γ hα :

⋃
α∈Γ dom(hα)→ A by(⊕

α∈Γ
hα

)
(m) = hα(m), whenever m ∈ dom(hα).
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Obviously this new function belongs to F (A) if and only if
⋃
α∈Γ dom(hα) is finite;

in this case,
⋂
α∈Γ C(hα) is just the cylinder C(

⊕
α∈Γ hα). A particular case of this

kind of collection is a sequence of functions hn in F (A) such that hn+1 extends hn.
In any case, it is clear that for any collection {hα}α∈Γ ⊂ F (A),⋂

α∈Γ
C(hα) = {x ∈ AZ : for all m ∈ Z, xm = hα(m) if m ∈ dom(hα)}.

An additional notation: Let Ψ : X → UZ be an ESBC and let B be a barrier
attached to it. For each symbol ` ∈ Ψ0(X), B(`) denotes the set of cylinders B in
B such that Ψ0(B) = `. Obviously B is of finite degree if the cardinal of B(`) is
finite for all ` ∈ Ψ0(X).

Lemma 2.7 (Crucial lemma). If Ψ : X → UZ is an ESBC of finite degree, then
for all integers ` ≥ 0 and every (xk)k≥1 ∈ X(Ψ) with Ψ(xk) → y when k → +∞,
there exist an infinite subset S` of N and a cylinder CX(h`) such that: S`+1 ⊂ S`,
CX(h`+1) ⊂ CX(h`), xk ∈ CX(h`) for all k ∈ S`, and Ψ(z)|[−`,`] = y|[−`,`] for
every z ∈ CX(h`).

Proof. Take a barrier B attached to Ψ of finite degree. Let (xk)k≥1 be a sequence
in X(Ψ) with Ψ(xk)→ y if k → +∞. From the definition of the Cantor metric it
is clear that for each natural number ` ≥ 0 there is N` ≥ 1 such that xk ∈ Ψ−1

j (yj)
for all |j| ≤ ` and every k ≥ N`, where y = (yj)j∈Z. In particular, for ` = 0 one
can choose a cylinder CX(hy0,0) ∈ B(y0) and an infinite subset S0 of N such that
xk ∈ CX(hy0,0) for all k ∈ S0 and Ψ0(z) = y0 for each z ∈ CX(hy0,0). Further, for
` = 1 there are cylinders CX(hy−1,−1) ∈ B(y−1) and CX(hy1,1) ∈ B(y1) and there
exists an infinite set S1 ⊂ S0 such that

xk ∈ CX(h[1]
y1,1) ∩ CX(hy0,0) ∩ CX(h[−1]

y−1,−1), for all k ∈ S1.

Observe that this intersection is the cylinder CX(h1), where h1 =
⊕
|j|≤1 h

[j]
yj ,j

and
h

[0]
y0,0 = hy0,0; note also that Ψ(z)|[−1,1] = y|[−1,1] for all z ∈ CX(h1). Proceeding

by recurrence, in each step ` ≥ 1 one can select an infinite set S` ⊂ S`−1 and
cylinders CX(hy−`,−`) ∈ B(y−`) and CX(hy`,`) ∈ B(y`) such that

xk ∈
⋂
|j|≤`

CX(h[j]
yj ,j

), for all k ∈ S`.

The proof finishes by making h` =
⊕
|j|≤` h

[j]
yj ,j

and observing that Ψ(z)|[−`,`]
matches y|[−`,`] for all z in the cylinder CX(h`) =

⋂
|j|≤` CX(h[j]

yj ,j
). Notice that

the sequence of cylinders CX(h`) is decreasing because the function h`+1 extends
h` for every ` ≥ 0 and h0 = hy0,0. �

Remark 2.8. Let Ψ : X → UZ be an ESBC and let B be a barrier attached to
Ψ of finite degree. With the notation of the preceding lemma we observe that if
(xk)k≥1 is a sequence in X(Ψ) and ` is a natural number, then both the function
h` and the set S` may be non-unique; they depend on the barrier and the limit
of the sequence (Ψ(xk))k≥1. Nonetheless, for any chosen sequence (h`)`≥0 one has
that

