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Vol. 62, No. 2, 2021, Pages 401–413
Published online: November 9, 2021
https://doi.org/10.33044/revuma.1911

INTERPOLATION THEORY
FOR THE HK-FOURIER TRANSFORM

JUAN H. ARREDONDO AND ALFREDO REYES

Abstract. We use the Henstock–Kurzweil integral and interpolation theory
to extend the Fourier cosine transform operator, broadening some classical
properties such as the Riemann–Lebesgue lemma. Furthermore, we show that
a qualitative difference between the cosine and sine transform is preserved on
differentiable functions.

1. Introduction

We shall deal with real Banach spaces denoted by X and with their complexifi-
cation given by X + iX. Also, given two Banach spaces X and Y , we denote by
L(X,Y ) the Banach space of all bounded linear operators T : X → Y with the oper-
ator norm given by ‖T‖L(X,Y ) = sup {‖T (x)‖Y : ‖x‖X ≤ 1}. For any T ∈ L(X,Y )
we define

T̃ (x+ iy) := T (x) + iT (y) (x, y ∈ X).
It follows that ‖T‖L(X,Y ) = ‖T̃‖L(X+iX,Y+iY ). This procedure has been used by
several authors [24, 2, 17].

We recall that for any p ∈ [1,∞) and X ⊂ R, the symbol L1(X) denotes the
space of all Lebesgue measurable functions f : X → R with

‖f‖Lp :=
(∫

X

|f(x)|p dx
)1/p

<∞.

Moreover, we denote by Wp = {f : R → R | f(x) = 0 a.e.} ≡ the subspace of
Lp(X) on which ‖ · ‖Lp vanishes. It is known that ‖ · ‖Lp is a seminorm for all
p ∈ [1,∞) and induces a norm on the quotient space Lp(X)/Wp, under which it
is complete. We will denote this space with respect to its norm by Lp(X), [27].
Similarly, for p ∈ [1,∞) we define Lp(X,C) and Lp(X,C) by considering functions
f : X → C.
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402 JUAN H. ARREDONDO AND ALFREDO REYES

For p = ∞ and f : X → R, we define ‖f‖∞ as the essential supremum of |f |,
and L∞(X) is the vector space of all Lebesgue measurable functions f for which
‖f‖∞ < ∞. Similarly, we define L∞(X), L∞(X,C) and L∞(X,C). If A ( X
is a Lebesgue measurable set and m denotes the Lebesgue measure, then given
a Lebesgue measurable function f defined on A such that m(X\A) = 0 we will
denote by the same symbol f the trivial extension of f to a (measurable) function
on X. Furthermore, for a function f ∈ Lp(X) or f ∈ Lp(X,C), we will call by
the same symbol f the (unique) element that defines this function in Lp(X) or
in Lp(X,C), respectively. Also, the characteristic function of a set E is given by
χE(x) = 1 if x ∈ E and zero otherwise.

If f belongs to L1(R) ∩ Lp(R), the Fourier transform is defined for every real
number s as

Fp(f)(s) :=
∫
R
e−isxf(x) dx

=
∫
R

cos(sx)f(x) dx− i
∫
R

sin(sx)f(x) dx

= Fcp(f)(s)− iFsp(f)(s),

(1.1)

where the integral is taken in the Lebesgue sense. Fcp and Fsp are called Fourier
cosine and Fourier sine transforms, respectively. Furthermore, by interpolation
theory, the operator Fp(f) is extended to Lp(R) for p ∈ [1, 2] as a bounded operator

Fp : Lp(R) −→ Lq(R)

with

‖Fp(f)‖p ≤ γp‖f‖q,

where 1/p+ 1/q = 1 and

γp =

1 if p = 1,

(2π)
1
q

(
p−1
p

) p−1
2p

p
1

2p if 1 < p ≤ 2.

The value of γp is given by the Hausdorff–Young inequality [25], the sharp Hausdorff–
Young inequality [5, 29], [15, Theorem 5.7] and [3].

For any unbounded subset X ⊂ R, the space C∞(X) denotes the complex val-
ued continuous functions on X vanishing at infinity [25]. We denote the space of
bounded variation functions by BV (R) and by BV0(R) the subspace of functions
vanishing at infinity, [12, 4, 31]. Also BV0(R,C) is the corresponding complexifi-
cation of BV0(R).

