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INVARIANTS OF FORMAL PSEUDODIFFERENTIAL
OPERATOR ALGEBRAS AND ALGEBRAIC MODULAR FORMS

FRANÇOIS DUMAS AND FRANÇOIS MARTIN

Abstract. We study the question of extending an action of a group Γ on
a commutative domain R to a formal pseudodifferential operator ring B =
R((x ; d)) with coefficients in R, as well as to some canonical quadratic exten-
sion C = R((x1/2 ; 1

2 d))2 of B. We give conditions for such an extension to
exist and describe under suitable assumptions the invariant subalgebras BΓ

and CΓ as Laurent series rings with coefficients in RΓ. We apply this general
construction to the numbertheoretical context of a subgroup Γ of SL(2,C)
acting by homographies on an algebra R of functions in one complex vari-
able. The subalgebra CΓ

0 of invariant operators of nonnegative order in CΓ

is then linearly isomorphic to the product space M0 =
∏

j≥0 Mj , where Mj

is the vector space of algebraic modular forms of weight j in R. We obtain a
structure of noncommutative algebra on M0, which can be identified with a
space of algebraic Jacobi forms. We study properties of the correspondence
M0 → CΓ

0 , whose restriction to even weights was previously known, using
arithmetical arguments and the algebraic results of the first part of the arti-
cle.

Introduction

Several studies in deformation or quantization theories have shown in various
contexts that significant combinations of Rankin–Cohen brackets on modular forms
of even weights correspond by isomorphic transfer to the noncommutative compo-
sition product in some associative algebras of invariant operators (see for instance
[19, 4, 16, 2, 3, 14, 18, 11]). The main goal of this paper is to produce such a
correspondence in a formal algebraic setting for modular forms of any weight (even
or odd), which allows the construction to be applied to Jacobi forms.

The first part deals with the general algebraic problem of extending a group
action from a ring R to a ring of formal pseudodifferential operators with coefficients
in R, and to describe the subring of invariant operators. More precisely, let R be
a commutative domain of characteristic zero containing the subfield of rational

2020 Mathematics Subject Classification. 11F03, 11F11, 11F50, 16S32, 16W22, 16W60.
Key words and phrases. Modular forms, formal pseudodifferential operators, noncommutative

invariants, Rankin–Cohen brackets.
The authors were partially funded by the project CAP 20-25, I-SITE Clermont.

1

https://doi.org/10.33044/revuma.2057


2 FRANÇOIS DUMAS AND FRANÇOIS MARTIN

numbers, U(R) its group of invertible elements, d a derivation of R, and Γ a
group acting by automorphisms on R. We denote by B = R((x ; d)) the ring of
formal pseudodifferential operators with coefficients in R. The elements of B are
the Laurent power series in one indeterminate x with coefficients in R, and the
noncommutative product in B is defined from the commutation law

xf =
∑
i≥0

di(f)xi+1 for any f ∈ R.

We also consider some quadratic extension C = R((y ; δ))2 of B, with y2 = x,
δ = 1

2d and the commutation law

yf =
∑

k≥0

(
(2k)!

2k(k!)2

)
δk(f)y2k+1 for any f ∈ R.

This type of skew power series rings was already introduced in various ring-theoret-
ical papers, see references in [6]. We prove (Theorem 1.2.5) that the action of Γ
on R extends to an action by automorphisms on B if and only if there exists a
multiplicative 1-cocycle p : Γ → U(R) such that γdγ−1 = pγ .d for any γ ∈ Γ.
We describe under this assumption all possible extensions of the action; they are
parametrized by the arbitrary choice of a map r : Γ → R satisfying some com-
patibility condition related to p. We give (Theorem 1.3.1) sufficient conditions for
the ring BΓ of invariant operators to be described as a ring of formal pseudodif-
ferential operators with coefficients in RΓ. We prove (Theorems 1.2.9 and 1.3.2)
similar results for the ring C; in this case a necessary and sufficient condition to ex-
tend the action of Γ from R to C is the existence of some multiplicative 1-cocycle
s : Γ → U(R) satisfying γdγ−1 = s2

γ .d for any γ ∈ Γ. The subring B is then
necessarily stable under the extended actions, and BΓ is a subring of CΓ.

These general results are applied in the second part of the paper to the case of
the complex homographic action. We fix a C-algebra R of functions in one variable
z stable under the standard derivation ∂z and a subgroup Γ of SL(2,C) acting on
R by

(f.γ)(z) = f
(

az+b
cz+d

)
for any f ∈ R and γ =

(
a b
c d

)
∈ Γ.

Applying the previous general construction for the derivation d = −∂z and for the
1-cocycles s : γ 7→ cz+d and p = s2, we define an action of Γ on C = R((y ; − 1

2∂z))2.
We give in Theorems 2.2.3 and 2.2.5 a combinatorial description of this action,
whose restriction to B = R((x ; −∂z)) with x = y2 corresponds to the action already
introduced in [4, Section 1]. We consider, for any k ∈ Z, the subspace CΓ

k of
elements in CΓ whose valuation related to y is greater or equal to k. It is easy to
check that the image of the canonical projection πk : CΓ

k → R is included in the
subspaceMk of algebraic modular forms of weight k. We construct a family (ψk)k≥0
of splitting maps ψk : Mk → CΓ

k which gives rise canonically (Theorem 2.3.2) to a
vector space isomorphism

Ψ : M0 → CΓ
0 , with M0 =

∏
k≥0

Mk.
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INVARIANTS OF FORMAL PSEUDODIFFERENTIAL OPERATOR ALGEBRAS 3

This correspondence makes it possible, on the one hand, to identify CΓ
k with a

vector space of algebraic Jacobi forms of weight k (see Corollary 2.3.3), and on the
other, to obtain by transfer a noncommutative product on M0. This multiplica-
tion on modular forms of nonnegative weights (even or odd) can be described in
terms of linear combinations of Rankin–Cohen brackets with combinatorial rational
coefficients

f ⋆ g = Ψ−1(ψk(f).ψℓ(g)) =
∑

n≥0
αn(k, ℓ)[f, g]n

for any f ∈ Mk, g ∈ Mℓ, k, ℓ ≥ 0. The restriction to modular forms of even
nonnegative weights gives the isomorphism

Ψ2 : Mev
0 → BΓ

0 , with Mev
0 =

∏
k≥0 M2k and BΓ

0 = B ∩ CΓ
0 ,

considered in [4, Section 3] (see also [16, 17]). We discuss at the end of Subsec-
tion 2.3 the obstructions for possible extensions of Theorem 2.3.2 to modular forms
of negative weights. The purpose of Subsection 2.4 is to go further in the study
of the isomorphism Ψ2 using the structure of BΓ