⋂
`≥0 C(h`) 6= ∅, and so the function h∞ :=

⊕
`≥0 h` is well defined; obviously
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x belongs to
⋂
`≥0 C(h`) if, and only if, x|dom(h∞) = h∞. It is also clear that

although CX(h`) 6= ∅ for all ` ≥ 0, it may happen that
⋂
`≥0 CX(h`) = ∅. On the

other hand, if
⋂
`≥0 CX(h`) 6= ∅, every point of this set is mapped by Ψ on the

limit of the sequence (Ψ(xk))k≥1. Clearly in this case⋂
`≥0

CX(h`) = {x ∈ X : x|dom(h∞) = h∞}.

After this discussion, we say that an A-valued function h∞ is associated to a
sequence in X(Ψ) and a barrier attached to Ψ of finite degree whenever it is ob-
tained as described above. Although this association may be multivalued (different
functions h∞ may be associated to the same distinguished sequence or barrier), all
of these functions are classified according to their domains into five exclusive and
exhaustive classes:

C1: dom(h∞) is bounded.
C2: dom(h∞) = Z.
C3: dom(h∞) is bilaterally unbounded, that is, dom(h∞)  Z and for all N > 0

there are a, b ∈ dom(h∞) such that a < −N and b > N .
C4: dom(h∞) is left-unbounded: there is M ∈ Z such that (−∞,M ] is the

minimal interval containing dom(h∞).
C5: dom(h∞) is right-unbounded: there is m ∈ Z such that [m,+∞) is the

minimal interval containing dom(h∞).

3. Statements and proofs of the main results

Only now are we able to state and demonstrate the main results of this article.

3.1. The closed image property of ESBCs. Let X ⊆ AZ be a shift space and
let Ψ : X → UZ be an ESBC. Since Ψ is shift-commuting, it is clear that the image
set Ψ(X) is a shift space if and only if Ψ(X) is a closed subset of UZ; that is, the
limit of the image of every distinguished sequence for Ψ belongs to Ψ(X).

Our first main result is related to the classes C1 and C2.
Theorem 3.1. Let Ψ : X → UZ be an ESBC of finite degree. If a function h∞ in
C1 ∪ C2 is associated to each sequence in X(Ψ), then Ψ(X) is a shift space.
Proof. Take any point y in the closure of Ψ(X). Let (yk)k≥1 be a sequence in Ψ(X)
such that yk → y when k → +∞. Pick (xk)k≥1 ⊂ X with Ψ(xk) = yk for every
k ≥ 1; obviously (xk)k≥1 belongs to X(Ψ). Consider a barrier attached to Ψ of
finite degree in such a way that for sequences (h`)`≥0, (S`)`≥0 as in Lemma 2.7, the
corresponding function h∞ is in C1 ∪C2. First we assume that h∞ belongs to the
class C2, that is, dom(h∞) = Z; from this same lemma, strictly increasing sequences
of integers (`M )M≥1 and (kM )M≥1 can be selected such that [−M,M ] ⊂ dom(h`M

),
kM ∈ S`M

, and xkM → h∞ when M → +∞. So, the continuity of Ψ implies that
y ∈ Ψ(X). Now we suppose that h∞ belongs to the class C1. As h`+1 extends h`
for all ` ≥ 0 and dom(h∞) =

⋃
`≥0 dom(h`), there is L ≥ 0 such that h` = hL for

all ` ≥ L. Thus
⋂
`≥0 CX(h`) is the cylinder CX(hL), and again from Lemma 2.7

one deduces that Ψ(z) = y for all z ∈ CX(hL). �
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Remark 3.2. From the proof of the preceding theorem it is clear that if h∞ ∈ C2,
then the sequence (xk)k≥1 in X(Ψ) inducing it is nice; however, the same cannot
be said if h∞ ∈ C1 (see Example 3.3 below); even so, in this case, the limit of
(Ψ(xk))k≥1 belongs to Ψ(X). We notice that if Ψ is injective and h∞ ∈ C1, then
(xk)k≥1 is nice; indeed, it has a constant subsequence.