In [30] the Henstock–Kurzweil integral was employed to study the Fourier trans-
form. In [20, 22] it was proved that (1.1) makes sense as a Henstock–Kurzweil
integral on BV0(R). In fact, we have the following statement in [23].
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Definition 1.1. The HK-Fourier transform exists for every s 6= 0, and is defined
by

FHK : L1(R) +BV0(R)→ C∞(R\{0}),

FHK (f)(s) :=
∫ ∞
−∞

e−isxf(x) dx,

where the integral is in the Henstock–Kurzweil sense. Analogously, we define the
HK-Fourier cosine transform FcHK and the HK-sine Fourier transform FsHK as in
(1.1).

We say “HK-Fourier transform” in order to emphasize the use of the Henstock–
Kurzweil integral [30]. Moreover, FHK (f)(s) is pointwise defined and is continuous
except at zero; see example 3(d) in [30]. Note that FHK is well defined because
the Henstock–Kurzweil integral contains the Lebesgue integral, [14, 19]. F1 can be
seen as an extension of the HK-Fourier transform restricted to BV0(R),

FHK : BV0(R)→ C∞(R\{0}).

Moreover, Fp is an extension of F1, so that Fp is an extension of FHK .
The relation between Fp and FHK was first studied in [23], while the operator

FcHK was studied in [3]. This work builds on these references.

2. Henstock–Kurzweil Fourier transform

The space of Henstock–Kurzweil integrable functions defined on an interval I is
denoted by HK(I). This space is a seminormed space with the Alexiewicz semi-
norm, defined as

‖f‖HK = sup
{∣∣∣∣∣
∫ d

c

f(x) dx

∣∣∣∣∣ : [c, d] ⊂ I
}
.

The quotient space HK/W(I) will be denoted by HK (I), where W(I) is the sub-
space of HK (I) for which the Alexiewicz seminorm vanishes [7]. The completion
will be denoted by ĤK (I) and its complexification will be written as ĤK (R,C).

We study the HK-Fourier cosine transform defined by

FcHK (f)(s) =
∫ ∞
−∞

cos(sx)f(x) dx (s 6= 0).

Notice that for s = 0 and f ∈ BV0(R), FcHK (f)(0) might not be defined. Also, we
have that

Fc1(f)(s) = FcHK (f)(s) (2.1)

for all f ∈ L1(R)∩BV0(R) and s ∈ R. However, a partial result about the question
of continuity at s = 0 was proved in [3, Theorem 1]. In fact, FcHK is bounded while
FsHK is not. Actually, Theorem 1 and Proposition 3 in [3] imply the following
statement.
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Theorem 2.1.
(i) The HK-Fourier cosine transform is a bounded linear operator from BV0(R)

into HK (R).
(ii) The Fourier transform is a densely defined closed operator from L2(R) into

HK (R).

We shall show that differences and similitudes between the Fourier cosine and
Fourier sine transforms also hold on the classical Sobolev space W 1,1(R). It is
expected that these transforms are bounded operators with the same domain and
codomain for functions with enough smoothness, for example as in the Schwartz
space [25]. See also [16].

3. Interpolation theory

We consider a couple (X,Y ) of complex Banach spaces such that X and Y are
continuously embedded in a Hausdorff topological vector space V , i.e., X ⊂ V and
Y ⊂ V with continuous inclusion. This couple is called a complex interpolation
couple. In this case the intersection X ∩ Y is a linear subspace of V , and it is a
Banach space under the norm

‖v‖X∩Y = max{‖v‖X , ‖v‖Y }.
The sum X + Y = {x + y : x ∈ X, y ∈ Y } is a linear subspace of V and it is
endowed with the norm

‖v‖X+Y = inf{‖x‖X + ‖y‖Y : x ∈ X, y ∈ Y, x+ y = v}.

Remark 3.1. It follows from [18] that the space X+Y is isometric to the quotient
space (X×Y )/D, where D = {(d,−d) ∈ X×Y : d ∈ X∩Y }. Since V is a Hausdorff
space, D is closed, so X+Y is a Banach space. Moreover, X and Y are continuously
embedded in X + Y .

Throughout this section we shall consider S = {z ∈ C : 0 ≤ Re(z) ≤ 1} and we
shall use the complex space X+Y and the space F(X,Y ) of functions f : S→ X+Y
holomorphic on the interior of the strip S and continuous up to its boundary, such
that the maps t 7→ f(it) and t 7→ f(1 + it) are continuous from the real line into X
and Y , respectively. Therefore, F(X,Y ) is a Banach space with the norm given by

‖f‖F := max
{

sup
t∈R
‖f(it)‖X , sup

t∈R
‖f(1 + it)‖Y

}
<∞.

