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ON EGYPTIAN FRACTIONS OF LENGTH 3

CYRIL BANDERIER, CARLOS ALEXIS GÓMEZ RUIZ, FLORIAN LUCA,
FRANCESCO PAPPALARDI, AND ENRIQUE TREVIÑO

Abstract. Let a, n be positive integers that are relatively prime. We say
that a/n can be represented as an Egyptian fraction of length k if there exist
positive integers m1, . . . ,mk such that a

n
= 1

m1
+ · · ·+ 1

mk
. Let Ak(n) be the

number of solutions a to this equation. In this article, we give a formula for
A2(p) and a parametrization for Egyptian fractions of length 3, which allows us
to give bounds to A3(n), to fa(n) = #{(m1,m2,m3) : a

n
= 1

m1
+ 1

m2
+ 1

m3
},

and finally to F (n) = #{(a,m1,m2,m3) : a
n

= 1
m1

+ 1
m2

+ 1
m3
}.

1. Introduction

Historical background. The most ancient mathematical texts are mostly re-
lated to computations involving proportions, fractions, and inverses of integers
(sometimes connected with problems related to geometry). Many traces of these
mathematics are found in Sumerian or Babylonian clay tablets covering a period
of several millennia1.

For Egyptian mathematics, many papyri present computations involving sums
of unit fractions (fractions of the form 1/n) and sometimes also the fraction 2/3; see
e.g. the Rhind Mathematical Papyrus. This document, estimated from 1550 BCE,
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1In case the reader may have the chance to visit the corresponding museums, let us mention
e.g. the Sumerian tablets from Shuruppak (Istanbul Museum, dated circa 2500 BCE), the Babylo-
nian tablets VAT 6505, 7535, 7621, 8512 (Berlin Museum), Plimpton 322 (Columbia University),
015-189 (Hermitage Museum), YBC 4675 (Yale University), AO 64456, AO 17264, and AO 6555
(the Esagil tablet, Louvre Museum, dated 229 BCE).
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is a copy by the scribe Ahmes of older documents. It gives a list of decompositions
of 2/n into unit fractions; such decompositions are also found in the Lahun Math-
ematical Papyri (UC 32159 and UC 32160, conserved at the University College
London), which are dated circa 1800 BCE; see [27].

As traditional, we call an Egyptian fraction decomposition (or, in short, an Egyp-
tian fraction) any rational number a/n, seen as a sum of unit fractions (obviously,
all rational numbers possess such a decomposition!). It is often said that Egyptian
fractions were related to parts of the Eye of Horus (an ancient Egyptian symbol of
protection and royal power). However, this esoteric hypothesis (made popular via
the seminal work of the Egyptologist Gardiner) is nowadays refuted [37].

As narrated in his survey [20], Ron Graham once asked André Weil what he
thought to be the reason that led Egyptians to use this numerical system. André
Weil answered jokingly “It is easy to explain. They took a wrong turn!”. However, it
is fair to say that, though it is not the most efficient system, it possesses interesting
algorithmic aspects and has several applications: for a modern overview of the use
of fractions in Egyptian mathematics, see [36].

Babylonian and Greek mathematics were later further developed by Arabic and
Indian mathematicians. One book which played an important role in the trans-
mission of Arabic mathematics to Europe is the Liber Abaci of Fibonacci, in 1202
(see [33] for a translation into English). This book focuses mostly on the use of
fractions and on the modus Indorum (the method of the Indians), i.e., the Hindu-
Arabic numeral base 10 system that we all use nowadays. He shows how to use
these two concepts to solve many problems, often related to trading/financial com-
putations. With respect to fractions, he presents several methods to get Egyptian
fraction decompositions, like e.g.

97
100 = 1

50 + 1
5 + 1

4 + 1
2 .

Alternatively, a greedy method (nowadays called Fibonacci’s greedy algorithm for
Egyptian fractions) gives

97
100 = 1

2 + 1
3 + 1

8 + 1
86 + 1

25800 .

Similar decompositions were later also considered by Lambert [29] and Sylvester [42].
Sylvester’s attention for this topic was in fact due to the father of the history of
mathematics discipline, Moritz Cantor, who mentions (a few years after the trans-
lation of the Rhind papyrus) these Egyptian mathematics in the first volume of his
monumental 4000-page Vorlesungen über die Geschichte der Mathematik [11].

Modern times. Later, in the midst of the twentieth century, Erdős attracted
mathematicians’ attention to this topic, by proving or formulating puzzling con-
jectures related to Egyptian fraction decompositions, and also by establishing nice
links with number theory. Egyptian fractions were the subject of the third pub-
lished article of Erdős (the sum of unit fractions with denominators in arithmetic
progression is not an integer, [17]) and of his last (posthumous) published article
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with Graham and Butler (all integers are sums of distinct unit fractions with de-
nominators involving 3 distinct prime factors, [10]). Erdős also popularized some
conjectures, analysed densities related to these fractions [18, 16, 40], and considered
the minimal number of unit fractions needed to express a rational [7, 8, 6].

