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A CHARACTERIZATION OF THE LORENTZ SPACE
L(p, r) IN TERMS OF ORLICZ TYPE CLASSES

CALIXTO P. CALDERÓN AND ALBERTO TORCHINSKY

In remembrance of N. M. Rivière (1940–1978), who believed in Lorentz spaces.

Abstract. We describe the Lorentz space L(p, r), 0 < r < p, p > 1, in terms
of Orlicz type classes of functions LΨ. As a consequence of this result it follows
that Stein’s characterization of the real functions on Rn that are differentiable
at almost all the points in Rn [Ann. of Math 113 (1981), no. 2, 383–385], is
equivalent to the characterization of those functions given by A. P. Calderón
[Riv. Mat. Univ. Parma 2 (1951), 203–213].

1. Introduction

In 1981 E. M. Stein proved that if the gradient ∇F in the distribution sense of a
real function F on Rn belongs to the Lorentz space L(n, 1), then F is differentiable
at almost all the points in Rn, n > 1. He further proved that no condition on ∇F
weaker than ‖∇F‖∗n,1 <∞ will guarantee the differentiability of F a.e. in Rn, [8].
E. M. Stein refers to “local” L(n, 1); nevertheless the connection between “local”
and “global” should be clear to the reader in this context.

Earlier, in 1951, A. P. Calderón had proved that if ∇F belongs to the Orlicz
class

LΨ =
{
f :
∫

B

Ψ
(
|f(x)|

)
dx <∞

}
, (1.1)

with B a ball in Rn and Ψ satisfying∫ ∞
1

(
t/Ψ(t)

)1/(n−1)
dt <∞, (1.2)

Ψ(t) nonnegative, nondecreasing, then F is differentiable at almost all the points
of B. A. P. Calderón further showed that no condition on ∇F weaker than (1.1),
(1.2) above guarantees the a.e. differentiablity on B [1]. Since Calderón’s proof
suggests that convexity may not be necessary for Ψ, we will not require it in what
follows. We will refer to those classes of functions as Orlicz type classes.

The aim of this paper is to establish the connection between the Lorentz space
L(p, r), 0 < r < p, p > 1, and Orlicz type classes that satisfy a condition akin to
(1.2) above. The case p = n, r = 1 is of particular interest as it implies that the
differentiability conditions discussed above are equivalent [2].
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In a related context, since both Lorentz and Orlicz spaces, as well as the hybrid
Lorentz–Orlicz spaces, arise as intermediate spaces of Lp spaces [9], it is also of
interest to describe their interconnections. Now, if I = [0, 1] denotes the unit
interval in R, Lp(I) cannot be expressed as the union of the Lq(I) spaces it contains
properly; f(x) = |x|−1/p ln−2/p(1/|x|)χI ∈ Lp(I) and f /∈ Lq(I) for p < q ≤ ∞.
On the other hand, Welland showed that Lp(I), as well as more general Orlicz
spaces on I, can be represented as the union of Orlicz spaces that they contain
properly [10]. Since the Lorentz spaces are monotone with respect to the second
index [4], and since L(p, r)(I) ⊂ L(p, p)(I) = Lp(I) in the range that is of interest
to us, Welland’s result gives that L(p, r)(I) can be described as the union of Orlicz
spaces that it contains, but this is insufficient to us. Our result covers L(p, r)(Rn)
and, more to the point, the Orlicz type classes LΨ are taken over the family of
functions Ψ that satisfy condition (1.3) below.

We will work with classes of measurable functions f defined on Rn. Let f∗
denote the nonincreasing rearrangement of |f |, and let L(p, r), [4, 7], denote the
Lorentz space of measurable functions f whose nonincreasing rearrangement f∗
satisfies ∫ ∞

0
f∗(t)r tr/p−1 dt <∞.