We would also like to highlight that if Ψ : X → UZ is an ESBC and the domains
of the cylinders in a barrier B attached to Ψ have a common point, then every
function h∞ associated to any sequence in X(Ψ) belongs to the class C2. This
follows from the next fact: If m ∈ dom(h) for all h with CX(h) ∈ B, then for all
` ≥ 0 the domain of h` contains the Z-interval [−`+m,m+ `].

Example 3.3. Let X denote the shift space of all sequences x = (xn)n∈Z in NZ

such that 0 appears in x and xn 6= xm for all n 6= m. For every x ∈ X, let 0(x)
be the integer where 0 appears in x. Define Ψ : X → ZZ by Ψ(x)n = 0(x) − n
for all n ∈ Z and every x ∈ X. It is easy to check that Ψ is a shift morphism.
Observe that if CX(fn) is the cylinder of all x ∈ X such that 0(x) = n, then
B = {CX(fn) : n ∈ Z} is a barrier attached to Ψ of finite degree; indeed, for
every n ∈ Z one has Ψ−1

0 (n) = CX(fn) and Ψ(CX(fn)) is the singleton {yn},
where yn = (ynm)m∈Z with ynm = n −m. In this way, the image set Ψ(X) is the
discrete set {yn : n ∈ Z}, which is clearly a shift space. In addition, for every
(xk)k≥1 ∈ X(Ψ), the sequence (Ψ(xk))k≥1 is eventually constant. Therefore, if
one follows the indications in Lemma 2.7 and Remark 2.8 to construct h∞ from
the barrier B, one obtains that for every distinguished sequence for Ψ there exists
n ∈ Z such that the function h∞ has domain {n} and h∞(n) = 0. Obviously in this
case the function h∞ is unique, it belongs to the class C1 and there are infinitely
many non-nice distinguished sequences for Ψ.

Some extra information about this shift space X: L1(X) = N and for all a, b ∈ N
with a 6= b, both ab and ba are allowed blocks in X.

In our search for sufficient conditions to guarantee the closed image property
for finite degree ESBCs, it remains to examine the cases when the function h∞ is
in some of the classes C3, C4 or C5. For this end, we only deal with shift spaces
having certain finiteness properties on the allowed symbols.

Definition 3.4. A shift space X ⊂ AZ is said to be:

(a) right-finite, if for all a ∈ L1(X), the set {b ∈ A : ab ∈ L(X)} is finite;
(b) left-finite, if for all a ∈ L1(X), the set {b ∈ A : ba ∈ L(X)} is finite;
(c) bilaterally-finite, if it is both right-finite and left-finite.

In [18] the term “row-finite shift” is introduced with the same meaning as our
“right-finite”; see also [7], where the notion of column-finite shift is introduced.

For the next lemma we assume that Ψ : X → UZ is an ESBC, B is a barrier
attached to Ψ of finite degree, (xk)k≥1 is a sequence in X(Ψ) and h∞ is a function
associated to (xk)k≥1 and B.
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Lemma 3.5. For the sequence (xk)k≥1 to be nice it is sufficient that one of the
following conditions holds:

(a) h∞ ∈ C3 and X is right-finite or left-finite.
(b) h∞ ∈ C4 and X is right-finite.
(c) h∞ ∈ C5 and X is left-finite.

Proof. (a) We assume X to be right-finite; the left-finite case is treated analogously.
Let (h`)`≥0 and (S`)`≥0 be sequences as in Lemma 2.7 such that the associated
function h∞ is in C3. For each ` ≥ 0 we denote by I` = [a`, b`] the minimal interval
in Z such that dom(h`) ⊂ I`; clearly I` ⊂ I`+1 for all ` ≥ 0 and

⋃
`≥0 I` = Z. Hence,

there exists a first integer `1 such that h`1 has gaps; that is, dom(h`) = I` for all
0 ≤ ` < `1 and there are integers k1 ≥ 1 and a`1 ≤ a1