There are still many unsolved problems regarding Egyptian fractions; see e.g. [21,
Section D.11] for a survey. We can end by mentioning further applications or
links with total parallel resistance ( 1

RT
= 1

R1
+ 1

R2
+ . . . ), trees and Huffman

codes [23], Diophantine equations [1, 43], Engel expansion [12], continued fractions
and Farey series [5, 22], products of Abelian groups [2], combinatorial number
theory [19, 20, 34], and many asymptotic analyses [28, 9, 13, 15, 26, 24, 25, 14, 30].

Our result. Our article analyzes the Egyptian fraction Diophantine equation
a

n
= 1
m1

+ 1
m2

+ 1
m3

, where a, n,m1,m2,m3 ∈ N. (1.1)

The famous Erdős–Straus conjecture asserts that, for a = 4, there is always a
solution to this equation (for any n > 1); see [18] for the origin of this conjecture
and see [31, Chapter 30.1] for some nontrivial progress on it. A lesser-known
conjecture due to Sierpiński asserts that, for a = 5, there is always a solution [41],
and we additionally conjecture that this is also the case for a = 6 and a = 7 (for
n ≥ a/3). In fact, a conjecture of Schinzel [39] asserts that any positive integer a
is a solution of Equation (1.1) for n large enough (e.g., it seems that 8/n is a sum
of 3 unit fractions for n > 241). For sure, for each n, there is a finite number of
integers a which can be solution: the structure of the equation constrains a to be
between 1 and 3n. For fixed n, we set

Ak(n) := #{a : a
n

= 1
m1

+ 1
m2

+ · · ·+ 1
mk
} .

It is shown in [14] that A2(n)� nε and that, for k ≥ 3, one has

Ak(n)� nαk+ε, where αk = 1− 2/(3k−2 + 1).

In particular, A3(n) � n1/2+ε. Here and in what follows, all implied constants in
the Vinogradov symbol depend on a parameter ε > 0 which can be taken arbitrarily
small. In this article, we give a different proof of A3(n) � n1/2+ε and we get the
following explicit inequality:

Theorem 1.1. Introducing h(n) := C/ log logn (for some constant C ≈ 1.066
given in Lemma 4.1 in Section 4), one has for n ≥ 57000:

A3(n) ≤ 10n 1
2 + 13

4 h(n) logn.

In order to prove this result in Section 4, we give in Lemma 3.1 of Section 3 a
parametrization of the solutions to (1.1). Furthermore, thanks to this parametriza-
tion lemma, in Section 5 we prove bounds on

fa(n) := #
{

(m1,m2,m3) : a
n

= 1
m1

+ 1
m2

+ 1
m3

}
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and
F (n) := #

{
(a,m1,m2,m3) : a

n
= 1
m1

+ 1
m2

+ 1
m3

}
.

Note that fa(n) counts the number of representations of a/n as an Egyptian fraction
of length 3, while F (n) counts all possible Egyptian fractions of length 3 with
denominator n. We also include a formula and numerical tables in Section 2.

2. A formula and some numerics

In this section, we give the first few values of our main sequences and some closed-
form formulas. In addition to the sequences Ak(n) which count the integers a which
are solutions of the Egyptian fraction Diophantine equation

a

n
=

k∑
i=1

1
mi

for some positive integers m1, . . . ,mk, (2.1)

we shall also make use of some auxiliary sequences, A∗k(n), which consist of the
number of integers a which are solutions of Equation (2.1), with the additional
constraint that a is coprime to n.

The sequences Ak(n) and A∗k(n) are easily computed via an exhaustive search.
Some values can be more directly computed via the following closed-form formulas.
Proposition 2.1. For any fixed prime p, the number of fractions a/p and the
number of irreducible fractions a/p which can be written as a sum of two unit
fractions are given by

A2(p) = 2 + d(p+ 1) and A∗2(p) = d(p+ 1),
where d(n) =

∑
d|n 1 denotes as usual the number of divisors of n.

Proof. First, if a is any divisor of n + 1, say a = (n + 1)/f , then one has the
decomposition a/n = 1/(nf) + 1/f . Let us now prove that all the decompositions
are of this type, whenever n = p is prime and gcd(a, n) = 1. Equation (2.1) can be
rewritten as am1m2 = n(m1 +m2). As gcd(a, n) = 1, this is forcing n |m1m2. This
gives that m1 or m2 is a multiple of p. Without loss of generality, say m1 = pf .
Thus one has am1m2 = n(pf + m2), i.e., afm2 = pf + m2, which implies f |m2.
Setting m2 = fg and simplifying, one gets afg = (p + g), so g | p. As p is prime,
either one has g = 1, which leads to af = p+ 1 (and thus a is any divisor of p+ 1),
or one has g = p, which leads to afp = 2p (and thus a = 1 or a = 2). Altogether,
this gives d(p+1) possible values for a, all actually leading to a legitimate Egyptian
fraction decomposition of a/p. This proves A∗2(p) = d(p+ 1).

