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ON THE MODULE INTERSECTION GRAPH
OF IDEALS OF RINGS

THANGARAJ ASIR, ARUN KUMAR, AND ALVEERA MEHDI

Abstract. Let R be a commutative ring and M an R-module. The M -inter-
section graph of ideals of R is an undirected simple graph, denoted by GM (R),
whose vertices are non-zero proper ideals of R and two distinct vertices are
adjacent if and only if IM ∩ JM 6= 0. In this article, we focus on how certain
graph theoretic parameters of GM (R) depend on the properties of both R

and M . Specifically, we derive a necessary and sufficient condition for R and
M such that the M -intersection graph GM (R) is either connected or complete.
Also, we classify all R-modules according to the diameter value of GM (R).
Further, we characterize rings R for which GM (R) is perfect or Hamiltonian
or pancyclic or planar. Moreover, we show that the graph GM (R) is weakly
perfect and cograph.

1. Introduction

Recently, there has been considerable attention in the literature to associating
graphs with rings or modules. More specifically, there are many papers on assigning
graphs to modules (see, for example, [3, 11, 13]). The present paper deals with
what is known as the intersection graph. The first step in this direction was taken
by Csákány and Pollák [7] in 1969. In [5], the authors introduced and studied
the intersection graph of a family of non-trivial ideals of a ring. These motivated
the authors of [1] to define the intersection graph of submodules of a module. In
the last decade, many research articles have been published on the intersection
graphs of rings and modules; for instance, see [2, 4, 12, 14]. In 2018, Heydari [10]
combined the concepts of intersection graph of ideals of a ring and intersection
graph of submodules of a module to define the M -intersection graph of ideals of a
ring R, where M is an R-module.

Formally, let R be a commutative ring with identity and let M be an R-module.
The M -intersection graph of ideals of R, denoted by GM (R), is a simple graph
whose vertices are the non-trivial ideals of R and any two distinct vertices are
adjacent if IM ∩ JM 6= 0. Note that the properties of GM (R) depend upon M as
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well as the underlying ring R. This observation inspired the authors of the paper
to investigate further properties of GM (R).

We first summarize the notations and concepts. For any a ∈M , ann(a) = {x ∈
R : ax = 0} is the annihilator ideal of a in M . The module M is called a faithful
R-module if ann(M) = 0. An R-module M is a multiplication module if for each
submodule N of M there is an ideal I of R such that IM = N . A module is called
a uniform module if the intersection of any two non-zero submodules is non-zero.
Throughout the paper, the notations I(R)∗, Max(R), Min(R), Z and Zn denote,
respectively, the set of all non-trivial ideals of R, the set of all maximal ideals
of R, the set of all minimal ideals of R, the set of integers and the set of integers
modulo n.

A graph in which each pair of distinct vertices is joined by an edge is called
a complete graph. On the other extreme, a null graph is a graph containing no
edges. The complete graph and null graph on n vertices are denoted by Kn and
Kn, respectively. A graph G is connected if there is a path between any two distinct
vertices of G; otherwise G is disconnected. Let u and v be two distinct vertices of G.
If the shortest u−v path is of length k, then d(u, v) = k. Note that d(u, v) = ∞
if there is no path between u and v. The diameter of G, denoted by diam(G), is
the supremum of the set {d(u, v) : u and v are distinct vertices of G}. The girth
of G, denoted by gr(G), is the length of the shortest cycle in G and gr(G) = ∞
whenever G is a tree. An Eulerian circuit in a connected graph G is a closed
trail that contains every edge of G. A connected graph that contains an Eulerian
circuit is called an Eulerian graph. A cycle in G that contains every vertex of G is
called a Hamiltonian cycle of G. A Hamiltonian graph is a graph that contains a
Hamiltonian cycle.

By a clique in G we mean a complete subgraph of G, and the number of vertices
in the largest clique of G is called the clique number of G, denoted by ω(G). The
chromatic number of G, denoted by χ(G), is the minimum number of colors which
can be assigned to the vertices of G in such a way that every two adjacent vertices
have different colors. Note that, for any graph G, ω(G) ≤ χ(G). A graph G is
weakly perfect if ω(G) = χ(G) and G is called perfect if ω(H) = χ(H) for every
induced subgraph H of G. A graph is said to be planar if it can be drawn on the
plane in such a way that its edges intersect only at their endpoints. For general
references on graph theory, we use Chartrand and Zhang [6].

The article is organized as follows. In Section 2, we obtain a necessary and
sufficient condition for the connectedness and completeness of GM (R), followed by
diameter classification of GM (R). In Section 3, we provide an equivalent condition
for GM (R) to be a tree and also characterize all Noetherian rings R with unique
minimal ideal for which GM (R) is perfect. Finally, in Section 4 we concentrate on
the cyclic nature of GM (R). In particular, we obtain the girth value of GM (R) and
discuss about Hamiltonian and pancyclic nature of GM (R).

We begin with the observation that there are R-modules for which GM (R) sat-
isfies the extreme cases, namely null graph and complete graph. If M = Zp ⊕ Zq
and R = Zpq for distinct primes p and q, then GM (R) is a null graph. Further,
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the following result says that GM (R) is complete whenever M is a uniform faithful
R-module.

Proposition 1.1. Let R be a commutative ring and let M be a uniform R-module.
Then GM (R) = Kλ∪Kβ, where λ = |A| and β = |I(R)∗\A|, with A = {I ∈ I(R)∗ :
IM = 0}. In addition, if M is both uniform and faithful, then GM (R) is complete.