0 deduced from the general Theo-
rem 1.3.1. More precisely, assuming that R contains an invertible modular form χ
of weight 2, BΓ

0 is the skew power series algebra RΓ[[u;D]] with coefficients in RΓ,
where u denotes the invariant operator xχ and D is the derivation −χ−1∂z of RΓ.
A natural question is then to describe as a sequence of modular forms the inverse
image by Ψ2 of any invariant operator in BΓ

0 , or equivalently of any power uk for
k ≥ 0. The value of Ψ−1

2 (uk) is entirely determined by some family (gk,k+i)i,k≥0
of modular forms of weight 2k + 2i, which are zero if i is odd, and which can be
calculated for even i’s in terms of Rankin–Cohen brackets of powers of the modu-
lar form χ. Subsection 2.5 explores some ways of extending the previous results to
negative odd weights. We finally mention in Subsection 2.6 as an open question the
possibility of considering the whole study of the second part of this paper for other
choices of the parameter r in the extension of the initial action from functions to
operators.

1. Actions and invariants on pseudodifferential and quadratic
pseudodifferential operator rings

1.1. Definitions and preliminary results. We fix a commutative domain R
of characteristic zero containing Q. We denote by U(R) the group of invertible
elements in R. We denote by R⟨⟨x⟩⟩ the left R-module of formal power series∑

i≥0 fix
i with fi ∈ R for any i ≥ 0. It is well known that, for any nonzero

derivation d of R, we can define an associative noncommutative product ∗d on
R⟨⟨x⟩⟩ by bilinear extension of the canonical identities f ∗d x

n = fxn and x ∗d x
n =

xn ∗d x = xn+1 for any f ∈ R and n ≥ 0, and from the commutation law
x ∗d f = fx+ d(f)x2 + d2(f)x3 + · · · =

∑
n≥0

dn(f)xn+1 for any f ∈ R, (1.1)

which implies, more generally, for any integer i ≥ 0,

xi+1 ∗d f = fxi+1 + (i+ 1)d(f)xi+2 + (i+1)(i+2)
2 d2(f)xi+3 + · · ·

=
∑

n≥i

(
n
i

)
dn−i(f)xn+1.

(1.2)
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We thus obtain a noncommutative ring denoted by B0 = R[[x ; d]]. The element
x generates a two-sided ideal in B0, and we can consider the localized ring B =
R((x ; d)) of B0 with respect to the powers of x. The elements of B are the Laurent
series q =

∑
i≥m fix

i with m ∈ Z and fi ∈ R for any i ≥ m. The valuation vx(q) of
q is defined by vx(q) = min{i ∈ Z : fi ̸= 0} for q ̸= 0 and vx(0) = ∞. The map vx

is a valuation function B → Z ∪ {∞}, and B0 is the subring {q ∈ B : vx(q) ≥ 0}.
It follows in particular that B0 and B are domains. The invertible elements of B
are the series q =

∑
i≥m fix

i such that fm ∈ U(R).

Definition 1.1.1. The noncommutative domain B = R((x ; d)) is called the ring
of formal pseudodifferential operators in d with coefficients in R.

Denoting by ∂ the derivation −d, relation (1.1) can be rewritten as

x−1 ∗d f = fx−1 + ∂(f) for any f ∈ R. (1.3)

It is well known that this relation defines an associative noncommutative product
in the subset A of polynomials in the variable t = x−1 with coefficients in R (see
for instance [10, pp. 11, 19]). This subset A is then a subring of B, denoted by
A = R[t ; ∂].

Definition 1.1.2. The noncommutative domain R[t ; ∂] is called the ring of formal
differential operators in ∂ with coefficients in R.

Denoting by y instead of x the variable in the left R-module R⟨⟨y⟩⟩, another
structure of noncommutative ring (see [6, Example 1.3 (d)]) can be defined on
R⟨⟨y⟩⟩ for any nonzero derivation δ of R from similar canonical identities and from
the commutation law

y ∗δ,2 f = fy + δ(f)y3 + 3
2δ

2(f)y5 + 5
2δ

3(f)y7 + 35
8 δ

4(f)y9 + · · ·

=
∑

k≥0

(
(2k)!

2k(k!)2

)
δk(f)y2k+1,

(1.4)

which implies, more generally, for any integer i ≥ 0,

yi+1 ∗δ,2 f = fyi+1 +
∑

k≥1

(
k∏

j=1

2(j−1)+i+1
j

)
δk(f)y2k+i+1 for any f ∈ R. (1.5)

This ring is denoted by C0 = R[[y; δ]]2. As in the previous case, C0 can be em-
bedded in the localization C = R((y ; δ))2 of the Laurent series q =

∑
i≥m fiy

i

with m ∈ Z and fi ∈ R for any i ≥ m. The valuation vy(q) is defined by
vy(q) = min{i ∈ Z : fi ̸= 0} for q ̸= 0 and vy(0) = ∞. The map vy is a val-
uation function C → Z ∪ {∞}, and C0 is the subring {q ∈ B : vy(q) ≥ 0}. In
particular, C0 and C are domains. The invertible elements of C are the series
q =

∑
i≥m fiy

i such that fm ∈ U(R).

Definition 1.1.3. The noncommutative domain C = R((y ; δ))2 is called the ring
of quadratic formal pseudodifferential operators in δ with coefficients in R.
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By elementary calculations it follows from (1.5) that

y2∗δ,2f = fy2+2δ(f)y4+4δ2(f)y6+· · · =
∑

k≥1
(2δ)k−1(f)y2k for any f ∈ R, (1.6)

which is equivalent to
y−2 ∗δ,2 f = fy−2 − 2δ(f) for any f ∈ R. (1.7)

It follows from this observation that the submodule of Laurent series in even powers
of y is a subring B of C, and the restriction to B of the product ∗δ,2 is the product
∗2δ defined by (1.1) and (1.3). Then B can be identified with R((x ; d)) setting
x = y2 and d = 2δ.
Convention. In the rest of the paper, we no longer use the notations ∗δ,2 and ∗d, and
denote as usual by qq′ the product of two elements q and q′ of C (and, in particular,
of B). We can then formulate some direct consequences of the embedding of B
into C in the following proposition.

Proposition 1.1.4. Let R be a commutative domain of characteristic zero con-
taining Q. Let d be a nonzero derivation of R.