Now, consider Equation (2.1) with n = p (where p is prime) and gcd(a, p) 6= 1.
This gives exactly two additional decompositions: a

p = 1
2 + 1

2 (for a = p) and
a
p = 1

1 + 1
1 (for a = 2p). Thus, one has A2(p) = 2 +A∗2(p) = 2 + d(p+ 1). �

Unfortunately, there is no such simple formula for composite n. The obstruction
comes from the fact that the factors of n spread between m1 and m2 (like in the
above proof) and this leads to a more intricate disjunction of cases too cumbersome
to be captured by a simple formula.
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n A2(n) A3(n) n A2(n) A3(n) n A2(n) A3(n) n A2(n) A3(n)
1 2 3 26 15 36 51 20 58 76 30 84
2 4 6 27 18 41 52 27 68 77 25 77
3 5 8 28 23 49 53 10 36 78 39 101
4 7 11 29 10 27 54 35 82 79 12 46
5 6 11 30 29 58 55 24 66 80 49 118
6 10 16 31 8 28 56 36 85 81 28 81
7 6 13 32 23 51 57 21 62 82 18 62
8 11 19 33 18 44 58 18 54 83 14 52
9 10 19 34 17 42 59 14 41 84 60 139
10 12 22 35 20 49 60 51 109 85 22 79
11 8 16 36 34 69 61 6 33 86 19 65
12 17 29 37 6 28 62 18 57 87 25 79
13 6 18 38 17 45 63 33 86 88 39 106
14 13 26 39 20 51 64 32 82 89 14 49
15 14 29 40 33 71 65 22 69 90 58 138
16 16 31 41 10 31 66 36 89 91 20 80
17 8 21 42 34 74 67 8 40 92 29 89
18 20 38 43 8 32 68 30 80 93 21 77
19 8 22 44 25 61 69 25 71 94 21 70
20 21 41 45 28 69 70 39 98 95 24 83
21 17 37 46 17 48 71 14 44 96 59 143
22 14 32 47 12 36 72 54 121 97 8 47
23 10 25 48 41 87 73 6 38 98 32 98
24 27 51 49 14 48 74 17 59 99 36 107
25 12 33 50 27 67 75 33 91 100 48 128

Table 1. Number Ak(n) of integers a which are solutions of the Egyptian
fraction Diophantine equation a

n = 1
m1

+· · ·+ 1
mk

, for k = 2, 3 and n = 1, . . . , 100.
The sequences A2(n) and A3(n) are OEIS A308219 and OEIS A308221 in the On-
Line Encyclopedia of Integer Sequences.
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n A∗2(n) A∗3(n) n A∗2(n) A∗3(n) n A∗2(n) A∗3(n) n A∗2(n) A∗3(n)
1 2 3 26 7 15 51 9 32 76 10 34
2 2 3 27 8 22 52 9 27 77 13 51
3 3 5 28 7 18 53 8 33 78 7 27
4 3 5 29 8 24 54 7 22 79 10 43
5 4 8 30 6 13 55 12 42 80 11 35
6 3 5 31 6 25 56 9 28 81 10 40
7 4 10 32 7 20 57 10 35 82 6 28
8 4 8 33 7 23 58 6 24 83 12 49
9 5 11 34 7 18 59 12 38 84 12 34
10 4 8 35 10 28 60 9 24 85 10 50
11 6 13 36 7 18 61 4 30 86 9 30
12 4 8 37 4 25 62 8 26 87 12 47
13 4 15 38 7 20 63 11 38 88 10 37
14 5 10 39 11 28 64 9 31 89 12 46
15 5 13 40 8 22 65 12 43 90 10 29
16 5 12 41 8 28 66 9 24 91 10 52
17 6 18 42 7 19 67 6 37 92 9 36
18 5 11 43 6 29 68 10 33 93 10 44
19 6 19 44 8 24 69 12 41 94 7 31
20 6 14 45 9 29 70 8 28 95 12 53
21 8 19 46 5 20 71 12 41 96 11 36
22 4 13 47 10 33 72 10 30 97 6 44
23 8 22 48 9 24 73 4 35 98 11 37
24 6 14 49 8 35 74 9 28 99 13 52
25 6 22 50 9 23 75 13 40 100 12 42

Table 2. Number A∗k(n) of integers a which are solutions of the Egyptian
fraction Diophantine equation a

n = 1
m1

+ · · · + 1
mk

(with a coprime to
n), for k = 2, 3 and n = 1, . . . , 100. The sequences A∗2(n) and A∗3(n)
are OEIS A308220 and OEIS A308415 in the On-Line Encyclopedia of Integer
Sequences.
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3. A parametrization lemma

The proof of Theorem 1.1 is based on the following lemma which characterizes
the solutions of Equation (3.1) below for k = 3. A similar (but simpler) charac-
terization for k = 2 appears as Lemma 1 in [14] or in [35, 4, 3]; see also [38] for
another existence criterion when a = 4.