These facts can be consulted in [18, Ch. 2], [6, Ch. 4], [9, Ex. 2.6.6], [28, Ch. 2],
[13, Ch. 4] and [10, 1–4].

Definition 3.2. For every θ ∈ (0, 1), the space [X,Y ]θ consists of all a ∈ X + Y
such that a = f(θ) for some f ∈ F(X,Y ) and the norm on [X,Y ]θ is

‖a‖[θ] = inf{‖f‖F : f(θ) = a, f ∈ F(X,Y )}.

Remark 3.3. The space X ∩ Y is dense in [X,Y ]θ and [X,Y ]θ is isomorphic to
the quotient space F(X,Y )/Nθ, where Nθ is the subset of F(X,Y ) consisting of
the functions vanishing at z = θ. Moreover, Nθ is closed (see [6, 18]).
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Theorem 3.4. The space [X,Y ]θ is a Banach space and an intermediate space
with respect to (X,Y ), i.e.,

X ∩ Y ⊂ [X,Y ]θ ⊂ X + Y

with continuous inclusion.

Remark 3.5. It follows from [18, Corollary 2.8, Proposition 2.10] that for each
θ ∈ (0, 1),

(X,Y )θ,1 ⊂ [X,Y ]θ ⊂ (X,Y )θ,∞,
where the spaces (X,Y )θ,p are defined by the real method of interpolation. See
also [6, Theorem 4.7.1].

Theorem 3.6. Let (X1, Y1), (X2, Y2) be complex interpolation couples. If T be-
longs to L(X1, X2) ∩ L(Y1, Y2), then the restriction of T to [X1, Y1]θ belongs to
L
(
[X1, Y1]θ, [X2, Y2]θ

)
for every θ ∈ (0, 1). Moreover,

‖T‖L([X1,Y1]θ,[X2,Y2]θ) ≤ ‖T‖1−θL(X1,X2)‖T‖
θ
L(Y1,Y2).

In order to construct the interpolation space of L1(R) and BV0(R) we consider
the space L1(R)∩BV0(R) with given norm ‖·‖L1(R)∩BV0(R) := max{‖·‖L1 , ‖·‖BV }.

Lemma 3.7. L1(R) ∩BV0(R) is a Banach space with the given norm.

Proof. Since BV0(R) is a Banach space, then given a Cauchy sequence (fn)n≥1 on
L1(R) ∩BV0(R) there is f ∈ BV0(R) such that

‖fn − f‖BV → 0 (n→∞).
This yields uniform convergence of the sequence to f . Similarly, there exists [f̃ ] ∈
L1(R) such that

‖fn − f̃‖L1 → 0 (n→∞).
It follows that there exists a subsequence (fnk)k≥1 of (fn)n≥1 converging pointwise
a.e. to f ; see [27, 8]. From the fact that (fn)n≥1 converges uniformly to f , we get
that f(x) = f̃(x) a.e., yielding f ∈ L1(R) and

lim
n→∞

∫
R
|fn(x)− f(x)| dx = 0. �

On the product space L1(R) × BV0(R) with given norm ‖(f, g)‖L1×BV0 :=
‖f‖L1 + ‖g‖BV , we consider the quotient space

(
L1(R)×BV0(R)

)
/D where D :={

(f,−f) ∈ L1(R)×BV0(R) : f ∈ L1(R) ∩BV0(R)
}

. So, we set

L1(R) +BV0(R) :=
(
L1(R)×BV0(R)

)
/D.

Therefore, if a ∈ L1(R) + BV0(R), then it is an equivalence class given by a =
(f, g) + D. Nevertheless, we shall write a = f + g to simplify notation. Also, we
define

‖a‖L1+BV0 := inf
(h,−h)∈D

‖f − h‖L1 + ‖g + h‖BV .

This is a norm, by standard arguments. Then we consider the completion of the
space L1(R) + BV0(R), denoted by ̂L1(R) +BV0(R). In addition, on the product
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406 JUAN H. ARREDONDO AND ALFREDO REYES

space L1(R) × BV0(R) with the usual norm ‖([f ], g)‖L1×BV0 = ‖[f ]‖L1 + ‖g‖BV ,
we make

D′ =
{

([f ],−f) ∈ L1(R)×BV0(R) : f ∈ L1(R) ∩BV0(R)
}
.