(i) The ring of quadratic pseudodifferential operators C = R((y ; δ))2 for δ = 1
2d

contains as a subring the ring of pseudodifferential operators B = R((x ; d))
for x = y2, and therefore the ring of differential polynomials A = R[t ; ∂]
for t = x−1 = y−2 and ∂ = −d, i.e.,

A = R[t ; −d] ⊂ B = R((x ; d)) ⊂ C = R((y ; 1
2d))2.

(ii) We have vy(q) = 2vx(q) for any q ∈ B, and the subrings B0 = R[[x ; d]]
and C0 = R[[y ; δ]]2 satisfy B0 = B ∩ C0.

(iii) We have C = B ⊕ By, with By = yB, (By)(By) = B and (By)B =
B(By) = By.

Proof. It follows by obvious calculations from identities (1.6) and (1.7). □

The following proposition shows that any automorphism of B (respectively C)
stabilizing R is continuous with respect to the x-adic (respectively the y-adic)
topology. A similar property is proved in [1] for different commutation laws and in
the particular case where R a field. We start with a preliminary technical result.

Lemma 1.1.5. Data and notations are those of the previous proposition. Let ℓ be
a positive integer.

(i) For any q ∈ B of the form q = 1 +
∑

i≥1 fix
i with fi ∈ R for any i ≥ 1,

there exists an element r in B such that q = rℓ.
(ii) For any q ∈ C of the form q = 1 +

∑
i≥1 fiy

i with fi ∈ R for any i ≥ 1,
there exists an element r in C such that q = rℓ.

Proof. The proof is the same in the two cases above and we write it for B =
R((x ; d)). We consider inB an element of nonnegative valuation r =

∑
i≥0 gix

i with
gi ∈ R for any i ≥ 0. For any integer ℓ ≥ 1, we set rℓ =

∑
i≥0 gℓ,ix

i with gℓ,i ∈ R

for any i ≥ 0. By a straightforward induction using (1.2), we check that gℓ,i =
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ℓgℓ−1
0 gi + hℓ,i, where the remainder hℓ,i depends only on previous g0, g1, . . . , gi−1

and their images by some powers of d. Then, for any sequence (fi)i≥1 of elements
in R, we can determine inductively a unique sequence (gi)i≥0 such that g0 = 1 and
gℓ,i = fi for any i ≥ 1, that is,

( ∑
i≥0 gix

i
)ℓ = 1 +

∑
i≥1 fix

i. □

Proposition 1.1.6. Data and notations are those of the previous proposition.
(i) Let γ be an automorphism of B whose restriction to R is an automorphism

of R. Then vx(γ(q)) = vx(q) for any q ∈ B. In particular, the restriction
of γ to B0 determines an automorphism of B0.

(ii) Let γ be an automorphism of C whose restriction to R is an automorphism
of R. Then vy(γ(q)) = vy(q) for any q ∈ C.

(iii) Let γ be an automorphism of C whose restriction to R is an automorphism
of R. Then the restriction of γ to B determines an automorphism of B.

Proof. Let γ be an automorphism of B such that γ(R) = R. This implies
γ−1(R) = R. We introduce m = vx(γ(x)) ∈ Z and suppose that m < 0. Then the
element z = 1 + x−1 satisfies γ(z) = 1 + γ(x)−1 ∈ B0. Consider by point (i) of
Lemma 1.1.5 an element r ∈ B0 such that r2 = γ(z). Applying the automorphism
γ−1 we have vx(z) = 2vx(γ−1(r)), which gives a contradiction because vx(z) = −1
by definition. Hence we have proved that m ≥ 0. It follows in particular that
γ(B0) ⊂ B0. Using the same argument for γ−1, we conclude that γ(B0) = B0. In
other words, the restrictions of γ and γ−1 to B0 determine automorphisms of B0.

We prove now that m = 1. In B0, we can write γ(x) = f(1 + w)xm, with
f ∈ U(R) (because γ(x) is invertible in B) and w ∈ B0 such that vx(w) ≥ 1. It
follows that

x = γ−1(f)γ−1(1 + w)γ−1(x)m,

and then vx(γ−1(f)) + vx(γ−1(1 +w)) +mvx(γ−1(x)) = 1. Since γ−1(R) = R, we
have vx(γ−1(f)) = 0. The element 1 + w is invertible in B0, hence γ−1(1 + w) is
invertible in B0, therefore vx(γ−1(1+w)) = 0. We conclude that mvx(γ−1(x)) = 1,
then m = 1 and the proof of point (i) is complete. The proof of point (ii) is similar
replacing B0 by C0, x by y and vx by vy.

Let γ be an automorphism of C such that γ(R) = R. We deduce from relation
(1.7) that γ(y)−2γ(f) − γ(f)γ(y)−2 = −γ(d(f)) for any f ∈ R. With the notation
z = γ(y)−2, we obtain zf − fz = −γdγ−1(f) ∈ R for any f ∈ R. By point (ii),
we have vy(z) = −2. Using point (iii) of Proposition 1.1.4, we have z = q + q′y,
with q, q′ ∈ B, vy(q) = −2, vy(q′) ≥ −2. Since qf − fq ∈ B for any f ∈ R,
we deduce from previous identity that q′yf − fq′y ∈ B for any f ∈ R. Suppose
that q′ ̸= 0 and set q′y =

∑
i≥ℓ f2i+1y

2i+1, with ℓ ≥ −1, f2i+1 ∈ R for any
i ≥ −1 and f2ℓ+1 ̸= 0. Using (1.5), we have in C, for any f ∈ R, the expansion
q′yf−fq′y = (2ℓ+1)f2ℓ+1δ(f)y2ℓ+3 + · · · , which is incompatible with the fact that
q′yf − fq′y ∈ B and δ is a nonzero derivation. Then we have necessarily q′ = 0,
that is, z ∈ B. In other words, γ(x−1) ∈ B. Hence γ(x) ∈ B, and the proof is
complete. □
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1.2. Extension to B and C of actions by automorphisms on R.

Notations 1.2.1. We take all data and notations of Proposition 1.1.4. We consider
a group Γ acting by automorphisms on the ring R. We denote this action on the
right as follows:

(f · γ) · γ′ = f · γγ′ for all f ∈ R, γ, γ′ ∈ Γ. (1.8)
A 1-cocycle for the action of Γ on the group U(R) is a map s : Γ → U(R) , γ 7→ sγ

satisfying
sγγ′ = (sγ · γ′)sγ′ for all γ, γ′ ∈ Γ. (1.9)

We denote by Z1(Γ, U(R)) the multiplicative abelian group of such 1-cocycles.
We answer the following two questions: give necessary and sufficient conditions

for the existence of an action of Γ by automorphisms on B or C extending the given
action on R, and describe all possible extended actions. We need some definitions.