Lemma 3.1 (Parametrization lemma). Consider an Egyptian fraction decomposi-
tion of the irreducible fraction a/n:

a

n
= 1
m1

+ 1
m2

+ · · ·+ 1
mk

(with gcd(a, n) = 1 and k = 3)2. (3.1)

Then there exist 2k integers D1, . . . , Dk, v1, . . . , vk with
(i) lcm[D1, . . . , Dk] | n and gcd(D1, . . . , Dk) = 1;

(ii) av1 · · · vk |
∑k
j=1Djvj and gcd(vi, Djvj) = 1 when i 6= j,

and the denominators of the Egyptian fractions are given by

mi =
n
∑k
j=1Djvj

aDivi
for i = 1, . . . , k. (3.2)

Conversely, if conditions (i)–(ii) are fulfilled, then the mi’s defined via (3.2) are
integers, and denominators of k unit fractions summing to a/n.

Remark 3.2. This decomposition may not be unique. For example, both
(D1, D2, D3, v1, v2, v3) = (3, 1, 1, 3, 2, 1) and
(D1, D2, D3, v1, v2, v3) = (9, 1, 1, 1, 2, 1)

correspond to the decomposition 2
27 = 1

18 + 1
81 + 1

162 .

Remark 3.3. It may be tempting to state the very same lemma for k > 3. How-
ever, this does not work: indeed, already for k = 4 one may have denominators mi

such that there are no tuples of Dk’s, vk’s satisfying (i) and (ii). This is e.g. the
case for

1
13 = 1

14 + 1
364 + 1

365 + 1
132860 .

Only the converse direction works for any k: if the tuples of Dk’s and vk’s do exist,
then they give a decomposition.

Proof of Lemma 3.1. Let g = gcd(m1,m2,m3). Write mi = gm′i for i = 1, 2, 3. So,
gcd(m′1,m′2,m′3) = 1. We get

ag

n
= 1
m′1

+ 1
m′2

+ 1
m′3

.

Further, the left-hand side fraction gets irreducible by simplifying it via the factor-
izations

g = gcd(g, n)g′ and n = gcd(g, n)n′,

2Though Lemma 3.1 holds verbatim for k = 3 only, we state it with the parameter k as we
also discuss variations of this lemma for different values of k.
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so one obtains
ag′

n′
= 1
m′1

+ 1
m′2

+ 1
m′3

. (3.3)

Put
P =

∏
p|m′1m′2m′3

p.

Note that no prime factor p of P divides all three of m′1,m′2,m′3. Split them as
follows:

• Q is the largest divisor of P formed with primes p that divide just one of
the m′1,m′2,m′3.
• R is the largest divisor of P formed with primes p which divide two of
m′1,m

′
2,m

′
3, say m′i and m′j but3 νp(m′i) 6= νp(m′j).

• S = P/(QR) (i.e., the product of the remaining primes, those having the
same valuation in two of the mi’s).

For i = 1, 2, 3, write
m′i = qirisi, (3.4)

where qi is formed only of primes from Q, ri is formed of primes from R, and si is
formed of primes from S. We show that

q1q2q3 lcm[r1, r2, r3] | n′; (3.5)
s1 = u2u3, s2 = u1u3, s3 = u1u2 for some integers u1, u2, u3. (3.6)

Now, rewrite (3.3) as
ag′

n′
= 1
q1r1s1

+ m′2 +m′3
m′2m

′
3

= m′2m
′
3 + q1r1s1(m′2 +m′3)
q1r1s1m′2m

′
3

.

On the right-hand side, q1 is coprime to m′2m′3 + q1r1s1(m′2 +m′3) (because by the
definition of Q, q1 is coprime to m′2m

′
3). So, it must be the case that q1 | n′, as

ag′/n′ is irreducible. Similarly, q2, q3 divide n′ and since any two of the qi’s are
mutually coprime, it follows that q1q2q3 | n′. Consider next r1. It is formed by
primes from R, so for each prime factor p of r1 there exists i ∈ {2, 3} such that p | ri.
Say i = 2, then we introduce α1 := νp(r1) and α2 := νp(r2), with α2 > α1 (these
two assumptions, i = 2 and αi > α1, cause no loss of generality to this proof: the
other cases would be handled similarly). Now, writing m′1 = pα1m′′1 , m

′
2 = pα2m′′2 ,

we have
ag′

n′
= 1
pα1m′′1

+ 1
pα2m′′2

+ 1
m′3

= m′3m
′′
2p
α2−α1 +m′′1m

′
3 + pα2m′′2m

′′
1

pα2m′′1m
′′
2m
′
3

.

On the right, pα2 is coprime to the numerator m′3m′′2pα2−α1 +m′′1m
′
3 + pα2m′′2m

′′
1 .

Thus, pα2 | n′. Note that pα2 = lcm[pα1 , pα2 ]. Proceeding one prime at a time for
the primes dividing r1, r2, r3, we get to the conclusion that lcm[r1, r2, r3] | n′. Since
q1q2q3 and lcm[r1, r2, r3] have no prime factor in common, and since q1q2q3 | n′,
this proves Formula (3.5).

