Published online: November 23, 2021 https://doi.org/10.33044/revuma.1858

LINEAR MAPS PRESERVING DRAZIN INVERSES OF MATRICES OVER LOCAL RINGS

TUGCE PEKACAR CALCI, HUANYIN CHEN, SAIT HALICIOGLU, AND GUO SHILE

ABSTRACT. Let R be a local ring and suppose that there exists $a \in F^*$ such that $a^6 \neq 1$; also let $T: M_n(R) \to M_m(R)$ be a linear map preserving Drazin inverses. Then we prove that T=0 or n=m and T preserves idempotents. We thereby determine the form of linear maps from $M_n(R)$ to $M_m(R)$ preserving Drazin inverses of matrices.

1. Introduction

Let R be a commutative ring with an identity. $M_n(R)$ denotes the $n \times n$ matrix algebra over R and $GL_n(R)$ stands for the general linear group of $M_n(R)$ for a positive integer n. A matrix $A \in M_n(R)$ has Drazin inverse if there exists $B \in M_n(R)$ such that

$$B = BAB$$
, $AB = BA$, $A^k = A^{k+1}B$ for some $k \in \mathbb{N}$.

The preceding B is unique if it exists; we denote it by A^D . The Drazin inverse plays an important role in matrix and operator theory (see [7, 12, 13, 15, 14]). We say that a linear map $T: M_n(R) \to M_m(R)$ preserves Drazin inverses of matrices if the condition " $A \in M_n(R)$ has Drazin inverse" implies that $T(A) \in M_m(R)$ has Drazin inverse and $T(A)^D = T(A^D)$. Linear maps preserving generalized inverses of matrices are extensively studied by many authors, e.g., [1, 2, 3, 4, 6, 8, 9, 10, 11, 12].

Recall that a ring R is local if R has exactly one maximal ideal M. The ring R/M is called the residue field of R; we denote it by F. It is well known that a ring R is local if and only if for any $x \in R$, either x or 1-x is invertible. Clearly, every field is a local ring. The purpose of this paper is to further explore the linear maps preserving Drazin inverses of matrices over local rings. Let $T: M_n(R) \to M_m(R)$ be a linear map preserving Drazin inverses. If $a^6 \neq 1$ for some $a \in F^*$, we prove that T=0 or n=m and T preserves idempotents. That is, the preserving of Drazin

²⁰²⁰ Mathematics Subject Classification. 15A86, 15A09, 13H99.

Key words and phrases. Linear map; Drazin inverse; local ring.

The first and the third authors are supported by The Scientific and Technological Research Council of Turkey, TUBITAK (Grant TUBITAK-116F435).

inverses can be reduced to the case of idempotents. We thereby determine the form of linear maps from $M_n(R)$ to $M_m(R)$ preserving Drazin inverses of matrices.

In what follows, \mathbb{Z} and \mathbb{Z}_n denote respectively the ring of integers and the ring of integers modulo n for some positive integer n. We write J(R) and U(R) for the Jacobson radical of R and the set of all invertible elements of R, respectively.

Throughout the paper, R is a commutative local ring with the residue field F. Also, F^* denotes the group of all nonzero elements in the field F. Moreover, E_{ij} denotes the matrices with 1 in the (i, j)-entry and 0 elsewhere, for any $i, j \in [1, n]$.

2. Main results

Let R be a local ring with the residue field F, and let T be a linear map from $M_n(R)$ to $M_m(R)$, with m, n > 1. The aim of this section is to investigate the linear maps preserving Drazin inverses of matrices for such a local ring R.

Lemma 2.1. Let R be a local ring and suppose that there exists $a \in F^*$ such that $a^6 \neq 1$. Let T be a linear map from $M_n(R)$ to $M_m(R)$. If T preserves Drazin inverses of matrices and $T(E_{ii}) = 0$ for some $i \in [1, n]$, then T = 0.