Proof. Let A = {I ∈ I(R)∗ : IM = 0}. If I ∈ A, then IM ∩ JM = 0 for all
J ∈ I(R)∗. This implies that A is the set of isolated vertices in GM (R). Also for
any two ideals J,K ∈ I(R)∗ \ A, we have JM and KM as non-zero submodules
of M . Since M is uniform, JM ∩KM 6= 0. This implies that the subgraph induced
by I(R)∗ \ A is complete in GM (R). Moreover, if M is faithful, then ann(M) = 0
and so there is no ideal I in R such that IM = 0. Thus A = ∅. �

2. Connectedness

Connectedness is one of the significant graph theoretic properties. In this section,
we investigate conditions for which the graph GM (R) is connected. The main result
of this section is Theorem 2.7, in which we classify the modules according to the
diameter of GM (R). In order to prove Theorem 2.7, we need a few propositions
and lemmas.

Notice that if a module M is not faithful, then ann(M) 6= (0) and ann(M) ∈
I(R)∗. Also ann(M)M = (0) so that ann(M) is an isolated vertex of GM (R).
Therefore GM (R) is disconnected. In case of a faithful module, Heydari [10] pro-
vides a necessary condition for the disconnected GM (R) which is stated below.

Proposition 2.1 ([10, Theorem 1]). Let R be a commutative ring and let M be
a faithful R-module. If GM (R) is disconnected, then M is a direct sum of two
R-modules.

In the following theorem we observe a few interesting consequences of the above
result. In what follows, for a given R-module M , G(M) denotes the intersection
graph of M (see [1]).

Theorem 2.2. Let R be a commutative ring and let M be a faithful multiplication
R-module.

(i) If GM (R) is connected, then every pair of maximal ideals in R have a
non-trivial intersection.

(ii) If |I(R)∗| ≥ 2 and GM (R) is disconnected, then either GM (R) is a null
graph or any ascending (or descending) chain of ideals has exactly two
non-zero ideals.

Proof. (i) Assume that GM (R) is connected.
Claim 1 : We claim that G(M) is connected. Let N1 and N2 be two non-

trivial submodules of M . Since M is a multiplication R-module, there are ideals
I1 and I2 in R such that I1M = N1 and I2M = N2. Since GM (R) is connected,
there is a path I1 → I3 → I4 → · · · → I` → I2 in GM (R). This implies that
I1M ∩ I3M 6= 0, I`M ∩ I2M 6= 0 and IjM ∩ Ij+1M 6= 0 for all j = 3, . . . , ` − 1.
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Therefore N1 → I3M → I4M → · · · → I`M → N2 is a path in G(M) and so G(M)
is connected.

Claim 2 : We claim that IM is a maximal submodule of M whenever I is a
maximal ideal of R. Let I be a maximal ideal of R. Suppose N is a submodule of M
such that IM ( N . Then there exists an ideal J in R with JM = N . Therefore
IM ( JM and so I ( J . This implies that J = I or J = R. Consequently
JM = IM or JM = M . Thus the claim holds true.

Assume that I and J are maximal ideals in R. Then, by Claim 2, IM and
JM are maximal submodules in M . By Claim 1, G(M) is connected. So, by [1,
Corollary 2.2], we have IM ∩ JM 6= 0. We claim that IM ∩ JM = (I ∩ J)M .
Since M is a multiplication R-module, by [8, Corollary 1.7], we get IM ∩ JM =
(I + ann(M)) ∩ (J + ann(M))M . Since M is faithful, IM ∩ JM = (I ∩ J)M .
Therefore (I ∩ J)M 6= 0 so that I ∩ J 6= 0 as M is faithful.

(ii) Assume that |I(R)∗| ≥ 2, GM (R) is disconnected and GM (R) is not a null
graph. We prove that every ideal of R is minimal. Let I be an arbitrary ideal in R.
Let C1 and C2 be two components of GM (R). Without loss of generality, assume
that I ∈ C1. Choose an ideal J ∈ C2. If I + J 6= R, then I → I + J → J is a path
in GM (R), a contradiction. Thus I + J = R. Since I and J are not adjacent in
GM (R), IM ∩ JM = 0. Consequently, I ∩ J = 0. We claim that I is a minimal
ideal of R. Suppose K is an ideal such that K ( I. Clearly K ∈ C1. By the above
argument, we get K+J = R and K∩J = 0. Let x ∈ I. Since J+K = R, x = y+z
for some y ∈ J and z ∈ K. Since y = x− z ∈ I and I ∩ J = 0, we have x− z = 0
and so x = z ∈ K. Therefore I = K, a contradiction. Thus I is a minimal ideal
in R. Equivalently any ascending (or descending) chain of ideals has exactly two
non-zero ideals. �

The next result characterizes all modules for which the graph GM (R) is not
connected. In this regard, notice that Chakrabarty et al. [5] characterized all
disconnected intersection graphs of ideals of a ring.

Theorem 2.3. Let R be a commutative ring and M a multiplication R-module.
Then GM (R) is disconnected if and only if either M is not faithful or every non-
trivial ideal of R is minimal and |Min(R)| ≥ 2.

Proof. (⇐): Clearly GM (R) is disconnected whenever M is not faithful because
ann(M) is an isolated vertex of GM (R). So assume that M is faithful. Let
I, J ∈ Min(R) with I 6= J and I(R)∗ = Min(R); then I ∩ J = 0. Since M
is a multiplication R-module, by [8, Corollary 1.7], we have IM ∩ JM = (I +
ann(M)) ∩ (J + ann(M))M . Since M is faithful, IM ∩ JM = (I ∩ J)M = 0.