3We use the classical notation νp(m) for the exponent of p in the factorization of m.
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Now, Formula (3.6) is a simple linear algebra problem. Namely, for i1 ∈ {1, 2, 3},
let i2, i3 be such that {1, 2, 3} = {i1, i2, i3} and write

si1 = s
(i2)
i1

s
(i3)
i1

, where s
(i2)
i1

=
∏

p|gcd(si1 ,si2 )

pνp(si1 ).

The condition that νp(si1) = νp(si2) if p | gcd(si1 , si2) shows that s(i2)
i1

= s
(i1)
i2

for
all i1 6= i2. This gives Formula (3.6).

Now, rewrite (3.3) using (3.4) and (3.5): putting n′′ = n′/(q1q2q3 lcm[r1, r2, r3]),
we get

ag′

n′′
=
q2q3

lcm[r1,r2,r3]
r1

u1 + q1q3
lcm[r1,r2,r3]

r2
u2 + q1q2

lcm[r1,r2,r3]
r3

u3

u1u2u3
.

It is clear that u1, u2, u3 are mutually coprime since any common prime factor of
two of them will divide all three of m′1,m′2,m′3. So, write ui = diu

′
i, where di is the

largest factor of ui whose prime factors divide n′′ and ui, and where u′i is coprime
to n′′. Similarly, write n′′ = d′1d

′
2d
′
3n
′′′, where d′i is the largest factor of n′′ whose

prime factors divide di. We then get

ag′

n′′′

3∏
j=1

(
dj
d′j

)
=
q2q3

lcm[r1,r2,r3]
r1

u1 + q1q3
lcm[r1,r2,r3]

r2
u2 + q1q2

lcm[r1,r2,r3]
r3

u3

u′1u
′
2u
′
3

.

(3.7)
On the right, u′1u′2u′3 is divisible only by primes coprime to n′′ so u′1u′2u′3 divides
the numerator

q2q3
lcm[r1, r2, r3]

r1
u1 + q1q3

lcm[r1, r2, r3]
r2

u2 + q1q2
lcm[r1, r2, r3]

r3
u3.

So, the left-hand side of (3.7) is an integer. This shows that d′i | di for i = 1, 2, 3 and
n′′′ = 1 (since the four quantities di/d′i for i = 1, 2, 3 and n′′′ are rational numbers
supported on mutually disjoint sets of prime factors of n′′ and ag′ is coprime to n′′).
Thus, in fact n′′ = d′1d

′
2d
′
3 and we can write ui = d′ivi, where vi = (di/d′i)u′i. Hence,

we get

ag′ =
q2q3

lcm[r1,r2,r3]
r1

d′1v1 + q1q3
lcm[r1,r2,r3]

r2
d′2v2 + q1q2

lcm[r1,r2,r3]
r3

d′3v3

v1v2v3
. (3.8)

Putting (for i ∈ {1, 2, 3})

Di := q1 · · · q3

qi

lcm[r1, r2, r3]
ri

d′i,

we have that each Di is a divisor of n′ = n/ gcd(g, n), so

lcm[D1, D2, D3] | q1q2q3 lcm[r1, r2, r3]d′1d′2d′3 = n′d′1d
′
2d
′
3 = n′n′′ = n,

which is part of condition (i) of our parametrization lemma (Lemma 3.1). The
second part of condition (i) is now easy. Indeed, gcd(D1, D2, D3) cannot be divisible
by primes from either Q or R, and d′i is coprime to d′j (since d′i and d′j are supported
on primes dividing di and dj which are divisors of ui and uj , respectively), which
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shows that indeed gcd(D1, D2, D3) = 1. Rewriting Equation (3.8) in terms of these
Di’s gives

av1v2v3 | D1v1 +D2v2 +D3v3,

which is the first part of condition (ii) of our parametrization lemma (Lemma 3.1).
The second part is also clear since vi is a divisor of ui, which is coprime to uj for
any j 6= i with {i, j} ⊂ {1, 2, 3}. The converse direction is obvious: if one has the
divisibility conditions (i)–(ii), it is clear that the mi’s defined via (3.2) are integers
and satisfy Equation (3.1). �

4. An explicit bound on A3(n)

To prove explicit results, we will use the following lemma from [32].

Lemma 4.1 (Nicolas and Robin, [32]). Let d(n) be the number of divisors of n
and let h(n) := C/ log logn, where C := 2 log(48) log(log(6983776800))

log(6983776800) ≈ 1.066. Then

d(n) ≤ nh(n).

Because of this lemma, we will use h(n) = C/ log logn for the rest of the paper.

Proof of Theorem 1.1. Consider

A∗3(n) =
{
a : gcd(a, n) = 1, a

n
= 1
m1

+ 1
m2

+ 1
m3

}
and A∗3(n) = #A∗3(n).