Proof. We claim that $|F| \ge 4$. If not, $|F^*| < 3$, and so either $x^3 = 1$ or $x^3 = -1$ for any $x \in F^*$. This shows that $x^6 = 1$, a contradiction. We may assume $T(E_{11}) = 0$. Since $|F| \ge 4$, we find some $\overline{a} \notin \{\overline{0}, \overline{1}, \overline{-1}\}$. Then $a \in U(R)$. Let $x \in U(R)$. Then $(E_{11} + xE_{1j})^D = E_{11} + xE_{1j}$ for any $j \in [2, n]$. Hence,

$$T(E_{11} + xE_{1j})^3 = T(E_{11} + xE_{1j}),$$

and so $x^3T(E_{1j})^3=xT(E_{1j})$. In particular choose x=1 and x=a; we see that

$$T(E_{1j})^3 = T(E_{1j}), \quad a^2 T(E_{1j})^3 = T(E_{1j}).$$

Thus, we have $(a-1)(a+1)T(E_{1j}) = 0$. Clearly, a-1, $a+1 \in U(R)$; hence, $T(E_{1j}) = 0$. Likewise, $T(E_{j1}) = 0$ for any $j \in [2, n]$. Set $X = E_{11} + E_{1j} + E_{j1}$ and $A = E_{1j} + E_{j1} - E_{jj}$, where $j \in [2, n]$. Then T(X) = 0 and $A^D = X$. Then $T(A)^k = T(A)^{k+1}T(X) = 0$, and so $(-1)^kT(E_{jj}) = 0$. Hence $T(E_{jj}) = 0$. Therefore T = 0, as asserted.

Lemma 2.2. Let R be a local ring and suppose that there exists $a \in F^*$ such that $a^6 \neq 1$. Let T be a linear map from $M_n(R)$ to $M_m(R)$. If T preserves Drazin inverses of matrices, then

$$T(E_{ii})T(E_{jj}) = T(E_{jj})T(E_{ii}) = 0$$

for any distinct $i, j \in [1, n]$.

Proof. Since $a^6 \neq 1$ for some $a \in F^*$, from the above discussion we easily see that $|F| \geq 4$, and so we can find some $\overline{a} \notin \{\overline{0}, \overline{1}, \overline{-1}\}$. Then $a \in U(R)$. Let $A = E_{ii} + a^{-1}E_{jj}$, $X = E_{ii} + aE_{jj}$ for distinct $i, j \in [1, n]$. Then $X = A^D$. Hence we have

$$T(E_{ii} + aE_{jj})T(E_{ii} + a^{-1}E_{jj}) = T(E_{ii} + a^{-1}E_{jj})T(E_{ii} + aE_{jj}).$$

It follows that

$$(a^{-1} - a)(T(E_{ii})T(E_{jj}) - T(E_{jj})T(E_{ii})) = 0.$$

As $a^2 - 1 \in U(R)$, we see that $T(E_{ii})T(E_{jj}) = T(E_{jj})T(E_{ii})$.

Let $i, j \in [1, n]$ be distinct. By hypothesis, there exists some $a \in U(R)$ such that $\overline{a}^6 \neq \overline{1}$ in F. Set $Y = E_{ii} + aE_{jj}$ and $B = E_{ii} + a^{-1}E_{jj}$. Then $Y = B^D$. Hence

$$T(Y) = T(B^D) = T(B)^D = (T(B)^D)^2 T(B) = T(Y)^2 T(B).$$

It follows that

$$T(E_{ii}) + aT(E_{jj}) = (T(E_{ii}) + aT(E_{jj}))^{2} (T(E_{ii}) + a^{-1}T(E_{jj}))$$
$$= T(E_{ii})^{3} + (a^{-1} + 2a)T(E_{ii})^{2}T(E_{jj})$$
$$+ (2 + a^{2})T(E_{ii})T(E_{jj})^{2} + aT(E_{jj})^{3}.$$