If GM (R) is connected, then there is a path I → K1 → K2 → · · · → K` → J in
GM (R), where Ki ∈ I(R)∗ = Min(R) for all i = 1, . . . , `. Since I is adjacent to K1,
IM ∩K1M 6= 0 implies that I ∩K1 6= 0. Since K1 is minimal, we have I = K1.
Similarly, I = K1 = K2 = · · · = K` = J , a contradiction.

(⇒): Suppose GM (R) is disconnected. Assume M is faithful. Let I and J
belong to different components, say I ∈ C1 and J ∈ C2, where C1 and C2 are two
distinct components of GM (R). Then IM ∩ JM = 0 so that I ∩ J = 0. Clearly
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I + J = R, for otherwise I → I + J → J is a path in GM (R). If I is not a minimal
ideal of R, then there exists K ∈ I(R)∗ such that K ⊆ I. Now KM ∩ IM 6= 0 and
so K ∈ C1. Here K + J = R, for otherwise I → K + J → J is a path, which is
a contradiction as I and J are in different components. Let us take i ∈ I. Then
i = k + j, where k ∈ K and j ∈ J . Since K ⊆ I, we have i− k = j ∈ I ∩ J = (0).
Therefore i = k ∈ K, implying that I ⊆ K, which leads to I = K. So I is minimal
in R. Similarly we can prove that if L is a non-trivial ideal of R with L ⊇ I, then
L = I. �

Now we write the other version of the above result as follows.

Corollary 2.4. Let R be a commutative ring and M a multiplication R-module.
Then GM (R) is connected if and only if M is faithful and either |Min(R)| = 1 or
I(R)∗ 6= Min(R).

Next, we are interested in classifying modules M according to the diameter value
of its M -intersection graph. To do it, we need to find when diam(GM (R)) = 1,
which means GM (R) is complete. Recall that from Proposition 1.1, GM (R) is
complete when M is both uniform and faithful.

Theorem 2.5. Let R be a commutative ring and M an R-module. Then GM (R)
is complete if and only if M is faithful and R is Artinian with a unique minimal
ideal.

Proof. (⇐): Suppose R is Artinian and M is faithful. Let I be the unique minimal
ideal of R. Choose arbitrary J,K in I(R)∗. Since R is Artinian and I is the unique
minimal ideal of R, I ⊆ J and I ⊆ K. Therefore JM ∩KM 6= 0 and so J and K
are adjacent in GM (R). Thus GM (R) is complete.

(⇒): Assume GM (R) is complete. Then by Corollary 2.4, M must be faithful.
Since JM ∩KM 6= 0 for all J,K ∈ I(R)∗, we get J ∩K 6= 0 for all J,K ∈ I(R)∗.
This implies that

⋂
I∈I(R)∗ I 6= 0 and it is the minimal ideal of R, which is unique.

It remains to prove that R is Artinian. Suppose that, on the contrary, R is not
Artinian. Let I be the unique minimal ideal of R. Then there exists a chain of
ideals J1 ⊇ J2 ⊇ · · · Jn ⊇ · · · in R which does not contain the minimal ideal I. So
I * Jn for all n ∈ Z+. Therefore Jn ∩ I = 0 for every n. That is, I is not adjacent
to any ideal Jn in the chain and GM (R) is not complete. �

The following points are worth to mention in the context of Theorem 2.5.

Remark 2.6. (a) The condition for the ring to be Artinian in Theorem 2.5 is very
much required. For instance, if R = Z4 × Z, then R has a unique minimal ideal
I = 〈2〉 × {0}. But the ideals of the form {0}× nZ do not contain I. In such cases
I ∩ J is zero when J = {0} × nZ.

(b) An example for the situation where I ∩ J 6= 0 but IM ∩ JM = 0: Consider
R = Z, M = Z6, I = 2Z and J = 3Z; although 2Z∩3Z 6= 0, we have IM∩JM = 0,
so that GM (R) is not complete.

We are now in a position to state the main theorem of this section, which
classifies all R-modules M according to the diameter of GM (R).
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Theorem 2.7. Let R be a commutative ring and let M be a multiplication R-module.
Then the following statements hold:

(i) diam(GM (R)) =∞ if and only if M is not faithful or every nontrivial ideal
of R is minimal and |Min(R)| ≥ 2.

(ii) diam(GM (R)) = 1 if and only if M is faithful and R is Artinian with
unique minimal ideal.

(iii) diam(GM (R)) = 2, for all the remaining cases.

Proof. (i) follows from Theorem 2.3 and (ii) follows from Theorem 2.5.
(iii) Assume GM (R) is connected and diam(GM (R)) 6= 1. Select I and J which

are not adjacent vertices in GM (R). If I + J 6= R, then we have a path I →
I + J → J in GM (R) so that diam(GM (R)) = 2. Assume that I + J = R. Since
IM ∩ JM = 0, we get M = RM = (I + J)M = IM ⊕ JM . By Theorem 2.2 (i),
any two maximal ideals have non-zero intersection. Therefore, either I or J is not
maximal; say I is not maximal. Now, there exists an ideal K such that I ⊂ K ⊂ R.
Clearly IM ∩KM 6= 0. We claim that JM ∩KM 6= 0. Since R = I+J , for r ∈ K,
r = r′ + r′′, where r′ ∈ I and r′′ ∈ J . So r′′ = r − r′ ∈ K. Therefore r′′ ∈ J ∩K.
Thus r′′m ∈ JM ∩KM for m ∈ M and so JM ∩KM 6= 0. Hence I → K → J is
a path in GM (R) so that diam(GM (R)) = 2. �

The next result gives the structure of the particular graph, namely GZn
(Z).

Theorem 2.8. The graph GZn
(Z) = K∞ ∪ H, where K∞ denotes the infinite

collection of isolated vertices and H is an infinite connected graph.