From the parametrization lemma (Lemma 3.1), if a ∈ A∗3(n), there exist integers
D1, D2, D3, v1, v2, v3 satisfying Di |n, v1v2v3 |D1v1 +D2v2 +D3v3, and

a
∣∣∣ D1v1 +D2v2 +D3v3

v1v2v3
.

Let A be such that Av1v2v3 = D1v1 +D2v2 +D3v3. Then a |A.
First suppose A ≤ n1/2+α. Then A∗3(n) is bounded above by∑

A≤n1/2+α

d(A) ≤ n1/2+α log (n1/2+α) + n1/2+α

=
(

1
2 + α

)
n1/2+α logn+ n1/2+α.

Now, suppose A > n1/2+α. Fix D1, D2, D3 as divisors of n. There are d(n)3 ≤
n3h(n) ways of doing this. Suppose v1, v2 ≤ v3; one then has

Av1v2v3 = D1v1 +D2v2 +D3v3 ≤ (D1 +D2 +D3)v3 ≤ 3nv3.

Therefore m := v1v2 ≤ 3n1/2−α. Once v1, v2 are chosen, there are at most d(D1v1+
D2v2) choices of v3 (since v1v2v3 |D1v1 +D2v2 +D3v3). We have

D1v1 +D2v2 ≤ 2nv3 ≤ 6n3/2−α.

Therefore
d(D1v1 +D2v2) ≤ 6h(n)n3h(n)/2−αh(n).
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We can thus bound the contribution of the a’s appearing when A > n1/2+α by

3n3h(n)6h(n)n3h(n)/2−αh(n)
∑

m≤3n1/2−α

d(m).

Given that ∑
m≤3n1/2−α

d(m) ≤ 3n 1
2−α log(3n 1

2−α) + 3n 1
2−α

= 3n 1
2−α

(
1
2 − α

)
logn+ 3n 1

2−α log (3e)

and that 6h(n) ≤ 20
9 for n ≥ 57000, we get

A∗3(n) ≤ 10n 1
2 + 9

2h(n)−α−αh(n) logn+ 20n 1
2 + 9

2h(n)−α−αh(n) log (3e)

− 20n 1
2 + 9

2h(n)−α−αh(n) logn+
(

1
2 + α

)
n

1
2 +α + n

1
2 +α.

Choose α = 9
4+2h(n)h(n) ≤ 9

4h(n). We then have

A∗3(n) ≤ n 1
2 + 9

4h(n)
(

10 logn+ 20 log(3e)− 20α logn+ 1
2 + α+ 1

)
≤ 10n 1

2 + 9
4h(n) logn.

For the last inequality we use that, for n ≥ 20, h(n) ≤ 1, so

α ≥ 9
2 + 2h(n)h(n) ≥ 9

4h(n), and α ≤ 9
2h(n) ≤ 9

2 .

For n > e, logn/ log logn ≥ e; therefore

20α logn ≥ 45h(n) logn > 45e · C > 20 log (3e) + 3
2 + 9

2 .

Hence, for n ≥ 57000,
A∗3(n) ≤ 10n 1

2 + 9
4h(n) logn.

This gives the bound in Theorem 1.1:

A3(n) =
∑
d|n

A∗3(d) ≤ 10n 1
2 + 13

4 h(n) logn. �

Corollary 4.2. For n ≥ 101023 ,

A3(n) < 1
100n

1
2 + 1

15 .

Proof. When n ≥ 101023 ,
13
4 h(n) + log logn

logn + log 1000
logn <

1
15 .

Therefore, using Theorem 1.1, we get

A3(n) ≤ 10n 1
2 + 13

4 h(n) logn = 1
100n

1
2 + 13

4 h(n)+ log logn
logn + log 1000

logn <
1

100n
1
2 + 1

15 . �
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5. On the number of length 3 representations

In this section we study

fa(n) = #
{

(m1,m2,m3) : a
n

= 1
m1

+ 1
m2

+ 1
m3

}
,

and
F (n) = #

{
(a,m1,m2,m3) : a

n
= 1
m1

+ 1
m2

+ 1
m3

}
.

Theorem 5.1.

fa(n) ≤ nε
(
n1/2+ρ/2

a
+ n1−ρ

)
. (5.1)

Remark 5.2. Choosing ρ = 1/3 + (2/3)(log a/ logn) to balance between the two
estimates, we get that

fa(n)� n2/3+ε

a2/3 . (5.2)

In particular, fa(n) � n2/3+ε uniformly in a. It is interesting to compare this
bound with the one obtained for a = 4 by Elsholtz and Tao in [15, Proposition 1.7]:
For primes p, they get as p→∞

f4(p)� p3/5+o(1).

Now, if one just counts the triplets D1, D2, D3 satisfying the condition (i) in the
parametrization lemma 3.1, it is possible to adapt their reasoning to obtain a similar
bound for any a, when p is replaced by a composite integer n. Our bound (5.2)
is slightly worse (it gives the exponent 2/3 + ε instead of 3/5 + ε) but it works
for fixed or bounded a and it allows us to get better exponents for larger a (when
a ∼ nc with 1/10 < c < 1).