Since E_{ii} is an idempotent, $E_{ii}^D = E_{ii}$ and so $T(E_{ii})^D = T(E_{ii}) = T(E_{ii})$. Hence it is easy to see that

$$T(E_{ii}) = T(E_{ii})^3.$$

Similarly, $T(E_{ij}) = T(E_{ij})^3$. Hence,

$$(a^{-1} + 2a)T(E_{ii})^{2}T(E_{jj}) + (2 + a^{2})T(E_{ii})T(E_{jj})^{2} = 0.$$

That is,

$$(1+2a^2)T(E_{ii})^2T(E_{jj}) + (2a+a^3)T(E_{ii})T(E_{jj})^2 = 0. (2.1)$$

Since $T(E_{ii}) = T(E_{ii})^3$ and $T(E_{jj}) = T(E_{jj})^3$, we derive

$$(2a + a^3)T(E_{ii})^2T(E_{jj}) + (1 + 2a^2)T(E_{ii})T(E_{jj})^2 = 0. (2.2)$$

Combining (2.1) and (2.2), we have

$$(a-1)(a^2-a+1)(T(E_{ii})^2T(E_{ij})-T(E_{ii})T(E_{ij})^2)=0.$$

Clearly,

$$\overline{(a-1)(a^2-a+1)(a+1)(a^2+a+1)} = \overline{a^6-1} \neq \overline{0}$$

in F; hence,

$$(a-1)(a^2-a+1)(a+1)(a^2+a+1) \in U(R).$$

Therefore we get

$$T(E_{ii})^2 T(E_{jj}) = T(E_{ii}) T(E_{jj})^2.$$

It follows by (2.2) that

$$(a+1)(a^2+a+1)T(E_{ii})^2T(E_{jj}) = 0,$$

and then $T(E_{ii})^2T(E_{jj})=0$. Consequently, we have

$$T(E_{ii})T(E_{jj}) = T(E_{ii})^3 T(E_{jj}) = 0.$$

This completes the proof.

Lemma 2.3. Let R be a local ring, and let $A^3 = A \in M_n(R)$. Then there exists $P \in GL_n(R)$ such that $PAP^{-1} = \operatorname{diag}(A_1, 0_{n-r})$, where $A_1^2 = I_r$ for some $r \in [0, n]$.

Proof. Clearly, A is regular. Since R is a local ring, it follows from [5, Theorem 7.3.2] that there exist $P, Q \in GL_n(R)$ such that

$$PAQ = \operatorname{diag}(I_r, d_1, \dots, d_{n-r}),$$

where $d_i \in J(R)$ for $i \in [1, n-r]$. Since A is regular, so is PAQ, and then each $d_i \in R$ is regular. Write $d_i = d_i x_i d_i$ for some $x_i \in R$. Then $d_i (1 - x_i d_i) = 0$. As $d_i \in J(R)$, we see that $1 - x_i d_i \in U(R)$; hence, $d_i = 0$. Therefore $PAQ = \operatorname{diag}(I_r, 0_{n-r})$. We have

$$PAP^{-1} = \operatorname{diag}(I_r, 0_{n-r})Q^{-1}P^{-1} = \begin{pmatrix} A_1 & A_2 \\ 0 & 0 \end{pmatrix}.$$

Since $A^3 = A$, we get

$$A_1^2(A_1, A_2) = (A_1, A_2).$$

Choose Y = PQ. Then we have $(A_1, A_2)Y = I_r$, and so $A_1^2 = I_r$. Hence,

$$\left(\begin{array}{cc} I_r & A_1^{-1}A_2 \\ 0 & I_{n-r} \end{array}\right)PAP^{-1}\left(\begin{array}{cc} I_r & -A_1^{-1}A_2 \\ 0 & I_{n-r} \end{array}\right) = \left(\begin{array}{cc} A_1 & 0 \\ 0 & 0 \end{array}\right).$$

This completes the proof.

Lemma 2.4. Let R be a local ring and suppose that there exists $a \in F^*$ such that $a^6 \neq 1$. Let T be a linear map from $M_n(R)$ to $M_m(R)$, $n \geq m$. If T preserves Drazin inverses of matrices, then T = 0 or n = m and $T(I_n) = I_n$.

Proof. If $T(E_{ii}) = 0$ for some $i \in [1, n]$, it follows by Lemma 2.1 that T = 0. Next, we assume that $T(E_{ii}) \neq 0$ for all $i \in [1, n]$.