Proof. Clearly I(Z)∗ = {mZ : m ∈ Z\{0, 1}}. Let us take Im = mZ. If (m,n) = n,
then ImZn = (0) and so Im is an isolated vertex. Therefore there are infinite
isolated vertices in GZn

(Z). If (m,n) < n, then ImZn 6= 0. Consider A = {Im ∈
I(Z)∗ : (m,n) < n}. Let Ik, I` ∈ A with IkZn ∩ I`Zn = 0. Then choose It ∈ A
such that (t, n) = 1. This implies that ItZn = Zn so that Ik → It → I` is a path
in GZn

(Z). Therefore the subgraph induced by A is connected. �

3. Perfectness

The theory of perfect graphs relates the concept of graph colorings to the con-
cept of cliques. The study of perfect graphs is very significant because a number
of important algorithms only work on perfect graphs and perfect graphs can be
used in a wide variety of applications, ranging from scheduling to order theory to
communication theory. Note that it is sufficient to prove that a graph G is perfect
if and only if it does not contain an odd cycle of length greater than or equal to 5.

In this section, we investigate whether GM (R) is perfect or not. We start with
the following remark on the clique number of GM (R).

Lemma 3.1. Let R be a commutative ring and let M be a faithful R-module.
(a) If ω(GM (R)) = 1, then either R has a unique proper ideal or M is the

direct sum of two modules. The converse holds in case M is the direct sum
of two simple modules.

(b) If 1 < ω(GM (R)) <∞, then every chain of ideals in R is finite.
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Proof.
(a) If ω(GM (R)) = 1 and |I(R)∗| ≥ 2, then GM (R) is not connected, and by

Theorem 2.1 M is the direct sum of two modules. Conversely, suppose
M is the direct sum of two simple modules. Then IM ∩ JM = 0 for any
I, J ∈ I(R)∗ and so ω(GM (R)) = 1.

(b) If a chain of ideals is infinite, then the subgraph induced by the ideals in
the particular chain forms a infinite clique in GM (R), which is not possible,
implying that every chain of ideals is finite. �

The next result provides several equivalent relations for which the chromatic
number of GM (R) is two. The following result is a generalized version of [1, Theo-
rem 3.4]. In what follows, the star graph is a tree consisting of one vertex adjacent
to all the others and the length of a module M is the length of the longest chain
of submodules of M .
Theorem 3.2. Let M be a faithful multiplication R-module and let |I(R)∗| ≥ 2.
Then the following conditions are equivalent:

(i) GM (R) is a star graph.
(ii) GM (R) is a tree.
(iii) GM (R) is connected and χ(GM (R)) ≤ 2.
(iv) R is a local ring and the length of M is less than or equal to 3. In this

case, G(M) ∼= GM (R).
Proof. (i) =⇒ (ii): It is obvious.

(ii) =⇒ (iii): If GM (R) is a tree, then at most two colors are sufficient to color
the graph. Further, a tree is a connected acyclic graph.

(iii) =⇒ (iv): Let GM (R) be connected and let χ(GM (R)) ≤ 2. Let I1 and I2 be
two maximal ideals of R. Then, by Theorem 2.2, I1∩I2 6= ∅ and so I1M∩I2M 6= ∅.
Consequently I1M ∩ (I1 ∩ I2)M 6= ∅. This implies that I1 is adjacent to I1 ∩ I2.
Similarly, I1 ∩ I2 is adjacent to I2. Therefore I1 → I1 ∩ I2 → I2 → I1 so that
GM (R) contains a cycle of length 3, contradicting the fact that χ(GM (R)) ≤ 2.
Therefore R is local.

Let I be the unique maximal ideal of R and let J be an arbitrary ideal of R.
Since every ideal is contained in I, we have J ⊂ I. If J contains an ideal K, then
K → J → I → K is a cycle of length 3, a contradiction. Thus J is a minimal
ideal of R and equivalently the length of the module is at most 3. Moreover, since
M is a faithful multiplication module with finite length, we have R ∼= M and so
G(M) ∼= GM (R).

(iv) =⇒ (i): Suppose R is a local ring and the length of M is less than or equal
to 3. Let Max(R) = {I} and Min(R) = {I1, . . . , Ik}. Since the length of M is
at most 3, we have I(R)∗ = Max(R) ∪ Min(R). Clearly, IM ∩ IiM 6= 0 for all
i = 1, . . . , k. Since R is faithful, IiM ∩ IjM = 0 for all 1 ≤ i 6= j ≤ k. Therefore
GM (R) is a star graph with internal vertex I and k leaves. �

Next, we obtain a necessary and sufficient condition for the perfectness of GM (R)
when R is a direct product of Noetherian rings, each of which has a unique minimal
ideal.
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Theorem 3.3. Let R ∼= R1 × R2 × · · · × Rn, where each Ri, 1 ≤ i ≤ n, is
a Noetherian ring with unique minimal ideal, and let M be a faithful R-module.
Then GM (R) is perfect if and only if n ≤ 4.

Proof. (⇒): Suppose n ≥ 5. Let Ij = (0)× · · · × (0)×Rj ×Rj+1 × (0)× · · · × (0)
for j = 1, 2, 3, 4 and I5 = R1 × (0) × (0) × (0) × R5 × (0) × · · · × (0). Then the
subgraph induced by the set {I1, I2, I3, I4, I5} in GM (R) is a cycle of length 5 and
so GM (R) is not perfect.