Due to L1(R)∩BV0(R) being complete, D′ is closed in L1(R)×BV0(R). We define
L1(R) +BV0(R) =

(
L1(R)×BV0(R)

)
/D′.

Thus the sum space L1(R)+BV0(R) is a Banach space with the quotient norm [26].
Its elements are equivalence classes of the form ā =

[
f+g

]
= ([f ], g)+D′; however,

we will just write ā = f + g. We have the following characterization.

Proposition 3.8. The space L1(R) +BV0(R) is isometric to ̂L1(R) +BV0(R).

Proof. f ∈ L1(R) yields [f ] ∈ L1(R) with ‖[f ]‖L1 = ‖f‖L1 . Conversely, if [f ]
belongs to L1(R) then there is f̃ ∈ L1(R) such that f = f̃ a.e. Then, for each
a = (f, g) +D ∈ L1(R) +BV0(R), we define ā = ([f ], g) +D′ in L1(R) +BV0(R).
We get

‖(f, g) +D‖L1+BV0 = inf
(h,−h)∈D

‖f − h‖L1 + ‖g + h‖BV

= inf
([h],−h)∈D′

‖[f − h]‖L1 + ‖g + h‖BV

= ‖([f ], g) +D′‖L1+BV0 .

Therefore, the map a 7→ ā from L1(R) + BV0(R) into L1(R) + BV0(R) has dense
range, due to L1(R) being dense in L1(R). The map extends to an isometry from the
completion ̂L1(R) +BV0(R) onto L1(R) +BV0(R), implying the Proposition. �

Therefore, we have characterized the real space L1(R) +BV0(R). The complex-
ification space of this space is given by

L1(R,C) +BV0(R,C) :=
(
L1(R) +BV0(R)

)
+ i
(
L1(R) +BV0(R)

)
.

Similarly, we define the real space L∞(R) + ĤK (R) and its complexification
L∞(R,C) + ĤK (R,C). We will consider complex spaces and omit the symbol
(R,C) to simplify notation. Furthermore, for the complex interpolation couples(

L1, BV0
)

and
(
L∞, ĤK

)
(3.1)

we say that T is a bounded linear operator from (L1, BV0) to (L∞, ĤK ) if and only
if T ∈ L

(
L1 +BV0, L

∞ + ĤK
)

such that T ∈ L
(
L1, L∞

)
and T ∈ L

(
BV0, ĤK

)
.

We say that the complex spaces A and B are intermediate spaces between the
couples in (3.1) if and only if

L1 ∩BV0 ⊂ A ⊂ L1 +BV0 and L∞ ∩ ĤK ⊂ B ⊂ L∞ + ĤK .

A and B are called interpolation spaces with respect to the couples in (3.1) if
and only if A and B are intermediate spaces with the following property: T ∈
L(L1 +BV0, L

∞ + ĤK ) implies that the restriction of T to A belongs to L(A,B).
From Theorem 3.4, we have the interpolation spaces [L1, BV0]θ and [L∞, ĤK ]θ

with respect to (L1, BV0) and (L∞, ĤK ) for each θ ∈ (0, 1). We deal with the
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operators Fc1 and FcHK given in (1.1) and Definition 1.1 and their extensions to
the complexification of the spaces. We use the same symbols for the extended
operators. Then we define the operator

Fc1 : L1(R,C) +BV0(R,C) −→ L∞(R,C) + ĤK (R,C)
Fc1(f + g)(s) := Fc1(f)(s) + FcHK (g)(s).

(3.2)

Formula (3.2) is well defined on L1(R) + BV0(R). By interpolation theory, Fc1
is extended to L1(R) + BV0(R) for each s 6= 0. Thus, from Theorem 2.1 and
Theorem 3.6 we conclude that

Fc1 ∈ L([L1, BV0]θ, [L∞, ĤK ]θ).

The following estimate for its norm is valid:

‖Fc1‖L([L1,BV0]θ,[L∞,HK]θ) ≤ ‖Fc1‖1−θL(L1,L∞)‖F
c
HK‖θL(BV0,HK) ≤ Cθ,

for every θ ∈ (0, 1), where

C = 4π Si(π) and Si(x) := 2
π

∫ x

0

sin(y)
y

dy. (3.3)

Furthermore, from Remark 3.5, we have that

(L1, BV0)θ,1 ⊂ [L1, BV0]θ ⊂ (L1, BV0)θ,∞

holds for each θ ∈ (0, 1).