Definitions 1.2.2. Data and notations are those of 1.2.1.
(i) The action of Γ on R is said to be d-compatible when, for any γ ∈ Γ, there

exists pγ ∈ U(R) such that
d(f) · γ = pγd(f · γ) for any f ∈ R. (1.10)

This condition defines uniquely a map p : Γ → U(R) , γ 7→ pγ , and
p ∈ Z1(Γ, U(R)). This map p is called the 1-cocycle associated to the
d-compatibility.

(ii) The action of Γ on R is said to be quadratically d-compatible when there
exists an element s ∈ Z1(Γ, U(R)) such that

d(f) · γ = s2
γd(f · γ) for any γ ∈ Γ and any f ∈ R. (1.11)

Such a map s is called a 1-cocycle associated to the quadratic d-compatibi-
lity. It is not necessarily unique since any map s′ = ϵs, where ϵ is a
multiplicative function Γ → {−1,+1}, is another element of Z1(Γ, U(R))
satisfying (1.11).

Remark 1.2.3. Any quadratically d-compatible action is also d-compatible. Since
δ = 1

2d and ∂ = −d, the d-compatibility is obviously equivalent to the δ-compatibi-
lity or the ∂-compatibility.

Examples 1.2.4. 1. For any commutative field k of characteristic zero, the group
Γ = k⋊ k× for the product (µ, λ)(µ′, λ′) = (λµ′ +µ, λλ′) acts by k-automorphisms
on the domain R = k[z] by (f · γ)(z) = f(λz + µ) for γ = (µ, λ) ∈ Γ. It is
clear that ∂z(f) · γ = λ−1∂z(f · γ) for any polynomial f ∈ R. Hence this action
is ∂z-compatible, with p ∈ Z1(Γ,k×) defined by p : (µ, λ) 7→ λ−1. If k is not
algebraically closed, the action is not necessarily quadratically ∂z-compatible.

2. Let k be any commutative field of characteristic zero and R = k(z) the field
of rational functions in one variable with coefficients in k. The group Γ = SL(2,k)
acts by k-automorphisms on R by (f ·γ)(z) = f

(
λz+µ
ηz+ξ

)
, where γ =

(
λ µ
η ξ

)
∈ Γ. We

have ∂z(f) ·γ = (ηz+ξ)2∂z(f ·γ) for any rational function f ∈ R. Hence this action
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8 FRANÇOIS DUMAS AND FRANÇOIS MARTIN

is quadratically ∂z-compatible, with s ∈ Z1(Γ, R×) defined by s :
(

λ µ
η ξ

)
7→ ηz+ ξ.

This kind of action is the main object of the second part of the paper.

We are now able to answer for B the questions formulated at the beginning of
this subsection.

Theorem 1.2.5. The action of Γ by automorphisms on R extends to an action of
Γ by automorphisms on B = R((x ; d)) if and only if it is d-compatible. We then
have

x−1 · γ = pγx
−1 + pγrγ for any γ ∈ Γ, (1.12)

where p ∈ Z1(Γ, U(R)) is the 1-cocycle associated to the d-compatibility and r is
an arbitrary map Γ → R satisfying the identity

rγγ′ = rγ′ + p−1
γ′ (rγ · γ′) for all γ, γ′ ∈ Γ. (1.13)

In particular, this action extends to an action on B if and only if it extends to an
action on the subring A = R[x−1; −d].

Proof. Suppose that Γ acts by automorphisms on B with R · γ = R for any γ ∈ Γ.
We can apply point (i) of Proposition 1.1.6 to write

x−1 · γ = g−1x
−1 + g0 +

∑
j≥1

gjx
j ,

with gj ∈ R for any j ≥ −1 and g−1 ̸= 0. Moreover, x−1 ∈ U(B) implies that
(x−1 · γ) ∈ U(B), which is equivalent to g−1 ∈ U(R). Applying γ to (1.3), we
obtain (x−1 · γ)(f · γ) − (f · γ)(x−1 · γ) = −d(f) · γ for any f ∈ R. Since f · γ ∈ R,
we can derive the identity

[g−1x
−1(f · γ) − (f · γ)g−1x

−1] + [g0(f · γ) − (f · γ)g0]
+

∑
j≥1

[gjx
j(f · γ) − (f · γ)gjx

j ] = −d(f) · γ.

The first term is g−1[x−1(f · γ) − (f · γ)x−1] = −g−1d(f · γ) ∈ R. The second term
is zero by commutativity of R. The third term is of valuation ≥ 1. So we deduce
that
−g−1d(f ·γ) = −d(f) ·γ and

∑
j≥1

[gjx
j(f ·γ)−(f ·γ)gjx

j ] = 0 for any f ∈ R.

Setting pγ = g−1, we have pγ ∈ U(R) and the first equality means by definition
that the action of Γ is d-compatible. We claim that the second assertion implies
gj = 0 for all j ≥ 1. Suppose that there exists a minimal index m ≥ 1 such that
gm ̸= 0. Calculating with relation (1.2), we have

∑
j≥m[gjx

j(f ·γ)−(f ·γ)gjx
j ] = 0,

then mgmd(f ·γ)xm+1 + · · · = 0 and therefore d(f ·γ) = 0 for any f ∈ R. It follows
by d-compatibility of the action that d = 0, hence we get a contradiction. We have
proved that x−1 ·γ = g−1x

−1 +g0 with pγ = g−1 ∈ U(R) satisfying Definition 1.2.2
(i). Then we set rγ = (g−1)−1g0. We have x−1 · γ = pγx

−1 + pγrγ . Relations (1.9)
for p and (1.13) for r follow from relation (x−1 · γ) · γ′ = x−1 · γγ′.

Conversely, let us assume that the action of Γ on R is d-compatible. Denote by
p the 1-cocycle associated to the d-compatibility. Let us choose a map r : Γ → R
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satisfying (1.13); the existence of such maps is discussed in Examples 1.2.7 below.
For any γ ∈ Γ, we set qγ = pγrγ . To prove that the action on R can be extended
to B, it is enough to check that we have (x−1f) · γ = (x−1 · γ)(f · γ) for any f ∈ R,
where x−1 · γ is defined by formula (1.12). So we calculate, for f ∈ R,

(pγx
−1 + qγ)(f · γ) − (f · γ)(pγx

−1 + qγ)
= pγ(x−1(f · γ) − (f · γ)x−1) = −pγd(f · γ).