Since $E_{11}^3 = E_{11}$, by virtue of Lemma 2.3 there exists $P_1 \in GL_m(R)$ such that

$$T(E_{11}) = P_1 \begin{pmatrix} A_1 & 0 \\ 0 & 0 \end{pmatrix} P_1^{-1},$$

where $A_1^2 = I_{r_1}$ for some $r_1 \in [0, m]$. Let

$$T(E_{22}) = P_1 \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} P_1^{-1},$$

where $X_{11} \in M_{r_1}(R)$. In view of Lemma 2.2, we have

$$T(E_{11})T(E_{22}) = T(E_{22})T(E_{11}) = 0,$$

and so $X_{12} = 0$, $X_{21} = 0$ and $X_{11} = 0$. Thus,

$$T(E_{22}) = P_1 \begin{pmatrix} 0 & 0 \\ 0 & X_{22} \end{pmatrix} P_1^{-1},$$

where $X_{22}^3 = X_{22}$. By using Lemma 2.3 again, there exists $Q_1 \in GL_{m-r_1}(R)$ such that

$$X_{22} = Q_1 \begin{pmatrix} A_2 & 0 \\ 0 & 0 \end{pmatrix} Q_1^{-1},$$

Rev. Un. Mat. Argentina, Vol. 62, No. 2 (2021)

where $A_2^2 = I_{r_2}$ for some $r_2 \in [0, m - r_1]$. It follows that

$$T(E_{22}) = P_1 \begin{pmatrix} I_{r_1} & 0 \\ 0 & Q_1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & A_2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} I_{r_1} & 0 \\ 0 & Q_1^{-1} \end{pmatrix} P_1^{-1}.$$

Set
$$P_2 = P_1 \begin{pmatrix} I_{r_1} & 0 \\ 0 & Q_1 \end{pmatrix}$$
. Then

$$T(E_{22}) = P_2(0 \oplus A_2 \oplus 0)P_2^{-1}.$$

Moreover,

$$T(E_{11}) = P_2(A_1 \oplus 0 \oplus 0)P_2^{-1}.$$

By iteration of this process, we have

$$T(E_{ii}) = P(0 \oplus \cdots \oplus A_i \oplus \cdots \oplus 0)P^{-1},$$

where $A_i^2 = I_{r_i}$. Clearly, $A_i \neq 0$, and so

$$T(I_n) = T(E_{11} + \dots + E_{nn}) = P(A_1 \oplus \dots \oplus A_n)P^{-1},$$

where $A_i^2 = I_{r_i}$. As $n \ge m$, we see that n = m, and so $A_i = 1$ for any $i \in [1, n]$. Therefore $T(I_n) = I_n$, as asserted.

Lemma 2.5. Let R be a local ring and suppose that there exists $a \in F^*$ such that $a^6 \neq 1$. Let T be a linear map from $M_n(R)$ to $M_n(R)$. If T preserves Drazin inverses of matrices, then $T(E_{ii}) = T(E_{ii})^2$ for all $i \in [1, n]$.

Proof. If T = 0, then the result holds. We may assume that $T \neq 0$. In light of Lemma 2.4, $T(I_n) = I_n$. As in the proof of Lemma 2.1, since $|F| \geq 4$, we can find some $\overline{x} \notin \{\overline{0}, \overline{1}, \overline{2}\}$. Clearly, we have

$$(I_n + (x^{-1} - 1)E_{ii})^D = I_n + (x - 1)E_{ii},$$

and so

$$T(I_n + (x-1)E_{ii})T(I_n + (x^{-1}-1)E_{ii})T(I_n + (x-1)E_{ii}) = T(I_n + (x-1)E_{ii}).$$

Set $A = T(E_{ii})$. Then,

$$(I_n + (x-1)A)(I_n + (x^{-1}-1)A)(I_n + (x-1)A) = I_n + (x-1)A.$$

Hence,

$$(I_n + (x-1)A)(I_n(x-1+1) - (x-1)A)(I_n + (x-1)A)$$

= $I_n(x-1+1) + (x-1+1)(x-1)A$.