Proposition 3.9. For f ∈ [L1, BV0]θ, the formula

Fc1(f)(s) =
∫ ∞
−∞

cos(sx)f(x) dx

holds true pointwise almost everywhere and the Riemann–Lebesgue lemma is satis-
fied: Fc1(f)(s)→ 0 as |s| → ∞.

Proof. If f = f1 + f0 = f̃1 + f̃0 belongs to L1(R,C) +BV0(R,C), then

(f1 − f̃1, f0 − f̃0) ∈ D′.

This yields f1 − f̃1 = f̃0 − f0 with f1 − f̃1 ∈ L1(R,C) and f̃0 − f0 ∈ BV0(R,C).
Since Fc1 and FcHK coincide on L1(R,C) ∩ BV0(R,C) due to (2.1), we conclude

that
Fc1(f1) + FcHK (f0) = Fc1(f̃1) + FcHK (f̃0).

As a consequence, the value of Fc1(f)(s) does not depend on the representation of
f ∈ [L1, BV0]θ, for each θ ∈ (0, 1). From Theorem 3.6, for every f ∈ [L1, BV0]θ,
there exist f1 ∈ L1(R,C) and f0 ∈ BV0(R,C) such that f = f1 + f0 and for each
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s 6= 0,
Fc1(f)(s) = Fc(f1 + f0)(s)

= Fc1(f1)(s) + FcHK (f0)(s)

=
∫ ∞
−∞

cos(sx)f1(x) dx+
∫ ∞
−∞

cos(sx)f0(x) dx

=
∫ ∞
−∞

cos(sx)
(
f1(x) + f0(x)

)
dx

=
∫ ∞
−∞

cos(sx)f(x) dx.

(3.4)

Then, (3.4) establishes that the HK-Fourier cosine transform on [L1, BV0]θ has an
integral representation. From the Riemann–Lebesgue lemma [21, Lemma 2] we
conclude that Fc1(f)(s)→ 0 as |s| → ∞. �

In [1, 8], the Sobolev spaces W 1,p(R) are defined and for their complexification
W 1,p(R,C) := W 1,p(R) + iW 1,p(R) we have the next statement.

Lemma 3.10. For each θ ∈ (0, 1),

W 1,1(R,C) ⊂ [L1(R,C), BV0(R,C)]θ
with continuous inclusion.

Proof. First we recall that W 1,1(R) ⊂ L1(R) ∩BV0(R). From [4, Theorem 7.5] we
have

‖u‖L1∩BV0 := max
{
‖u‖L1 , ‖u‖BV

}
≤ ‖u‖L1 + ‖u‖BV
= ‖u‖L1 + ‖u′‖L1

= ‖u‖W 1,1 .

If u belongs to W 1,1(R,C), from [18, Proposition 2.4] we get

‖u‖[θ] ≤ max{‖u‖L1 , ‖u‖BV } ≤ ‖u‖W 1,1(R,C),

for every θ ∈ (0, 1). �

Corollary 3.11. For u ∈W 1,1(R,C), Fc1(u) belongs to HK (R,C).

The proof of Corollary 3.11 follows from the fact that W 1,1(R) ⊂ BV0(R), and
then by Theorem 2.1,

FcHK
(
W 1,1(R)

)
⊂ HK (R).

Therefore, the range of the Sobolev space W 1,1(R,C) under the HK-Fourier cosine
transform is contained in HK (R,C). Explicitly,

Fc1
(
W 1,1(R,C)

)
⊂ HK (R,C). (3.5)

The Fourier cosine and sine transforms are continuous operators on L2(R,C),
while their qualitative differences appear even on the space of functions W 1,1(R,C)
that have a degree of regularity. In the following example we show this difference.
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Example 3.12. Let us define

h(x) :=


1

2− log(x) if x ∈ (0, 1],

0 if x > 1.

For each x ∈ (0, 1), we have

h′(x) = 1
x[2− log(x)]2 .