Using (1.10) we obtain (pγx
−1 + qγ)(f · γ) − (f · γ)(pγx

−1 + qγ) = −d(f) · γ for
any f ∈ R. Hence by (1.3) we obtain an action of Γ by automorphisms on the
polynomial algebra A extending the initial action on R. The element pγ + qγx is
invertible in B0 and the element x−1 · γ = pγx

−1 + qγ is invertible in B because
pγ ∈ U(R). Then we define an action of Γ by automorphisms on B extending
the action on A by setting x · γ = (x−1 · γ)−1 = x(pγ + qγx)−1. The condition
(u · γ) · γ′ = u · γγ′ for any γ, γ′ ∈ Γ and any u ∈ B follows from (1.9) for p and
(1.13) for r. □

Corollary 1.2.6. If the action of Γ by automorphisms on R is d-compatible, then
it extends to an action of Γ by automorphisms on B defined by

x−1 ·γ = pγx
−1, or equivalently x ·γ = xp−1

γ =
∑
j≥0

dj(p−1
γ )xj+1 for any γ ∈ Γ,

where p ∈ Z1(Γ, U(R)) is the 1-cocycle associated to the d-compatibility.

Proof. We just apply Theorem 1.2.5 for the trivial map r defined by rγ = 0 for any
γ ∈ Γ, which obviously satisfies (1.13). □

Examples 1.2.7. We consider a d-compatible action of Γ on R. Let p be the
1-cocycle associated to the d-compatibility. Relation (1.13) can be interpreted as
a 1-cocycle condition for the right action of Γ on R defined by ⟨f | γ⟩ = p−1

γ (f · γ)
for any γ ∈ Γ and f ∈ R. We denote by Z1

p(Γ, R) the additive group of maps
r : Γ → R satisfying (1.13). We consider here various examples for the choice of
r ∈ Z1

p(Γ, R).
1. The case r = 0 corresponds to the extension described in Corollary 1.2.6.

If r is a coboundary (i.e., there exists f ∈ R such that rγ = p−1
γ (f · γ) − f

for any γ ∈ Γ), then we can suppose up to a change of variables that r = 0,
because the element x′ = (x−1 − f)−1 satisfies B = R((x′ ; d)) = R((x ; d))
and x′−1 · γ = pγx

′−1 for any γ ∈ Γ.
2. A straightforward calculation proves that the map r : Γ → R, defined by
rγ = −p−1

γ d(pγ) for any γ ∈ Γ, is an element of Z1
p(Γ, R). The correspond-

ing action of Γ on B is given by x−1 · γ = pγx
−1 − d(pγ) = x−1pγ for any

γ ∈ Γ.
3. For any r ∈ Z1

p(Γ, R) and any κ ∈ RΓ, κ r is an element of Z1
p(Γ, R). The

corresponding action of Γ on B is given by x−1 · γ = pγx
−1 + κ pγrγ for

any γ ∈ Γ. If we suppose moreover that κ ∈ U(R), then x′ = (κ−1x−1)−1

satisfies B = R((x ; d)) = R((x′ ; κ−1d)), and we obtain x′−1 · γ = pγx
′−1 +
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pγrγ for any γ ∈ Γ. Up to a change of variables, these cases where κ ∈ U(R)
reduce to the case κ = 1.

In order to obtain for C an extension result similar to Theorem 1.2.5, we need
the following technical lemma about square roots in C.

Lemma 1.2.8. Let q =
∑

i≥2 giy
i be an element of C, with gi ∈ R for any i ≥ 2,

g2 ̸= 0. We suppose that there exists e ∈ U(R) such that g2 = e2.
(i) There exists a unique element z ∈ C of the form z = ey +

∑
i≥2 eiy

i, with
ei ∈ R for any i ≥ 2, such that q = z2.

(ii) The only other series z′ satisfying z′ 2 = q is z′ = −z.
(iii) Moreover, if q ∈ B, then z ∈ By.

Proof. We compute inductively the coefficients ei of z for i ≥ 2 by identification in
the equality

∑
i≥2 giy

i =
(
ey+

∑
i≥2 eiy

i
)2. Using (1.5) in the expansion of the right

hand side, we observe that z2 = e2y2+(2e2e)y3+(2e3e+e2
2+eδ(e))y4+· · · = e2y2+∑

i≥3(2eei−1 + hi−2)yi, where the remainder hi−2 ∈ R depends only on previous
elements e, e2, . . . , ei−2 and their images by δ. Therefore ei−1 = (2e)−1(gi − hi−2)
and the proof of (i) follows by induction.

Since R is a domain, the only other element e′ ∈ R satisfying e′2 = g2 is e′ = −e,
then point (ii) follows from point (i).

By point (iii) of Proposition 1.1.4, we have z = u+u′y, with u, u′ ∈ B, vy(u) ≥ 2,
vy(u′) = 0. Suppose that u ̸= 0 and set u =

∑
i≥m f2iy

2i and u′ =
∑

i≥0 f
′
2iy

2i,
with m ≥ 1, f2i, f

′
2i ∈ R, f2m ̸= 0 and f ′

0 = e. Then q = (u + u′y)2 = (u2 +
u′yu′y) + (uu′y + u′yu) and the assumption q ∈ B implies uu′y + u′yu = 0 using
point (iii) of Proposition 1.1.4. By (1.4) and (1.6) we have

uu′y + u′yu = (f2my
2m + · · · )(ey + · · · ) + (ey + · · · )(f2my

2m + · · · )
= 2f2mey

2m+1 + · · ·
with 2f2me ̸= 0. Hence we get a contradiction. □

Theorem 1.2.9. The action of Γ by automorphisms on R extends to an action of Γ
by automorphisms on C = R((y ; 1

2d))2 if and only if it is quadratically d-compatible.
In this case B = R((x ; d)) is stable under the extended action.

Proof. Suppose that the action extends to an action by automorphisms on C. By
point (ii) of Proposition 1.1.6, we can consider the map Γ → U(R) , γ 7→ sγ defined
by y ·γ = s−1

γ y+ · · · . Writing (y ·γ) ·γ′ = (s−1
γ ·γ′)s−1

γ′ y+ · · · , we observe with (1.9)
that s ∈ Z1(Γ, U(R)). Moreover it follows from point (iii) of Proposition 1.1.6 that
the action restricts in an action of B. Since x−1 ·γ = (y−1 ·γ)2 = (sγy

−1 + · · · )2 =
s2

γx
−1 + · · · , we deduce from Theorem 1.2.5 that sγ satisfies condition (1.11);

therefore the action is quadratically d-compatible.
Conversely, assume now that the action of Γ on R is quadratically d-compatible.