(⇐): Assume n ≤ 4. Note that any ideal Ik of R is of the form Ik1 × · · · × Ikn
,

where Iki
is an ideal of Ri for all i = 1, . . . , n. If two vertices Ik and I` are

non-adjacent in GM (R), then IkM ∩ I`M = 0. The fact that M is faithful leads
to Ik ∩ I` = 0. Note that Ri is Noetherian with a unique minimal ideal for all
i = 1, . . . , n. Therefore if Ik is not adjacent to I` in GM (R), then either Ikj = (0)
or I`j

= (0) for each j = 1, . . . , n.
We claim that every odd cycle of length more than 4 in GM (R) must have

diagonals. In order to prove the claim, suppose I1 → I2 → I3 → · · · → Im → I1
is a cycle of odd length m ≥ 5 in GM (R). First, let us consider the best possible
choice, n = 4. If any three ideals from {I11 , I12 , I13 , I14} are the zero ideal, say
I11 = I12 = I13 = (0), then I24 6= (0) and Im4 6= (0). So I2 and Im form a diagonal
edge. If exactly one ideal from {I11 , I12 , I13 , I14} is a zero ideal, say I11 = (0), then
I32 = I33 = I34 = (0) and I42 = I43 = I44 = (0). This implies that I31 6= (0)
and I41 6= (0). Since I3 → I2 and I4 → I5, we have I21 6= (0) and I51 6= (0).
Therefore I2 and I5 form a diagonal edge. Thus every ideal of I1, I2, I3 and I4 can
be decomposed into two zero ideals and two non-zero ideals. Let I11 = I12 = (0)
and I13 , I14 6= (0). Then I33 = I34 = (0) and I43 = I44 = (0). This implies that
I31 , I32 6= (0) and I41 , I42 6= (0). Since I3 → I2, either I21 6= (0) or I22 6= (0). So
I2 and I4 form a diagonal edge. Therefore, the claim holds true for n = 4. Similar
arguments as above lead us to the cases n = 3 and n = 2.

So let n = 1. If the length of M is less than 4, then by Theorem 3.2, GM (R)
is a tree and so it is perfect. Therefore the length of M is at least 4. Since M is
faithful, the subgraph induced by any chain of ideals of R is complete in GM (R).
Thus GM (R) is perfect. �

As we have seen, the M -intersection graphs of modules are not perfect in general.
So we investigate whether they are weakly perfect, and the answer is yes.

Theorem 3.4. The graph GM (R) is weakly perfect for any R-module M .

Proof. If ω(GM (R)) is infinite, then so is χ(GM (R)). Let ω(GM (R)) = n, a finite
positive integer and let S = {I1, . . . , In} be a clique of GM (R). Let A = {I ∈
I(R)∗ : IM = 0} and A′ = I(R)∗ \A. Clearly the set A is independent in GM (R)
and S ⊆ A′. If S = A′, then obviously χ(GM (R)) = ω(GM (R)). Suppose S $ A′.
Then for every J ∈ A′ \ S, the vertices I1, . . . , In, J + I1, . . . , J + In form a clique
of size 2n, which is not possible. Therefore J + I1, . . . , J + In are the same as
I1, . . . , In in different order. In addition, suppose there exists J,K ∈ A′ \ S such
that J and K are adjacent in GM (R). Then J, J + I1, . . . , J + In,K form a clique
of size n+ 2 in GM (R), a contradiction. Therefore the open neighborhood of each
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vertex in A′ \ S is in S. Since ω(GM (R)) = n = |S|, every vertex in A′ \ S is not
adjacent to more than n− 1 vertices of S. Thus χ(GM (R)) = n = ω(GM (R)). �

The next result determines the value of ω(GM (R)) and χ(GM (R)) when M is
the direct sum of finite simple modules.

Theorem 3.5. If M is a multiplication R-module such that M = M1 ⊕ · · · ⊕Mn

where each Mi, 1 ≤ i ≤ n, is simple, then

ω(GM (R)) = max
1≤i≤n

|{I ∈ I(R)∗ : IM ⊇Mi}|.

Proof. Let V0 = {I ∈ I(R)∗ : IM = (0)} and Vn+1 = {I ∈ I(R)∗ : IM = M}. Let

A1 = {M1,M1 ⊕M2,M1 ⊕M3, . . . ,M1 ⊕Mn,M1 ⊕M2 ⊕M3, . . . ,

M1 ⊕M2 ⊕Mn,M1 ⊕M3 ⊕M4, . . . ,M1 ⊕M3 ⊕Mn, . . . ,

M1 ⊕Mn−1 ⊕Mn, . . . ,M1 ⊕M2 ⊕ · · · ⊕Mn−1,

M1 ⊕M3 ⊕ · · · ⊕Mn, . . . ,M1 ⊕M2 ⊕ · · · ⊕Mn−2 ⊕Mn},
A2 = {M2,M2 ⊕M3, . . . ,M2 ⊕Mn,M2 ⊕M3 ⊕M4, . . . ,M2 ⊕M3 ⊕Mn, . . . ,

M2 ⊕M3 ⊕ · · · ⊕Mn},
. . .

An−1 = {Mn−1,Mn−1 ⊕Mn}, and
An = {Mn}.