We extend h over R as an odd map. Also, we consider an even function ϕ ∈ C∞c (R)
such that 0 ≤ ϕ(x) ≤ 1, with ϕ(x) = 1 for |x| ≤ 1/2 and vanishing for |x| ≥ 1.
We define f(x) := h(x)ϕ(x), for all x ∈ R. Thus, f is an odd map belonging to
W 1,1(R) ⊂ L1(R) ∩BV0(R) and

FsHK (f)(s) = 2
∫ ∞

0
sin(sx)f(x) dx, for all s ≥ 0.

We analyze the convergence of the Henstock–Kurzweil integral:∫ ∞
0
FsHK (f)(s) ds. (3.6)

For any fixed s > 0, the map x 7→ sin(sx) belongs to HK [0,M ] for 0 < M < ∞,
and we have

‖ sin(s·)‖HK [0,M ] = sup
0<u<v<M

∣∣∣∣∫ v

u

sin(st) dt
∣∣∣∣ ≤ 2

s
.

Thus, for 0 < b < ∞, we get from Lebesgue’s dominated convergence theorem,
Fubini’s theorem and Hake’s theorem [4]:∫ b

0

∫ ∞
0

sin(sx)f(x) dx ds = lim
M→∞

∫ M

0

1− cos(bx)
x

f(x) dx.

In fact, ∫ M

0

1− cos(bx)
x

f(x) dx =
∫ b

0

1− cos(y)
y

f(y/b) dy.

Now, for δ = 1/4,∫ b

0

1− cos(y)
y

f(y/b) dy =
∫ δ

0

1− cos(y)
y

f(y/b) dy +
∫ b

δ

1− cos(y)
y

f(y/b) dy.

(3.7)
Since f(y/b)→ 0 as b→∞, we have that

lim
b→∞

∫ δ

0

1− cos(y)
y

f(y/b) dy = 0.

For the second integral on the right side of (3.7) we have∫ b

δ

1− cos(y)
y

f(y/b) dy =
∫ b

δ

f(y/b)
y

dy +
∫ b

δ

− cos(y)
y

f(y/b) dy = I1 + I2.
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Integrating by parts,

lim
b→∞

I2 = lim
b→∞

−
∫ b

δ

− sin(y)
(
b−1yf ′(y/b)− f(y/b)

y2

)
dy

= lim
b→∞

1∫
δ/b

sin(bt)
bt

f ′(t) dt−
b∫
δ

sin(y)f(y/b)
y2 dy.

By Lebesgue’s dominated convergence theorem we conclude that

lim
b→∞

∫ b

δ

sin(y)f ′(y/b)
by

dy = lim
b→∞

∫ b

δ

− sin(y)
y2 f(y/b) dy = 0.

Therefore the limit of I2 is zero. Writing explicitly the integrand of the integral I1
we get

I1 =
1/2∫
δ/b

1
u[2− log(u)] +

1∫
1/2

ϕ(u)
u[2− log(u)] du

and

lim
b→∞

1/2∫
δ/b

1
u[2− log(u)] du =∞.

Therefore, the integral in (3.6) does not exist and FsHK (f) does not belong to
HK (R). In conclusion,

Fs2
(
W 1,1) = Fs1

(
W 1,1) = FsHK

(
W 1,1(R)

)
* HK (R). (3.8)

Then, the HK-Fourier sine transform remains unbounded on W 1,1(R), in contrast
with relation (3.5). Also, in [3, Example 1] it was established that

FsHK
(
BV0(R)\W 1,1(R)

)
* HK(R).

The function given in Example 3.12 is a slight variation of one considered in [11].
We can proceed in the same way to define the space L2(R,C) + BV0(R,C).

Therefore, we have the continuous inclusions
L2(R,C) ∩BV0(R,C) ⊂ [L2(R,C), BV0(R,C)]θ ⊂ L2(R,C) +BV0(R,C),

for 0 < θ < 1. Now for the extended operators Fc2 and FcHK on L2(R,C) and on
BV0(R,C) respectively, we define the map

Fc2 : L2(R,C) +BV0(R,C) −→ L2(R,C) + ĤK (R,C)
Fc2(f + g) := Fc2(f) + FcHK (g).