This shows that

$$(I_n + (x-1)A)(I_n + (x-1)(I_n - A))(I_n + (x-1)A)$$

= $I_n + (x-1)(I_n + A) + (x-1)^2A$,

and so

$$(x-1)^{2}(A-A^{2})(I_{n}+(x-1)A)=0.$$

Since $A^3 = A$, we have

$$(x-1)^2(2-x)(A-A^2)=0.$$

As x-1, $x-2 \in U(R)$, we see that $A^2 = A$, as asserted.

We have accumulated all the information necessary to prove the following result.

Theorem 2.6. Let R be a local ring and suppose that there exists $a \in F^*$ such that $a^6 \neq 1$. Let T be a linear map from $M_n(R)$ to $M_m(R)$, $n \geq m$. If T preserves Drazin inverses of matrices, then T = 0 or n = m and T preserves idempotents.

Proof. Suppose that $T \neq 0$. In view of Lemma 2.4, n = m and $T(I_n) = I_n$. Let $M^2 = M \in M_n(R)$. Then there exists $Q \in GL_n(R)$ such that $M = Q(I_r \oplus 0)Q^{-1}$. Let $T_1(X) = T(QXQ^{-1})$. Then T_1 is a linear map from $M_n(R)$ to $M_n(R)$ and it preserves Drazin inverses of matrices with $T_1(I_n) = I_n$. By Lemma 2.2,

$$T_1(E_{ii})T_1(E_{jj}) = T_1(E_{jj})T_1(E_{ii}) = 0$$

for any distinct $i, j \in [1, n]$. By Lemma 2.5, $T_1(E_{ii}) = T_1(E_{ii})^2$ for any $i \in [1, n]$. Therefore,

$$T(M) = T(Q(I_r \oplus 0)Q^{-1})$$

$$= T_1(I_r \oplus 0)$$

$$= \sum_{i=1}^r T_1(E_{ii})$$

$$= \sum_{i=1}^r T_1(E_{ii})^2$$

$$= \left(\sum_{i=1}^r T_1(E_{ii})\right)^2$$

$$= (T_1(I_r \oplus 0))^2$$

$$= T(M)^2,$$

as asserted.

Note that the trivial map T=0 preserves Drazin inverses of matrices. For the nonzero case, we have the following.

Corollary 2.7. Let R be a local ring with $2,3,7 \in U(R)$, and let T be a nonzero linear map from $M_n(R)$ to $M_m(R)$. Then T preserves Drazin inverses of matrices if and only if n = m and either there exists $P \in GL_n(R)$ such that $T(A) = PAP^{-1}$ or there exists $P \in GL_n(R)$ such that $T(A) = PA^tP^{-1}$.

Proof. If $a^6 = 1$ for all $x \in F^*$, then $2^6 = 1$. Hence, $3^2 \times 7 = 0$, a contradiction. Therefore we can find some $a \in F^*$ such that $a^6 \neq 1$. In view of Theorem 2.6, T preserves idempotents. Therefore we complete the proof by [3, Theorem].

We now construct a ring to illustrate the preceding result.

Example 2.8. Let $\mathbb{Z}_{(5)} = \{ \frac{p}{q} \mid p, q \in \mathbb{Z}, (p, q) = 1 \text{ and } 5 \nmid q \}$. Then $\mathbb{Z}_{(5)}$ is a local ring with $2, 3, 7 \in U(\mathbb{Z}_{(5)})$. Let T be a linear map from $M_n(\mathbb{Z}_{(5)})$ to $M_m(\mathbb{Z}_{(5)})$. Then T preserves Drazin inverses of matrices if and only if T has the forms as in Corollary 2.7.

Proof. Clearly, $J(\mathbb{Z}_{(5)}) = 5\mathbb{Z}_{(5)}$, and so $\mathbb{Z}_{(5)}/J(\mathbb{Z}_{(5)}) \cong 5\mathbb{Z}$. Therefore we are through by Corollary 2.7.

The condition " $a^6 \neq 1$ for some $a \in F^*$ " in Theorem 2.6 is not superfluous, as the following shows.

Example 2.9. Let $T: M_2(\mathbb{Z}_3) \to M_2(\mathbb{Z}_3)$ be the linear map given by

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \mapsto \left(\begin{array}{cc} -a & -c \\ -b & -d \end{array}\right).$$

Then T preserves Drazin inverses of matrices, but T does not preserve idempotents.