There exists some s ∈ Z1(Γ, U(R)) satisfying (1.11). Then the map p : γ 7→ s2
γ

lies in Z1(Γ, U(R)) and satisfies (1.10). Let r be any map Γ → R satisfying
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(1.13). By Theorem 1.2.5, we define an action by automorphisms on B by setting
x−1 · γ = pγx

−1 + pγrγ for any γ ∈ Γ. The expansion of its inverse in B is of the
form x·γ = s−2

γ x+· · · . By Lemma 1.2.8, there exists a unique element yγ ∈ C such
that y2

γ = x · γ and whose expansion is of the form yγ = s−1
γ y + · · · . In particular,

it follows from the action of γ on relation (1.6) that

y2
γf = fy2

γ +
∑

k≥2
2k−1((δk−1(f · γ−1)) · γ) y2k

γ for any f ∈ R. (1.14)

We extend the action of γ to C by setting y · γ = yγ . To prove that q 7→ q · γ
defines an automorphism of C, it is sufficient by (1.4) to prove that

yγf = fyγ +
∑

k≥1

(2k)!
2k(k!)2 ((δk(f · γ−1)) · γ) y2k+1

γ for any f ∈ R. (1.15)

Since yγ = s−1
γ y+ · · · with s−1

γ ∈ U(R), any element of C can be written as a series
in the variable yγ with coefficients in R. In particular, for any f ∈ R, we have
yγf = fyγ+

∑
n≥1 δn(f)yn+1

γ , where (δn)n≥1 is a sequence of additive maps R → R.
Hence y2

γf = fy2
γ +

∑
n≥2 ∆n(f)yn+1

γ with the notation ∆n =
∑n−1

j=0 δj ◦ δn−j−1,
where δ0 = idR. The identification with (1.14) leads to ∆n = 0 for even n, and
∆n = (2δ′)k−1 for odd n = 2k − 1, where δ′ is defined by δ′(f) = δ(f · γ−1) · γ
for any f ∈ R. It follows by a straightforward induction that δn = 0 for any
odd n, then ∆2k−1 =

∑
i+j=k−1 δ2j ◦ δ2i, and finally δ2k = (2k)!

2k(k!)2 δ
′k. So relation

(1.15) is satisfied. Because (s−1
γ · γ′)s−1

γ′ = s−1
γγ′ for all γ, γ′ ∈ Γ, we deduce from

(x · γ) · γ′ = x · γγ′ with Lemma 1.2.8 that (y · γ) · γ′ = y · γγ′. We conclude that
this construction defines an action of Γ by automorphisms on C. □

Corollary 1.2.10. We suppose that the action of Γ by automorphisms on R is
quadratically d-compatible.

(i) Let s ∈ Z1(Γ, U(R)) be a 1-cocycle associated to the quadratic d-compatibi-
lity. For γ ∈ Γ, let yγ be the square root of xs−2

γ , whose coefficient of
minimal valuation in its expansion as a series in the variable y is s−1

γ .
Then the action extends to an action of Γ by automorphisms on C defined
from

y · γ = yγ = s−1
γ y + · · · for any γ ∈ Γ.

(ii) The other extensions of the action are given by y · γ = ϵγyγ for any γ ∈ Γ,
where ϵ is a multiplicative map Γ → {−1,+1}.

Proof. We apply the second part of the proof of Theorem 1.2.9 to the case where
r is defined by rγ = 0 for any γ ∈ Γ. □

1.3. Invariants in B and C for the extensions of actions on R. We take all
data and notations of Proposition 1.1.4. For Γ a group acting by automorphisms
on B (respectively on C) stabilizing R, we give sufficient conditions for the in-
variant ring BΓ (respectively CΓ) to be described as a ring of pseudodifferential
(respectively quadratic pseudodifferential) operators with coefficients in RΓ.
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Theorem 1.3.1. Let Γ be a group acting by automorphisms on B = R((x ; d))
stabilizing R. We assume that there exists in BΓ an element w = gx−1 + h with
h ∈ R and g ∈ U(R). Then the derivation D = gd restricts to a derivation of RΓ,
and we have AΓ = RΓ[w; −D], BΓ

0 = RΓ[[w−1;D]] and BΓ = RΓ((w−1 ;D)).

Proof. Since g is invertible in R, any polynomial into x−1 can be written as a
polynomial into w. We have wf − fw = gx−1f − fgx−1 = −gd(f). Hence A =
R[w; −D] denoting D = gd. For any f ∈ RΓ, wf − fw ∈ RΓ because w ∈ BΓ.
Hence the restriction of D to RΓ is a derivation of RΓ. Since w is invariant, an
element of A written as a polynomial in w with coefficients in R is invariant if and
only if any coefficient lies in RΓ. We conclude that AΓ = RΓ[w; −D].

The element u = w−1 ∈ BΓ
0 satisfies vx(u) = 1 and its dominant coefficient g−1

is invertible in R. We have x = g(1 + z)u for some z ∈ B0 satisfying vx(z) ≥ 1.
Then u is a uniformizer of the valuation vx in B0, which means that any element
of B0 can be written as a power series in the variable u with coefficients in R. In
particular, for q =

∑
i≥0 fix

i an element of BΓ
0 with fi ∈ R, it follows from point (i)

of Proposition 1.1.6 that f0 ∈ RΓ and q − f0 ∈ BΓ
0 . We have q − f0 = q′u with

q′ =
( ∑

i≥0 fi+1x
i
)
g(1 + z) ∈ B0. Since q, f0 and u belong to BΓ

0 , we deduce that
q′ ∈ BΓ

0 . We have proved that for any q ∈ BΓ
0 , there exist f0 ∈ RΓ and q′ ∈ BΓ

0
such that q = f0 + q′u. Applying this process for q′, there exist f ′

0 ∈ RΓ and
q′′ ∈ BΓ

0 such that q = f0 + f ′
0u + q′′u2. It follows by induction that q lies in the

left RΓ-module RΓ⟨⟨u⟩⟩ of power series in the variable u with coefficients in RΓ. We
conclude that BΓ

0 ⊂ RΓ⟨⟨u⟩⟩. The converse inclusion is clear, so BΓ
0 = RΓ⟨⟨u⟩⟩. In

particular, RΓ⟨⟨u⟩⟩ is a subring of B0. Hence, for any f ∈ RΓ, there exist a sequence
(δn(f))n≥0 of elements of RΓ such that uf =

∑
n≥0 δn(f)un+1. The commutation

relation wf − fw = −D(f) becomes uf − fu = uD(f)u. We compute uf =
fu+uD(f)u = fu+[D(f)u+uD2(f)u]u = fu+D(f)u2 +[D2(f)u+uD3(f)u]u2,
and conclude by iteration that δn(f) = Dn(f) for any n ≥ 0. In other words,
BΓ

0 = RΓ[[u;D]].