So, by Theorem 3.6, we have

Fc2 ∈ L([L2, BV0]θ, [L2, ĤK ]θ),
with the following estimate for its norm:

‖Fc2‖L([L2,BV0]θ,[L2,ĤK ]θ) ≤ ‖F
c
2‖1−θL(L2,L2)‖F

c
HK‖θL(BV0,ĤK)

≤ (2π)
1−θ

2 Cθ,
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for every θ ∈ (0, 1) and C given by (3.3).
Similarly, for the operators Fcp and FcHK on Lp(R,C) and on BV0(R,C) respec-

tively, we define

Fcp : Lp(R,C) +BV0(R,C) −→ Lq(R,C) + ĤK (R,C)
Fcp(f) := Fcp(fp) + FcHK (g),

where f = fp + g with 1/p + 1/q = 1. This operator is a generalization of the
map considered in [3, Corollary 1]. For the couples given by X1 = Lp(R,C) and
X2 = Lq(R,C), with 1 ≤ p ≤ 2, and Y1 = BV0(R,C) and Y2 = ĤK (R,C) we have
from Theorem 3.6 that

Fcp ∈ L
(
[Lp, BV0]θ, [Lq, ĤK ]θ

)
for every θ ∈ (0, 1), and the following estimate for the norm:

‖Fcp‖L([Lp,BV0]θ,[Lq,ĤK ]θ) ≤ ‖F
c
p‖1−θL(Lp,Lq)‖F

c
HK‖θL(BV0,ĤK)

≤ γ1−θ
p Cθ,

where C is given in (3.3).

For 1 < p < 2, the relation between Fcp, Fc1 and Fc2 is given by the decomposition
of Lp(R) in [23], which implies that for each fp + g ∈ Lp(R) + BV0(R) there exist
f1 ∈ L1(R) ∩ Lp(R) and f2 ∈ L2(R) ∩ Lp(R) such that

fp + g = (f1 + g) + f2 = f1 + (f2 + g).

Corollary 3.13. For 1 < p < 2, Fcp(fp + g) = Fc1(f1 + g) + Fc2(f2).

Proof. This follows by taking a sequence (fn)n≥1 on Lp(R) such that fn → f with
f = f1 +f2 ∈ Lp(R), and using that the sequence fn = f1,n+f2,n has the property
fi,n → fi in the norm of Li(R), i = 1, 2; see [23]. �

Proposition 3.14. For f ∈W 1,p(R) with 1 < p ≤ 2, the formula

Fp(f ′)(s) = isFp(f)(s)

holds true pointwise almost everywhere.

Proof. If f ∈ W 1,p(R) then f, f ′ belong to Lp(R) with f(x) → 0 as |x| → ∞;
see [8, Corollary 8.9]. Next, for each n ≥ 1, we let ϕn(x) := χ[−n,n](x)f(x) and
γn(x) := χ[−n,n]f

′(x). So ‖ϕn−f‖Lp → 0 as n→∞, and there exists a subsequence
(ϕnk)k≥1 such that Fp(ϕnk)(s)→ Fp(f)(s) a.e. as k →∞. Therefore,

Fp(f)(s) = lim
k→∞

Fp(ϕnk)(s) = lim
k→∞

∫ nk

−nk
e−isxf(x) dx

almost everywhere. Integrating by parts [8, Corollary 8.10], for each k ≥ 1,∫ nk

−nk
e−isxf ′(x) dx = e−isxf(x)

∣∣∣nk
−nk
−
∫ nk

−nk
−ise−isxf(x) dx.
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Thus,

Fp(f ′)(s) = lim
k→∞

Fp(γnk)(s) = lim
k→∞

∫ nk

−nk
e−isxf ′(x) dx

= is lim
k→∞

∫ nk

−nk
e−isxf(x) dx = isFp(f)(s)

almost everywhere. �

Proposition 3.15. If f ∈W 1,p(R) with 1 < p ≤ 2, then Fp(f) ∈ L1(R).

Proof. If f ∈ W 1,p(R) then Fp(f) belongs to Lq(R) with 1/p + 1/q = 1 and for
A = {s ∈ R : |s| ≥ 1} we get, by Proposition 3.14 and Hölder’s inequality,∫

A

|Fp(f)(s)| ds =
∫
A

∣∣∣∣1s Fp(f ′)(s) ds
∣∣∣∣ ≤ ‖1/(·)‖Lp(A) ‖Fp(f

′)‖Lq(A) <∞,

with 1/p+ 1/q = 1. Therefore, Fp(f) ∈ L1(R). �

As a consequence of Proposition 3.15, the range of W 1,p(R), for 1 < p ≤ 2, under
the action of the Lp-Fourier transform operator is contained in L1(R). Explicitly,

Fp
(
W 1,p(R)

)
⊂ L1(R) ( HK(R).

This relation contrasts with (3.8).
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