Proof of Theorem 5.1. We use the parametrization lemma (Lemma 3.1). Indeed,
there are divisors D1, D2, D3 of n such that

a | (D1v1 +D2v2 +D3v3)/(v1v2v3).
Fix D1, D2, D3. They can be fixed in at most d(n)3 � nε ways. Assume v1 ≤ v2 ≤
v3 (this just possibly creates a factor 6 for the number of solutions). Furthermore,
we define the integers A and b by A := ab = (D1v1 +D2v2 +D3v3)/(v1v2v3). Note
that

a

n
= 1
b(n/D1)v2v3

+ 1
b(n/D2)v1v3

+ 1
b(n/D3)v1v2

:= 1
m1

+ 1
m2

+ 1
m3

and that
Av1v2v3 = D1v1 +D2v2 +D3v3 ≤ 3nv3.

Now, let ρ be a parameter to be fixed later. First, let us assume that A > nρ. Then
v1v2 ≤ 3n1−ρ, so the pair (v1, v2) can be chosen in at most n1−ρ+ε ways. Having
chosen (v1, v2), v3 is a divisor of D1v1 + D2v2, so it can be chosen in at most nε
ways, and after that everything is determined, so A is unique. Note that such A
might not end up being divisible by the number a we started with so not all such
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solutions will contribute to fa(n). This gives the second part of the right-hand side
inequality in the statement of the theorem. So, we may assume that ab ≤ nρ, that
is,

b ≤ nρ

a
,

and then we have v1 ≤ 3(n/ab)1/2. Fix v1; it can be fixed in at most 3(n/ab)1/2

ways. Now put A1 := Av1 = (ab)v1, B1 := D1v1, and note that they are fixed.
Further,

A1v2v3 = B1 +D2v2 +D3v3

and the only variables are v2, v3. The above can be rewritten as
A1v2v3 −D2v2 −D3v3 +D3D2/A1 = B1 + (D2D3/A1),

or equivalently as
(A1v3 −D2)(A1v2 −D3) = A1B1 +D2D3.

It thus follows that A1v2 − D3 can be chosen in d(A1B1 + D2D3) � nε ways
and then v3 is uniquely determined. We thus get that for fixed b, v1, D1, D2, D3
there are nε possibilities for (v2, v3). Summing over v1, it follows that there are
� nε(n/ab)1/2 possibilities. Summing over b ≤ nρ/a, we get a count of

n1/2+ε

a1/2

∑
b≤3nρ/a

1
b1/2

� n1/2+2ε

a1/2

∫ 3nρ/a

1

dt
t1/2

� n1/2+ρ/2+2ε

a
.

Thus,

fa(n) ≤ nε
(
n1/2+ρ/2

a
+ n1−ρ

)
,

which is (5.1). �

Theorem 5.3. Let F (n) =
∑
a fa(n) be the count of all (a,m1,m2,m3) such that

a
n = 1

m1
+ 1

m2
+ 1

m3
. We have F (n)� n5/6+ε.

Proof. Let ε > 0. Note that ∑
a≤nα

fa(n) ≤ n2/3+α+ε. (5.3)

This estimate follows from using ρ = 1/3 in

fa(n) ≤ nε
(
n1/2+ρ/2

a
+ n1−ρ

)
≤ nε

(
n1/2+ρ/2 + n1−ρ

)
.

Now note that ∑
nα≤a≤nβ

fa(n) ≤ n2/3+ 3β−2α
3 +ε. (5.4)

This follows from using ρ = 2α+1
3 in

fa(n) ≤ nε
(
n1/2+ρ/2

a
+ n1−ρ

)
≤ nε

(
n1/2+ρ/2−α + n1−ρ

)
.
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Finally note that ∑
a≥nγ

fa(n) ≤ n1/2+ 2−2γ
3 +ε. (5.5)

This follows from using ρ = 2γ+1
3 and A3(n)� n1/2+ε in

fa(n) ≤ nε
(
n1/2+ρ/2

a
+ n1−ρ

)
≤ nε

(
n1/2+ρ/2−γ + n1−ρ

)
.

Now let x1 = 1/6 and xk = 1
6 + 2

3xk−1 for k ≥ 2. Then xk = 1
2 −

(2/3)k
2 . Let i

be fixed such that (2/3)i < ε. Consider the intervals

[1, nx1 ], [nx1 , nx2 ], . . . , [nxi−1 , nxi ], [nxi , n1/2], [n1/2,∞).

From (5.3), (5.4), and (5.5), we have that∑
a∈I

fa(n)� n5/6+ε,

for any interval I 6= [nxi , n1/2]. Using (5.4) and our choice of i, we get∑
nxi≤a≤n1/2

fa(n)� n5/6+ 4
3 ε.

Therefore
F (n) ≤ (i+ 1)n5/6+ε + n5/6+ 4

3 ε ≤ n5/6+2ε. �

Problem 5.4. The first values for which F (n) < n are F (8821) = 8590, F (11161) =
10270, and F (11941) = 10120. It is an open problem to find the largest n such
that F (n) > n. We can however show that such an n is smaller than 101023 .