Proof. Clearly, \mathbb{Z}_3 is local. Since $T(A) = -A^t$ for any $A \in M_2(\mathbb{Z}_3)$, we easily check that T preserves Drazin inverses of matrices. But

$$T\Big(\left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right)\Big) = \left(\begin{array}{cc} -1 & -1 \\ 0 & 0 \end{array}\right),$$

which is not an idempotent. Therefore T does not preserve idempotents. Observe that in this case, $a^6 = 1$ for all $a \in \mathbb{Z}_3^*$.

Acknowledgement

The authors would like to thank the referee for his/her careful reading of the manuscript.

References

- N. Boudi and M. Mbekhta, Additive maps preserving strongly generalized inverses, J. Operator Theory 64 (2010), no. 1, 117–130. MR 2669430.
- [2] C. Bu, Linear maps preserving Drazin inverses of matrices over fields, *Linear Algebra Appl.* 396 (2005), 159–173. MR 2112204.
- [3] C. G. Cao, Linear maps preserving idempotence of matrix modules over certain rings. (Chinese. English, Chinese summary) Heilongjiang Daxue Ziran Kexue Xuebao 16 (1999), no. 1, 1–4. MR 1725451.
- [4] C.-G. Cao and X. Zhang, Linear preservers between matrix modules over connected commutative rings, Linear Algebra Appl. 397 (2005), 355–366. MR 2116468.
- [5] H. Chen, Rings related to stable range conditions, Series in Algebra, 11, World Scientific, Hackensack, NJ, 2011. MR 2752904.
- [6] J. Cui, Additive Drazin inverse preservers, Linear Algebra Appl. 426 (2007), no. 2-3, 448–453.MR 2350667.
- [7] M. Dana and R. Yousefi, Formulas for the Drazin inverse of matrices with new conditions and its applications, Int. J. Appl. Comput. Math. 4 (2018), no. 1, Paper No. 4, 9 pp. MR 3736759.
- [8] L. Guo, J. Chen and H. Zou, Representations for the Drazin inverse of the sum of two matrices and its applications, Bull. Iranian Math. Soc. 45 (2019), no. 3, 683–699. MR 3953186.
- [9] L. Guo and X. Du, Representations for the Drazin inverses of 2 × 2 block matrices, Appl. Math. Comput. 217 (2010), no. 6, 2833–2842. MR 2733727.

- [10] B. Kuzma, Additive idempotence preservers, Linear Algebra Appl. 355 (2002), 103–117. MR 1930140.
- [11] S. Liu, Linear maps preserving idempotence on matrix modules over principal ideal domains, Linear Algebra Appl. 258 (1997), 219–231. MR 1444105.
- [12] M. Oudghiri and K. Souilah, Additive preservers of Drazin invertible operators with bounded index, Acta Math. Sin. (Engl. Ser.) 33 (2017), no. 9, 1225–1241. MR 3683708.
- [13] H. Wang, J. Huang and A. Chen, The Drazin inverse of the sum of two bounded linear operators and it's applications, *Filomat* 31 (2017), no. 8, 2391–2402. MR 3637035.
- [14] K. Yan, Q. Zeng and Y. Zhu, Generalized Jacobson's lemma for Drazin inverses and its applications, *Linear Multilinear Algebra* 68 (2020), no. 1, 81–93. MR 4037073.
- [15] H. Yang and X. Liu, The Drazin inverse of the sum of two matrices and its applications, J. Comput. Appl. Math. 235 (2011), no. 5, 1412–1417. MR 2728075.

$T. P. Calci^{\boxtimes}$

Department of Mathematics, Ankara University, Ankara, Turkey tcalci@ankara.edu.tr

H. Chen

Department of Mathematics, Hangzhou Normal University, Hangzhou, China huanyinchen@aliyun.com

S. Halicioglu

Department of Mathematics, Ankara University, Ankara, Turkey halici@ankara.edu.tr

G. Shile

Fuqing Branch of Fujian Normal University, Fuqing, China gs1456@163.com

Received: December 11, 2019 Accepted: August 3, 2020