Define V1 = {I ∈ I(R)∗ : IM ∈ A1} and Vi = {I ∈ I(R)∗ : IM ∈ Ai} for i =
2, . . . , n. Clearly I(R)∗ =

⋃n+1
k=0 Vk and Vk’s are mutually disjoint. Note that

every vertex of V0 is isolated in GM (R) and the subgraph induced by Vk for k =
1, . . . , n + 1 is complete in GM (R). For 1 ≤ i ≤ n, let I ∈ Vi and J ∈ Vn+1.
Then IM ∩ JM ⊇ Mi 6= {0}. Therefore every vertex in Vn+1 is adjacent to all
the vertices of Vi. Further, let K ∈ Vj for some 1 ≤ i 6= j ≤ n. Since M is a
multiplication module, there exists an ideal L in R such that LM = Mi. Since Mi

is simple, L is not adjacent to K in GM (R). Therefore, in GM (R), every vertex of
I(R)∗\(Vn+1 ∪ Vi) is not adjacent to at least one vertex in Vn+1∪Vi. Thus Vn+1∪Vi
is a maximal clique in GM (R) for all i = 1, . . . , n. Hence ω(GM (R)) = |Vn+1| +
max1≤i≤n |Vi|; equivalently, ω(GM (R)) = max1≤i≤n |{I ∈ I(R)∗ : IM ⊇Mi}|. �

Let us close this section by applying the above result for finding the clique and
coloring number of specific M -intersection graphs.

Example 3.6. Consider M = Z10 = 〈2〉 ⊕ 〈5〉 and R = Z30. Then I(R)∗ =
{〈2〉, 〈3〉, 〈5〉, 〈6〉, 〈10〉, 〈15〉}. Let I1 = 〈2〉, I2 = 〈3〉, I3 = 〈5〉, I4 = 〈6〉, I5 = 〈10〉,
I6 = 〈15〉. Now I1M = 〈2〉, I2M = M , I3M = 〈5〉, I4M = 〈2〉, I5M = {0},
I6M = 〈5〉. So V0 = {I5}, V1 = {I1, I4}, V2 = {I3, I6} and V3 = {I2}. Therefore
by Theorem 3.5, we have ω(GM (R)) = 3. Also, by Figure 1, the chromatic number
of the corresponding M -intersection graph is also 3.
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〈3〉

〈2〉 〈5〉

〈6〉

〈15〉

〈10〉

Figure 1. GZ10(Z30)

Example 3.7. SupposeM = Z6 andR = Z. Then I(R)∗ = {nZ : n ∈ Z, n 6= 0, 1},
V0 = {6kZ : 0 6= k ∈ Z}, V1 = {3kZ : k ∈ Z, (2, k) = 1}, V2 = {2kZ : k ∈
Z, (3, k) = 1} and V3 = {kZ : k ∈ Z, (6, k) = 1}. Clearly the cardinalities of
V0, V1, V2 and V3 are infinite and so ω(GM (R)) = χ(GM (R)) =∞.

4. Cyclic subgraph and planarity

In this section, we discuss about some cyclic substructure and planarity of
GM (R). Let us start with the girth value of GM (R). In [10, Theorem 4], Heydari
determined the girth of GM (R) in case of a multiplication R-module M . We now
generalize it.

Theorem 4.1. Let M be an R-module. If GM (R) contains a cycle, then
gr(GM (R)) = 3. That is, gr(GM (R)) ∈ {3,∞}.

Proof. Let B = {I ∈ I(R)∗ : IM = 0} and B′ = I(R)∗ \ B. Clearly every
vertex in B is isolated in GM (R). Suppose gr(GM (R)) ≥ 4. Then there are ideals
I1, I2, I3, I4 ∈ B′ such that I1 → I2 → I3 → I4 is a path in GM (R). Suppose there
are ideals Ik and I`, 1 ≤ k 6= ` ≤ 4, such that Ik and I` are not comparable. Then
Ik → Ik + I` → Ik + Im → Ik, where m ∈ {1, 2, 3, 4} \ {k, `}, is a cycle of length 3,
a contradiction. Therefore the ideals I1, I2, I3 and I4 are comparable. Then we
can compile into two cases. If I1 ⊆ I2, I3 ⊆ I2 and I3 ⊆ I4, then I3 ⊆ I2 ∩ I4. So
(I2 ∩ I4)M 6= 0, which implies that I2 → I3 → I4 → I2 is a cycle of length 3. If
I2 ⊆ I1 and I2 ⊆ I3, then I2 ⊆ I1 ∩ I3 and so I1 → I2 → I3 → I1 is a cycle of
length 3. Hence gr(GM (R)) = 3. �

Now, the proof of Theorem 4.1 together with the application of Theorem 3.2
leads to the following result. Observe that the proof of Theorem 4.1 says that the
path on 4 vertices is not an induced subgraph of GM (R) whenever GM (R) contains
a cycle. Further, Theorem 3.2 says that GM (R) is a star graph whenever GM (R)
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does not contain any cycle. Recall that a graph G is called cograph if P4, the path
on 4 vertices, is not an induced subgraph of G.

Theorem 4.2. The graph GM (R) is a cograph for any faithful R-module M .

The next result helps us to find the length of the largest induced cycle and
induced path in GM (R). The length of the longest induced path in G is called the
induced detour number of G, denoted by idn(G), and the maximum length of an
induced cycle in G is called the induced circumference of G, denoted by icir(G);
see [9].

Theorem 4.3. Let R be the direct product of n local rings and let M be a faithful
R-module. Then GM (R) contains a cycle Ck for every k ∈ {3, 4, . . . , n}. Further,
idn(GM (R)) = n− 1 and icir(GM (R)) = n.