Theorem 5.5. For n ≥ 101023 , F (n) < 1
10n.

The proof of this theorem requires the explicit upper bound for A3(n) from
Corollary 4.2. It also requires the following explicit version of Theorem 5.1:

Theorem 5.6. Let 1/3 ≤ ρ and n ≥ 11000. Then

fa(n) ≤ 6n5h(n)
(

6
√

2 n
1/2+ρ/2

a
10h(n) + 3

2 n
1−ρ logn 6h(n)

)
.

Proof. We revisit the proof of Theorem 5.1 with more technical bounds. First, the
assumption that v1 ≤ v2 ≤ v3 just introduces (at most) a factor 6 for the number
of solutions. Then, D1, D2, D3 can be fixed in at most d(n)3 ≤ n3h(n) ways (this
last bound follows from the Nicolas–Robin result, see Lemma 4.1).

Now let us assume that A > nρ in

Av1v2v3 = D1v1 +D2v2 +D3v3 ≤ 3nv3.
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Then v1v2 ≤ 3n1−ρ, so the pair (v1, v2) can be chosen in at most∑
v1≤
√

3n1−ρ

∑
v2≤3n1−ρ/v1

1 ≤
∑

v1≤
√

3n1−ρ

3n1−ρ

v1

≤ 3n1−ρ log(
√

3n1/2−ρ/2) + 3n1−ρ

≤ 3
2n

1−ρ logn− 3ρ
2 n

1−ρ logn+ 3
2n

1−ρ log 3 + 3n1−ρ

≤ 3
2n

1−ρ logn

ways. The last step of the inequality follows from using that ρ ≥ 1/3 and n ≥ 11000.
Having chosen (v1, v2), v3 is a divisor of D1v1 + D2v2, so it can be chosen in

d(D1v1 +D2v2) ways, and after that everything is determined, so A is unique. Now

D1v1 +D2v2 ≤ (D1 +D2)v2 ≤ (2n)(3n) = 6n2,

so d(D1v1 +D2v2) ≤ (6n2)h(n). This gives the second part of the right–hand side
inequality in the statement of the theorem (after factoring out an n2h(n)).

For the first part, we may assume that ab ≤ nρ, and then we have v1 ≤
3(n/ab)1/2. Since

A1B1 +D2D3 = abD1v
2
1 +D2D3 ≤ abn

(
9 n
ab

)
+ n2 = 10n2,

we get
d(A1B1 +D2D3) ≤ (10n2)h(n).

We have thus bounded the number of possibilities for (v2, v3) given fixed b, v1,
D1, D2, D3. To finish our estimate we use that v1 ≤ 3(n/ab)1/2 and that

∑
b≤nρ/a

1
b1/2

≤
∫ nρ

a +1

1

1
t1/2

dt ≤
∫ 2nρa

1

1
t1/2

dt ≤ 2
√

2n
ρ/2

a1/2 . �

Corollary 5.7. If n ≥ 101023 , then

fa(n) < 1
100n

1
10

(
n1/2+ρ/2

a
+ n1−ρ

)
.

Proof. For n ≥ 106, 6
√

2·10h(n) ≤ 2 logn, and for n ≥ 10334, 3
26h(n) ≤ 2. Therefore

fa(n) ≤ 12(logn)n5h(n)
(
n1/2+ρ/2

a
+ n1−ρ

)
.

But we have, for n ≥ 101023 ,

12(logn)n5h(n) = 1
100n

5h(n)+ log logn
logn + log 1200

logn <
1

100n
1/10. �

We are now ready to prove Theorem 5.5.
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Proof of Theorem 5.5. Let n ≥ 101023 . The proof will be similar to the proof of
Theorem 5.3. Applying Corollary 5.7 with ρ = 1/3 yields∑

a≤n7/30

fa(n) ≤ 2
100n

2
3 + 7

30 + 1
10 = 2

100n. (5.6)

Now applying ρ = 22/45 to Corollary 5.7, we get∑
n7/30≤a≤n7/18

fa(n) ≤ 2
100n

23
45 + 7

18 + 1
10 = 2

100n. (5.7)

Applying ρ = 89/135 to Corollary 5.7 yields∑
n7/18≤a≤n1/2

fa(n) ≤ 2
100n

46
135 + 1

2 + 1
10 = 2

100n
127
135 <

2
100n. (5.8)

Applying ρ = 2
3 to Corollary 5.7 and using Corollary 4.2 yields∑

a≥n1/2

fa(n) < 2
10000n

1
2 + 1

3 + 1
10 + 1

15 = 2
10000n. (5.9)

The proof follows from combining (5.6), (5.7), (5.8), and (5.9). �
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unit fractions, J. Aust. Math. Soc. 94 (2013), no. 1, 50–105. MR 3101397. See also the arXiv
version, revised in 2015.
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