`1
< b1`1

< · · · < ak1
`1
< bk1

`1
≤ b`1

such that dom(h`1) = I`1 \
⋃k1
i=1(ai`1

, bi`1
); the open intervals (ai`1

, bi`1
), i = 1, . . . , k1,

are the gaps in dom(h`1). On the other hand, since the block w1 = xk|[a`1 ,a
1
`1

] is the
same for all k ∈ S`1 and X is right-finite, there exist a (b1`1

− a1
`1
− 1)-block w and

an infinite subset S′`1
of S`1 such that xk|[a`1 ,b

1
`1

] = w1w for all k ∈ S′`1
. Repeating

this procedure in each gap of dom(h`1), both the function h`1 and the set S`1 are
upgraded so that dom(h`1) = [a`1 , b`1 ], S`1 ⊂ S`1−1 and xk ∈ CX(h`1) for all
k ∈ S`1 ; for simplicity we have used the same notation for such an update. Thus,
with recursive arguments, two new sequences (h`)`≥0 and (S`)`≥0 are constructed
so that for all ` ≥ 0 the following assertions hold:

• dom(h`) = [a`, b`], h`+1 extends h` and
⋃
`≥0[a`, b`] = Z.

• S` is an infinite subset of N with S`+1 ⊂ S` and xk ∈ CX(h`) for all k ∈ S`.
The proof of part (a) ends by noting that the new function h∞ =

⊕
`≥0 h` has

domain Z and therefore the sequence (xk)k≥1 is nice; see the proof of Theorem 3.1.

The proofs for (b) and (c) essentially follow the same scheme of the previous
one. For instance, in the case (b) take (h`)`≥0, (S`)`≥0 as in Lemma 2.7 and
consider the corresponding funtion h∞; if [a`, b`] and (−∞,M ] are the minimal
intervals containing respectively dom(h`) and dom(h∞), then one can assume that
M ∈ dom(h0) and h0 has gaps, say (a0

0, b
0
0), . . . , (ak0

0 , b
k0
0 ). Next observe that the

blocks xk|[a0,a0
0], x

k|[bj
0,a

j+1
0 ] with 0 ≤ j < k0 and xk|[bk0

0 ,M ] do not change when
k ∈ S0; so the right-finiteness property allows us to select an (M −a0)-block w and
an infinite set S0 (same nomenclature for short) such that xk|[a0,M+1] = w for all
k ∈ S0. Therefore, both the sequence of functions (h`)`≥0 and the nested sequence
of infinite subsets (S`)`≥0 can be upgraded in such a way that for all ` ≥ 0 one has
dom(h`) = [a`,M + 1 + `] and xk ∈ CX(h`) for every k ∈ S`. This leads to a new
function h∞ whose domain is Z and then (xk)k≥1 is a nice sequence. �

Remark 3.6. Observe that when X is bilaterally-finite, every sequence (xk)k≥1
in X(Ψ) is nice. In fact, if there exists a barrier attached to Ψ of finite degree such
that h∞ ∈ C1, then the sequences (h`)`≥0 and (S`)`≥0 can be upgraded as above
in such a way that the new function h∞ has Z as its domain.
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The following result complements Theorem 3.1 in order to establish sufficient
conditions to guarantee the closed image property for ESBCs of finite degree.
Theorem 3.7. Let Ψ : X → UZ be an ESBC of finite degree. If one of the following
conditions is fulfilled, then Ψ(X) is a shift space:

(a) X is bilaterally-finite.
(b) X is right-finite and a function h∞ ∈ C1∪C2∪C3∪C4 is associated to each

sequence in X(Ψ).
(c) X is left-finite and a function h∞ ∈ C1 ∪C2 ∪C3 ∪C5 is associated to each

sequence in X(Ψ).
Proof. It is a straightforward combination of the arguments developed in Theo-
rem 3.1 (see Remark 3.2) and Lemma 3.5. �

3.2. The reversibility property of ESBCs. We begin this last part of the
article by recalling that an ESBC Ψ : X → Y is said to be reversible if it is
bijective and its inverse is also an ESBC.