Let RΓ((u;D)) be the localized ring of BΓ
0 with respect to the powers of u.

Since u is invertible in B, we have RΓ((u;D)) ⊂ B, and therefore RΓ((u;D)) ⊂ BΓ.
Conversely, for any f ∈ BΓ, there exists an integer n ≥ 0 such that fun ∈ B0; since
fun ∈ BΓ

0 = RΓ[[u;D]], we deduce that f ∈ RΓ((u ;D)). Hence BΓ = RΓ((u ;D))
and the proof is complete. □
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Theorem 1.3.2. Let Γ be a group acting by automorphisms on C = R((y ; δ))2
stabilizing R. Denote by s the 1-cocycle in Z1(Γ, U(R)) defined by y ·γ = s−1

γ y+· · ·
for any γ ∈ Γ. We assume that there exists in CΓ an element w = e2y−2 + h with
h ∈ R and e ∈ U(R) such that e · γ = s−1

γ e for any γ ∈ Γ. Then the derivation
∆ = e2δ restricts to a derivation of RΓ, and denoting by v the square root of w−1

whose expansion starts with v = e−1y + · · · , we have CΓ = RΓ((v ; ∆))2.
Proof. Let us recall that the existence of the map s follows from point (ii) of
Proposition 1.1.6. We know by point (iii) of Proposition 1.1.6 that B is stable
under the action of Γ on C. We can apply Theorem 1.3.1 with g = e2 to deduce
that D = e2d = 2e2δ restricts to a derivation of RΓ and BΓ = RΓ[[u ;D]], where
u = w−1 ∈ BΓ

0 . Since u = e−2y2 + · · · lies in B, it follows from Lemma 1.2.8 that
there exist in C two elements v =

∑
j≥1 gjy

j and v′ = −v such that v2 = v′2 = u,
with gj ∈ R for any j ≥ 1, gj = 0 for any even index j and g1 = e−1. For any
γ ∈ Γ, we have u = u ·γ = (v ·γ)2. Then v ·γ = ±v. Since v ·γ = (e−1y+ · · · ) ·γ =
sγe

−1(s−1
γ y + · · · ) + · · · = e−1y + · · · , we are necessarily in the case v · γ = v.

Therefore v ∈ CΓ. Let us set v = e−1(1 + z)y, where z =
∑

j≥2 egjy
j−1 ∈ C0 with

vy(z) ≥ 1. Similarly there exists z′ ∈ C0 with vy(z′) ≥ 1 such that y = e(1 + z′)v.
Then v is a uniformizer of the valuation vy in C0, which means that any element of
C0 can be written as a power series in the variable v with coefficients in R. Using
inductively point (ii) of Proposition 1.1.6, we can prove, in the same way as in the
proof of Theorem 1.3.1, that CΓ

0 = RΓ⟨⟨v⟩⟩. In particular, RΓ⟨⟨v⟩⟩ is a subring of
C0. Hence, for any f ∈ RΓ, there exists a sequence (δn(f))n≥0 of elements of RΓ

such that vf =
∑

n≥0 δn(f)vn+1. Comparing with relation v−2f − fv−2 = −D(f),
which follows from Theorem 1.3.1, direct calculations show that δi = 0 for any
odd index i, and δ2k = (2k)!

2k(k!)2 ( D
2 )k. In other words, CΓ = RΓ((v ; ∆))2, where

∆ = 1
2D. □

Corollary 1.3.3. Under the assumptions of the previous theorem, and defining
in RΓ the derivations ∆ = e2δ and D = 2∆ = e2d, we have the following ring
embeddings:

A = R[x−1 ; −d] �
� // B = R((x ; d)) �

�

x=y2
// C = R((y ; δ))2

AΓ = RΓ[w ; −D] �
� //

?�

OO

BΓ = RΓ((w−1 ;D)) �
�

w−1=v2
//

?�

OO

CΓ = RΓ((v ; ∆))2.
?�

OO

Proof. It is a joint formulation of Theorems 1.3.1 and 1.3.2. □

1.4. Weighted invariants in R and equivariant splitting maps. The data
and notations are those of 1.2.1. We introduce, for any quadratically d-compatible
action of a group Γ on R, a natural link between the invariants in C or B and some
weighted invariants in R.
Definitions 1.4.1. For any 1-cocycle s in Z1(Γ, U(R)) and any integer k, we define

(f |kγ) = s−k
γ (f · γ) for any f ∈ R, γ ∈ Γ. (1.16)
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It follows from relations (1.8) and (1.9) that
((f |kγ)|kγ′) = (f |kγγ′) for any f ∈ R, γ, γ′ ∈ Γ.

Hence relation (1.16) defines a right action of Γ on R, named the weight k action
associated to s. In particular, the weight zero action is just the original action of
Γ by automorphisms on R:

(f |0γ) = f · γ for any f ∈ R, γ ∈ Γ.
We introduce the additive subgroup of weight k invariants
Mk = {f ∈ R : (f |kγ) = f for any γ ∈ Γ} = {f ∈ R : f · γ = sk

γf for any γ ∈ Γ}.
(1.17)

We have M0 = RΓ and MkMℓ ⊆ Mk+ℓ for all k, ℓ ∈ Z.

Notations 1.4.2. We suppose that the action of Γ is quadratically d-compatible on
R. Let s ∈ Z1(Γ, U(R)) be a 1-cocycle associated to the quadratic d-compatibility.
We define p = s2 ∈ Z1(Γ, U(R)) and we choose a map r : Γ → R satisfying
(1.13). We consider the actions of Γ on B and C determined by Theorem 1.2.5 and
Corollary 1.2.10. We denote by BΓ and CΓ the corresponding invariant rings. For
any integer k, we introduce:

Ck = {q ∈ C : vy(q) ≥ k}, CΓ
k = Ck ∩ CΓ,

Bk = {q ∈ B : vx(q) ≥ k}, BΓ
k = Bk ∩BΓ.

Proposition 1.4.3. Let k be an integer.
(i) Let πk : Ck → R be the canonical projection

∑
i≥k fiy

i 7→ fk. The restric-
tion of πk to CΓ

k defines an additive map πk : CΓ
k → Mk.

(ii) Let π̂k : Bk → R be the canonical projection
∑

i≥k fix
i 7→ fk. Then π̂k is

the restriction of π2k to Bk, and its restriction to BΓ
k defines an additive

map π̂k : BΓ
k → M2k.