Proof. Let R = R1 × R2 × · · · × Rn, where each Ri, 1 ≤ i ≤ n, is local. Let
Ij = (0) × · · · × (0) × Rj × Rj+1 × (0) × · · · × (0) for j = 1, . . . , n − 1 and In =
R1×(0)×· · ·×(0)×Rn. For a fixed k, 3 ≤ k ≤ n, take Jk = R1×(0)×· · ·×(0)×Rk×
(0)× · · · × (0). Now the subgraph induced by the vertices {I1, . . . , Ik−1, Jk} forms
a cycle of length k in CM (R). So Cn is an induced subgraph of GM (R). Further, a
similar proof technique as in Theorem 3.3 leads us to say that every cycle of length
more than n in GM (R) must have a diagonal. Thus icir(GM (R)) = n. Also, in this
case, it is equivalent to saying that idn(GM (R)) = n− 1. �

Other important concepts related with the cyclic structure of a graph are those
of being Eulerian or Hamiltonian. First of all note that if R 6= I + J for any
I, J ∈ I(R)∗, then we can have a cycle I1 → I1 +I2 → I2 +I3 → · · · → In−1 +In →
In + I1 → I1 of length n + 1 in GM (R), where I1, . . . , In ∈ I(R)∗. In this regard,
we add a couple of observations.

Remark 4.4. Let M be a faithful R-module and |I(R)∗| ≥ 3.
(a) If R is an Artinian local ring or M is uniform, then GM (R) is complete

and so it is Hamiltonian.
(b) If M is not a faithful R-module, then ann(M) is an isolated vertex in

GM (R), so that GM (R) is not Hamiltonian.

Proposition 4.5. Let M be a uniform R-module. Then GM (R) is Eulerian if and
only if |{I ∈ I(R)∗ : IM 6= {0}}| is odd.

Proof. If I ∈ I(R)∗ is such that IM = {0}, then I is isolated and so no edge is
incident with I. Since M is uniform, the subgraph induced by {I ∈ I(R)∗ : IM 6=
{0}} in GM (R) is complete. Now, the result follows from the fact that the complete
graph of n vertices is Eulerian if and only if n is odd. �

Next we characterize all commutative Noetherian rings according to the Hamil-
tonian nature of GM (R) under the assumption that M is faithful and R is the
direct product of rings which has a unique minimal ideal. At this point notice that
if M is not faithful, then by Theorem 2.3, GM (R) is disconnected. Also, if R is
decomposed into more than two rings, then I(R)∗ 6= Min(R).
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Theorem 4.6. Let R be a Noetherian ring with |I(R)∗| ≥ 3 and let M be a faithful
R-module. Let R ∼= R1×R2×· · ·×Rn, where each Ri, 1 ≤ i ≤ n, is a local ring with
a unique minimal ideal. Then GM (R) is Hamiltonian if and only if R 6∼= R1 × R2
where either R1 or R2 is a field.

Proof. (⇒): Assume that GM (R) is Hamiltonian. Let Ii denote an arbitrary ideal
of Ri for all i = 1, . . . , n. Choose Aj = {(0)×· · ·×(0)×Ij×Ij+1×· · ·×In : Ij 6= (0)}.
Clearly I(R)∗ =

⋃n
j=1Aj . Since each Ri is Noetherian with a unique minimal ideal,

we have two vertices J = J1×· · ·×Jn and K = K1×· · ·×Kn adjacent in GM (R) if
and only if Ji 6= (0) and Ki 6= (0) for some i ∈ {1, . . . , n}. Therefore the subgraph
induced by the set Aj is complete in GM (R).

Suppose n ≥ 3. Now, for every j ∈ {1, . . . , n − 2}, fix the vertices uj = (0) ×
· · · × (0) ×Kj ×Kj+1 ×Kn−2 × (0) ×Kn ∈ Aj and vj = (0) × · · · × (0) ×Kj ×
Kj+1 × · · · × Kn−1 × Kn ∈ Aj with Kn−1 6= (0). Note that uj 6= vj for all
j = 1, . . . , n − 2 and the subgraph induced by the set {u1, . . . , un−2, v1, . . . , vn−2}
in GM (R) is complete. Now, in GM (R), start a path P from the vertex u1 ∈ A1
and travel along all the vertices of A1 and end up in v1 ∈ A1. Since v1 is adjacent to
u2 ∈ A2, continue the path P to u2, then travel all the vertices of A2 and end up in
v2 ∈ A2. Continuing this process n− 2 steps, we get the path P containing all the
vertices of

⋃n−2
j=1 Aj which end up in vn−2. Notice that the vertex vn−2 is adjacent

to all the vertices of An−1 in GM (R). So now extend the path P to any vertex
of An−1 and then travel along all the vertices of An−1 and arrive at the vertex
(0)× · · · × (0)×Kn−1 ×Rn ∈ An−1. Since the vertex (0)× · · · × (0)×Kn−1 ×Rn
is adjacent to all the vertices of An, by repeating the process to the vertices of An,
we get P as a Hamiltonian path which ends at the vertex (0)×· · ·× (0)×Rn ∈ An.
Now the edge between (0)× · · · × (0)×Kn−1 ×Rn and (0)× · · · × (0)×Rn leads
to a Hamiltonian cycle in GM (R).

Suppose n = 2. There are three possibilities: (1) both R1 and R2 are not fields,
(2) one of R1 or R2 is a field and the other is not a field, or (3) both R1 and R2
are fields.

Case 1: Assume both R1 and R2 are not fields. Let K1 ∈ I(R1)∗ and K2 ∈
I(R2)∗. Here start a path Q from K1×R2 ∈ A1, travel along all the vertices of A1
and end at K1 × K2 ∈ A1. Then move the path Q to the vertex (0) × R2 ∈ A2
and move on to all the vertices of A2 and finally end at (0) ×K2 ∈ A1. Now the
path Q together with the edge between (0)×K2 and K1×R2 forms a Hamiltonian
cycle in GM (R).