We will restrict ourselves to the range 0 < r < p, p > 1.
Also consider the Orlicz type class LΨ of measurable functions f defined on Rn,

such that the rearrangement f∗ of |f | satisfies∫ ∞
0

Ψ
(
f∗(t)

)
dt <∞,

for a nondecreasing Ψ ≥ 0 defined on (0,∞) and satisfying∫ ∞
0

tq−1

Ψ(t)q/p
dt <∞, (1.3)

where 0 < r < p, p > 1, and 1/p+ 1/q = 1/r.
The aim of this paper is to prove that for 0 < r < p, p > 1,

L(p, r) =
⋃
Ψ
LΨ, 1/p+ 1/q = 1/r. (1.4)

Or, in other words, f ∈ L(p, r) if and only if∫ ∞
0

Ψ(f∗(t)) dt <∞

for some Ψ that satisfies (1.3) above.
The proof is accomplished in two parts, each dealing with an inclusion in (1.4).

We only point out that the constants c that appear below may vary from occurrence
to occurrence, and are independent of f .
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2. Embedding of Orlicz type classes into Lorentz spaces

We begin by showing that the Orlicz type classes corresponding to functions Ψ
that satisfy (1.3) above are continuously included in an appropriate Lorentz space.
More precisely, we have

Proposition 2.1. Let f be a nonnegative, nonincreasing function defined on (0,∞)
such that ∫ ∞

0
Ψ
(
f(t)

)
dt <∞,

where Ψ(t) satisfies (1.3) above.
Then, we have∫ ∞

0
f(t)r tr/p−1 dt ≤ c

(∫ ∞
0

tq−1

Ψ(t)q/p
dt
)r/q(∫ ∞

0
Ψ
(
f(t)

)
dt
)r/p

. (2.1)

Proof. Let
J =

∫ ∞
0

f(t)r tr/p−1 dt,

and consider the interval Ik where 2k < f ≤ 2k+1, −∞ < k <∞. Clearly

J ≤
∑

k

2(k+1)r

∫
Ik

tr/p−1 dt ≤ (p/r)
∑

k

2(k+1)r |Ik|r/p. (2.2)

Now, multiplying and dividing by Ψ(2k)r/p, by Hölder’s inequality with con-
jugate indices (p/r, q/r), it readily follows that the sum in the right-hand side of
(2.2) is dominated by∑

k

2(k+1)rΨ(2k)−r/p|Ik|r/p Ψ(2k)r/p

≤
(∑

k

2(k+1)q

Ψ(2k)q/p

)r/q(∑
k

|Ik|Ψ(2k)
)r/p

. (2.3)

Consider the sum in the first factor in (2.3) above. Each summand there can be
estimated by

2(k+1)q

Ψ(2k)q/p
≤ c

∫ 2k

2k−1

tq−1

Ψ(t)q/p
dt,

and, consequently, the sum does not exceed

c
∑

k

∫ 2k

2k−1

tq−1

Ψ(t)q/p
dt = c

∫ ∞
0

tq−1

Ψ(t)q/p
dt. (2.4)

As for the second sum, since

|Ik|Ψ(2k) ≤
∫

Ik

Ψ
(
f(t)

)
dt,

it readily follows that ∑
k

|Ik|Ψ(2k) ≤
∫ ∞

0
Ψ
(
f(t)

)
dt. (2.5)
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120 CALIXTO P. CALDERÓN AND ALBERTO TORCHINSKY

Thus, combining (2.2), (2.3), (2.4), and (2.5) above, the estimate (2.1) holds, and
the proof is finished. �

3. Embedding of Lorentz spaces into Orlicz type classes

We complete the proof by showing that if f ∈ L(p, r) for an appropriate range
of values of p, r, then f is in an Orlicz type class LΨ, where Ψ depends on f . More
precisely, we have

Proposition 3.1. Let 0 < r < p, p > 1. Let f be a nonnegative, nonincreasing
function defined on (0,∞) such that∫ ∞

0
f(t)r tr/p−1 dt <∞.