We have already mentioned that in the case of finite alphabets, every bijective
shift morphism is reversible ([13, Theorem 1.5.14]), and this is not true when those
symbol sets are not finite (see [2, Example 1.10.3] and [3, Lemma 5.1]). It is also
well known that in the classical cellular automata context, reversibility is equivalent
to injectivity; this was proved independently by Hedlund [10] and Richardson [19].
We consider it relevant to highlight that the notion of reversibility has captured
the interest of researchers in several scientific and technological scenarios; see, for
example, [11], [14] and [15].

Our third and last main contribution is the following theorem.
Theorem 3.8. A bijective ESBC of finite degree is reversible if one of the condi-
tions established in Theorems 3.1 or 3.7 is satisfied.
Proof. Let X ⊂ AZ and Y ⊂ UZ be shift spaces. Take a bijective ESBC Ψ : X → Y
of finite degree. We denote by Φ : Y → X its inverse; clearly it is shift-commuting.
So, from Theorem 2.3 it follows that Φ is an ESBC whenever it is continuous; in
other words, Ψ is reversible if the 0-coordinate function Φ0 : Y → A of Φ is locally
constant. Recall that the alphabet U is endowed with the discrete topology and
Φn = Φ0 ◦ σn for every n ∈ Z, where σ denotes the shift map on UZ.

Suppose that Φ0 is not locally constant; then for some y ∈ Y there exists a
sequence (yk)k≥1 ⊂ Y such that yk → y when k → +∞ and Φ0(yk) 6= Φ0(y). Now,
let x = (xn)n∈Z and xk = (xkn)n∈Z be the unique elements in X such that Ψ(x) = y
and Ψ(xk) = yk for all k ≥ 1; obviously (xk)k≥1 is a distinguished sequence for
Ψ and xk0 6= x0 for all k ≥ 1. Take a barrier B attached to Ψ of finite degree, let
(h`)`≥0 and (S`)`≥0 be sequences related to (xk)k≥1 and B as in Lemma 2.7, and
let h∞ be an associated function to (xk)k≥1 and B. Notice that if (xk)k≥1 is nice,
then the injectivity of Ψ leads to a contradiction; in fact, if z ∈ X is a limit point
of (xk)k≥1, then Ψ(z) = Ψ(x); however, z 6= x because xk0 6= x0 for all k. The
proof ends by noting that if either h∞ ∈ C1 ∪ C2, or h∞ /∈ C1 ∪ C2 and X has
the appropriate finiteness property (right-finite or left-finite), then the sequence
(xk)k≥1 is always nice (see Remark 3.2 and proof of Lemma 3.5). �
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The following corollary is obvious.

Corollary 3.9. If Ψ : X → UZ is an injective ESBC of finite degree and one of
the conditions established in Theorems 3.1 and 3.7 is satisfied, then Ψ(X) is a shift
space and Ψ : X → Ψ(X) is reversible.

Our final example shows a reversible finite degree sliding block code whose in-
verse is neither of finite degree nor a sliding block code.

Example 3.10. Let Ψ : NZ → NZ be the sliding block code of memory 0 and
anticipation 1 defined for each x = (xn)n∈Z ∈ NZ by

Ψ(x)n = xn + 2xn+1, for all n ∈ Z.

Clearly Ψ is induced by the local rule ψ : N2 → N given by ψ(uv) = u + 2v.
It is not difficult to verify that Ψ is injective but not onto; on the other hand,
since for each natural number y there are only a finite number of 2-blocks uv in
N2 solving u + 2v = y, the sliding block code Ψ is of finite degree. From the
preceding discussions it follows that the image set Y = Ψ(NZ) is a shift space and
its inverse Φ : Y → NZ is an ESBC. Let us see that Φ is not of finite degree.
Suppose the opposite; then there exists a barrier B on Y attached to Φ such that
for each a ∈ N, the number of cylinders in B with Φ0-image equal to a is finite. Let
CY (h1), . . . , CY (hm) be the cylinders in B satisfying Φ0(CY (hi)) = 0, i = 1, . . . ,m.
Consider, for each j ∈ N, xj = (xjk)k∈Z with xjk = 0 for k 6= 1 and xj1 = j;
clearly the Ψ-image yj = (yjk)k∈Z of xj is given by yj0 = 2j, yj1 = j and yjk = 0 if
k /∈ {0, 1}. Since j is arbitrary, one has that {0, 1} ∩ dom(hi) = ∅ and hi(`) = 0
for all ` ∈ dom(hi) and every i = 1, . . . ,m. On the other hand, if one takes any
index 1 ≤ i ≤ m and any ` ∈ dom(hi), then y = (yk)k∈Z, with y`−1 = 2, y` = 1
and yk = 0 otherwise, belongs to Y and Φ0(y) = 0; however, y /∈ CY (hi) whatever
the index i = 1, . . . ,m, which is a contradiction.