Case 2: Assume that R1 is a field and R2 is not a field. If K21 ,K22 ∈ I(R2)∗ with
K21 6= K22 , then start a path Q from R1 ×K21 ∈ A1, travel along all the vertices
of A1 and end at R1×K22 ∈ A1. Then move into A2 through the vertex (0)×K21 ∈
A2 and travel all the vertices of A2 and end at up (0)×R2 ∈ A1. Now the path Q
together with the edge between (0)×R2 and R1×K21 serves as a Hamiltonian cycle
in GM (R). If I(R2)∗ = {K2}, then I(R)∗ = {R1×(0), R1×K2, (0)×K2, (0)×R2}.
Therefore the vertex R1 × (0) is an end vertex in GM (R) so that GM (R) does not
contain a cycle. Thus, in this case, |I(R2)∗| 6= 1.

Case 3: If R1 and R2 are fields, then |I(R)∗| = 2, a contradiction.
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Suppose n = 1. Since |I(R)∗| ≥ 3, we have that GM (R) is complete and so is
Hamiltonian.

(⇐): This part is obvious. �

Next we look into the pancyclic nature of GM (R). Recall that a graph G of order
m ≥ 3 is pancyclic if G contains cycles of all lengths from 3 to m. Let n ≥ 3 and let
us denote C as the Hamiltonian cycle identified in the above theorem. Now remove
the vertices one by one from C. Let us start with the vertices An. First remove
the internal vertices of An and at the last remove the vertex (0)× · · · × (0)×Rn ∈
An. Since the subgraph induced by An is complete in GM (R), we get a cycle
every time when we remove a vertex from An. Since the subgraph induced by
{u1, . . . , un−2, v1, . . . , vn−2} is complete in GM (R), we can pass on from one Aj to
another Ak for 1 ≤ j 6= k ≤ n− 2. Similarly we can remove the vertices one by one
for all Aj ’s from j = n− 2 to j = 1 and still we get a cycle in every step of vertex
removal. Thus we get cycles of all lengths as subgraphs of GM (R). It is not hard
to verify the same for the cases n = 2 and n = 1. Hence GM (R) is Hamiltonian if
and only if GM (R) is pancyclic. So the following statement holds true.

Theorem 4.7. Let R be an Artinian ring, |I(R)∗| ≥ 3 and let M be a faithful
R-module. Then GM (R) is pancyclic if and only if R 6∼= F × S, where F is a field
and S is a local ring with unique proper ideal.

We close the paper with the planarity properties of GM (R). The first result in
this regard completely characterizes the planar M -intersection graph in the case of
R having exactly one minimal ideal.

Lemma 4.8. Let M be a faithful R-module. If R contains a unique minimal ideal,
then GM (R) is planar if and only if |I(R)∗| ≤ 4.

Proof. (⇒): Assume that GM (R) is a planar graph. Since R has a unique minimal
ideal, say I, we have that I must be contained in every proper ideal of R. Suppose
|I(R)∗| > 4. Let I, J1, J2, J3, J4 ∈ I(R)∗. Note that Jk∩J` ⊇ I for all 1 ≤ k 6= ` ≤ 4
so that (JkM ∩ JlM) ⊇ IM 6= 0. Therefore I, J1, J2, J3, J4 form a complete
subgraph of GM (R) and so K5 is a subgraph of GM (R), a contradiction. Thus
|I(R)∗| ≤ 4.

(⇐): This part follows from the fact that every graph of order less than or equal
to four is planar. �

Note that, in the above result, IM (or J1M,J2M,J3M,J4M) may be zero if M
is not faithful.

Next we are going to characterize all rings for which the graph GM (R) is planar,
where R is the direct product of local rings. Before that, we prove a lemma.

Lemma 4.9. Let R be the direct product of n local rings and let M be a faithful
R-module. Then K2n is a subgraph of GM (R).

Proof. Let R = R1 × · · · × Rn, where each Ri is local with maximal ideal mi for
i = 1, . . . , n. Let A = {I1×· · ·×In : Ii = Ri or mi for i = 1, . . . , n}\{R1×· · ·×Rn}.
Then A ⊂ I(R)∗ and |A| = 2n−1. Note that the subgraph induced by A is complete
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and the vertex (0) × R2 × · · · × Rn is adjacent to all the vertices of A in GM (R).
Thus K2n is a subgraph of GM (R). �

To end this section, recall that every Artinian ring can be decomposed into local
rings. So the following result is valid for all Artinian rings.

Theorem 4.10. Let R = R1 × · · · ×Rn, where each Ri, 1 ≤ i ≤ n, is local and let
M be a faithful R-module. Then GM (R) is planar if and only if either n = 2 with
R1 being a field and R2 having at most one proper ideal, or n = 1 with R1 having
at most 4 proper ideals.

Proof. (⇒): Assume that GM (R) is planar. If n ≥ 3, then by Lemma 4.9, K8 is a
subgraph of GM (R), a contradiction.

Suppose n = 2. There are three possibilities:
Case 1: Assume both R1 and R2 are not fields. Let K1 ∈ I(R1)∗ and K2 ∈

I(R2)∗. Then the subgraph induced by the vertex subset {K1× (0),K1×K2,K1×
R2, R1 × (0), R1 ×K2} is K5, a contradiction.

Case 2: Assume that R1 is a field and R2 is not a field. If K21 ,K22 ∈ I(R2)∗
with K21 6= K22 , then the subgraph induced by the set {R1×K21 , R1×K22 , (0)×
K21 , (0)×K22 , (0)×R2} is K5, a contradiction. If |I(R2)∗| = 1, then |I(R)∗| ≤ 4.
So GM (R) is planar.

Case 3: If R1 and R2 are fields, then |I(R)∗| = 2 so that GM (R) is planar.
Suppose n = 1. If |I(R)∗| ≥ 5, then K5 is a subgraph of GM (R), a contradiction.

Thus |I(R)∗| ≤ 4.
(⇐): This part is trivial. �
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