Then, with 1/p + 1/q = 1/r, there exists a nonnegative, nondecreasing function
Ψ(t) defined on (0,∞) satisfying (1.3) above for which∫ ∞

0
Ψ
(
f(t)

)
dt <∞. (3.1)

Proof. Let f0(t) be a strictly positive, strictly decreasing function on (0,∞) such
that

lim
t→0+

f0(t) =∞, lim
t→∞

f0(t) = 0,

and ∫ ∞
0

f0(t)r tr/p−1 dt <

∫ ∞
0

f(t)r tr/p−1 dt.

Let now g0 = f + f0. Then,

f(t) < g0(t), for all t, (3.2)

and ∫ ∞
0

g0(t)r tr/p−1 dt ≤ max (2, 2r)
∫ ∞

0
f(t)r tr/p−1 dt <∞. (3.3)

Finally, we define the function g(t). Let Jk be the interval where 2k < g0(t) ≤
2k+1, and [ak, bk] its closure. Then g(t) is defined by

g(ak) = 2k+1, g(bk) = 2k

and extended linearly on [ak, bk]. It follows that g(t) is strictly decreasing, contin-
uous on (0,∞), absolutely continuous, invertible, and

g0(t)/2 < g(t) < 2 g0(t). (3.4)

Furthermore, since g(t) is decreasing and r < p it follows that

g(ε)r εr/p ≤
∫ ε

0
g(t)r tr/p−1 dt, ε > 0,

and, consequently,
lim

ε→0+
g(ε)r εr/p = 0. (3.5)
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Likewise, for large N , we have

g(N)r Nr/p ≤ c
∫ N

N/2
g(t)r tr/p−1dt,

and, consequently, since
∫∞

0 g(t)r tr/p−1dt <∞,

lim
N→∞

g(N)r Nr/p = 0. (3.6)

Let now Ψ(t) be defined by the equation

Ψ
(
g(t)

)
= g(t)r tr/p−1, (3.7)

and let ϕ(t) be given by
Ψ(t) = trϕ(t). (3.8)

From (3.7) and (3.8) it follows that

ϕ
(
g(t)

)
= tr/p−1. (3.9)

This gives that ϕ(t) increases, and, consequently, Ψ(t), and Ψ(t)/tr, are increasing.
Next we verify that Ψ satisfies (1.3). Since Ψ(t) = trϕ(t) and r/p+ r/q = 1, by

(3.9) it follows that∫ ∞
0

tq−1

Ψ(t)q/p
dt =

∫ ∞
0

tq−1tr−q

ϕ(t)q/p
dt =

∫ ∞
0

tr−1ϕ(t)1−q/r dt. (3.10)

By the substitution t = g(u), since r/p − 1 = −r/q and 1 − q/r = −q/p, the
right-hand side of (3.10) becomes

−
∫ ∞

0
g(u)r−1 (ur/p−1)1−q/r

g′(u) du = −
∫ ∞

0
g(u)r−1 g′(u)ur/p du. (3.11)

Now, on account of (3.5) and (3.6), integration by parts gives that (3.11) eval-
uates to

c

∫ ∞
0

g(u)r ur/p−1 du,

which by (3.3) and (3.4) is finite, and (1.3) holds.
Moreover, by (3.7) it follows that∫ ∞

0
Ψ
(
g(u)

)
du <∞,

and, consequently, by (2.5) and (3.2),∫ ∞
0

Ψ
(
f(u)/2

)
du ≤

∫ ∞
0

Ψ
(
g0(u)/2

)
du ≤

∫ ∞
0

Ψ
(
g(u)

)
du <∞. (3.12)

Repeating the above argument with 2f replacing f above, (3.12) becomes∫ ∞
0

Ψ
(
2f(u)/2

)
du =

∫ ∞
0

Ψ
(
f(u)

)
du <∞,

(3.1) holds, and the proof is finished. �
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Since as noted in the proof Ψ(t)/t increases when r = 1, Ψ(t) can be regularized
to a convex function Ψ0(t) such that Ψ0(t) ≤ Ψ(t) ≤ Ψ0(2t), and, therefore, in this
case the Orlicz type class LΨ is essentially equivalent to an Orlicz space [5, 9].
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