Now we will show that Φ is not a sliding block code. Assume, on the contrary,
and without loss of generality, that Φ is induced by a local rule with the same
memory and anticipation, say L ≥ 1; that is, there exists ϕ : L2L+1(Y ) → N
such that Φ(y)k = ϕ

(
y|[−L+k,k+L]

)
for all y ∈ Y and every k ∈ Z; we note in

particular that ϕ
(
y|[−L,L]

)
= xy0, where xy is the unique element of NZ such that

Φ(y) = xy. However, this assumption is negated by the following fact. For the
elements x = (xk)k∈Z and x′ = (x′k)k∈Z in NZ given by

xk =
{

2L+1−k, if −L ≤ k ≤ L+ 1,
0, otherwise

and

x′k =
{

22`+1, if k = L− 2`+ 1 and 0 ≤ ` ≤ L,
0, otherwise

one obtains, after a direct calculation, that y = Ψ(x) and z = Ψ(x′) have the same
central block y|[−L,L] = z|[−L,L] = 22L+222L+1 · · · 2322, but x0 6= x′0.
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Finally, we construct a barrier on Y attached to Φ, and define on it an extended
local rule inducing Φ. For each N ≥ 1 and y = (yn)n∈Z ∈ Y , consider the set

SN (y) = {w−N · · ·wN+1 ∈ N2N+2 : wi + 2wi+1 = yi, i = −N, . . . , N}.
The next properties are immediate:

(i) The block xy|[−N,N+1] is always in SN (y).
(ii) If N ≥ 2, a block w−N · · ·wN+1 ∈ SN (y) iff w−N+1 · · ·wN belongs to

SN−1(y), w−N + 2w−N+1 = y−N and wN + 2wN+1 = yN .
(iii) If w−N · · ·wN+1 and w′−N · · ·w′N+1 are blocks in SN (y) with wi = w′i for

some i, then those blocks match.
Additionally, since for each w−1w0w1w2 ∈ S1(y) one has w1 = 1

2 (y0 − w0), the
cardinal #S1(y) of S1(y) is bounded above by by0

2 c+1, where bxc means the integer
part of x. From property (ii) above, #S2(y) ≤ bby0

2 c/2c+1 = by0
4 c+1. Thus, by a

recursive argument one concludes that 1 ≤ #SN (y) ≤ b y0
2N c+1, and therefore there

exists a first integer r(y) ≥ 1 such that #SN (y) = 1 for all N ≥ r(y). Obviously, if
1 ≤ N < r(y), the system of Diophantine equations wi + 2wi+1 = yi, with |i| ≤ N ,
has at least two solutions in N2N+2 and xy−N · · ·x

y
N+1 is the unique solution of such

a system when N ≥ r(y).
For each y ∈ Y we consider the function hy : {−r(y), . . . , r(y)} → N defined by

hy(i) = yi for all 0 ≤ i ≤ r(y). It is straightforward to check that the collection
B of the cylinders CY (hy) is a barrier attached on Y to Φ and ϕ : B → N with
ϕ(CY (hy)) = xy0 induces Φ. Note that r(z) = r(y) for all z ∈ CY (hy); indeed,
either CY (hy)∩CY (hz) = ∅ if z /∈ CY (hy) or CY (hy) = CY (hz) for all z ∈ CY (hy).
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