Proof. For any q =
∑

i≥k fiy
i ∈ Ck with fi ∈ R, fk ̸= 0, and for any γ ∈ Γ, it

follows from Theorem 1.2.9 that
q · γ = (fk · γ)(s−1

γ y + · · · )k + (fk+1 · γ)(s−1
γ y + · · · )k+1 + · · · .

Then q · γ = (fk · γ)s−k
γ yk + · · · . Hence q · γ = q implies (fk · γ)s−k

γ = fk,
or equivalently fk ∈ Mk by (1.17). Point (ii) follows from the second part of
Theorem 1.2.9. □

Problem 1.4.4. Point (i) of this proposition leads to the natural question of
finding additive right splitting maps ψk : Mk → CΓ

k such that πk ◦ ψk = idMk
.

Solutions arise by restriction if we can construct ψk : R → Ck satisfying πk ◦ ψk =
idR and the equivariance condition

ψk((f |kγ)) = ψk(f) · γ for any γ ∈ Γ, f ∈ R.

In the particular case of even weights the corresponding question of finding splitting
maps ψ2k : M2k → BΓ

k was solved in [4] and [16] in various contexts involving
modular forms.
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2. Application to algebraic modular forms

2.1. Homographic action on R.

Notations 2.1.1. In order to apply the previous algebraic results in the arith-
metical context of modular forms, we specialize the data and notations of 1.2.1.
From now on Γ is a subgroup of SL(2,C), and R is a commutative C-algebra of
functions in one variable z, which is a domain. In the following we suppose that:

(i) Γ acts on the right by homographic automorphisms on R:

(f · γ)(z) = f
(

az+b
cz+d

)
for any f ∈ R and γ =

(
a b
c d

)
∈ Γ; (2.1)

(ii) z 7→ cz + d ∈ U(R) for any γ =
(

a b
c d

)
∈ Γ;

(iii) R is stable under the standard derivation ∂z with respect to z.

Examples 2.1.2. A formal algebraic example of such a situation is the case where
R = C(z), the field of complex rational functions in one indeterminate. Number-
theoretical examples can arise from the following construction. Assume that Γ is
a subgroup of SL(2,R) and denote by H = {z ∈ C : Im(z) > 0} the Poincaré
upper half-plane. Then H is stable by the homographic action of Γ, and various
subalgebras R of holomorphic or meromorphic functions on H satisfy the previous
conditions. For instance:

(1) R1 = Hol(H), the algebra of holomorphic functions on H.
(2) R2 = Mer(H), the field of meromorphic functions on H.
(3) For Γ ⊂ SL(2,Z), R3 is the field of f ∈ Mer(H) such that, for any p ∈

P1(Q), there exists an H-neighborhood Vp of p such that f has neither zero
nor pole in Vp. Here we consider the hyperbolic topology on H = H∪P1(Q),
where a fundamental system of H-neighborhoods of p ∈ P1(Q) is given by
the upper half-planes {Im(z) > M} for p = ∞ and by the open disks
Dr = {z ∈ H : |z − (p + ir)| < r} for p ∈ Q. We can prove (see for
instance [9, Theorem 2.11 of Chapter VI]) that RSL(2,Z)

3 = C(j), where j
is the modular invariant. It follows in particular that the field R3 satisfies
RΓ

3 ̸= C for any subgroup Γ of SL(2,Z).

Notations 2.1.3. With data and notations from 2.1.1, we introduce, according to
Proposition 1.1.4, the noncommutative C-algebras

A = R[x−1 ; ∂z] ⊂ B = R((x ; dz)) ⊂ C = R((y ; δz))

with x = y2, dz = −∂z and δz = 1
2dz.

Lemma 2.1.4. The map s : Γ → U(R), γ 7→ sγ defined by

sγ(z) = cz + d for any γ =
(

a b
c d

)
∈ Γ (2.2)

is a 1-cocycle for the action of Γ.

Proof. A straightforward calculation using (2.1) proves that (1.9) is satisfied. □
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Definitions 2.1.5. Since s ∈ Z1(Γ, U(R)), we can apply Definitions 1.4.1 to in-
troduce, for any integer k, the weight k action of Γ on R defined by

(f |kγ)(z) = (cz + d)−kf
(

az+b
cz+d

)
for any f ∈ R and γ =

(
a b
c d

)
∈ Γ,

and the C-vector space of algebraic weight k modular forms on R:

Mk = {f ∈ R : (f |kγ) = f for any γ ∈ Γ}.

In particular, for k = 0,

(f |0γ) = f · γ and M0 = RΓ.

Notations 2.1.6. In the following we use the notations

Mj =
∏
k≥j

Mk, Mev
j =

∏
k≥j

M2k for any j ∈ Z,

M∗ =
⋃
j∈Z

Mj , Mev
∗ =

⋃
j∈Z

Mev
j ,

with the convention Mj1 ⊂ Mj2 for j1 ≥ j2. Throughout the rest of the paper,
we suppose that Mk ∩ Mℓ = {0} for all integers k ̸= ℓ. In the classical situations,
it is sufficient, for this additional hypothesis, to assume that Γ contains at least
one matrix

(
a b
c d

)
such that (c, d) /∈ {0} ×U∞, where U∞ is the group of roots of 1

in C. Observe that this excludes the unipotent cases where Γ ⊂ {( 1 a
0 1 ) : a ∈ R}.

Then an element f̃ of Mj can be denoted unambiguously by f̃ =
∑

k≥j fk, where
fk ∈ Mk.

Remark 2.1.7. For k and m nonnegative integers, denote by Jk,m the space
of algebraic Jacobi forms on R of weight k and index m, defined as functions
Φ : H × C → C satisfying the Jacobi transformation equation

Φ
(

az+b
cz+d ,

Z
cz+d

)
= (cz + d)ke

2iπmcZ2
cz+d Φ(z, Z) for any γ =

(
a b
c d

)
∈ Γ,

and admitting around Z = 0 a Taylor expansion Φ(z, Z) =
∑

ν≥0 Xν(z)Zν with
Xν ∈ R for any ν ≥ 0. Note that Jk,m is isomorphic to Jk,1 for any m ≥ 1 via
the map Z 7→

√
mZ. Then, for any k ≥ 0 and m ≥ 1, the vector space Jk,m is

isomorphic to Mk; an isomorphism is explicitly described in [7, p. 34], where the
space Jk,m is denoted by Mk,m.

2.2. Homographic action on B and C. The data and notations are those
of 2.1.3.

Lemma 2.2.1. The homographic action of Γ on R is quadratically ∂z-compatible,
and an associated 1-cocycle is the map s defined by (2.2).

Proof. We have already observed in example 2 of 1.2.4 that, for any γ =
(

a b
c d

)
∈ Γ

and any f ∈ R, we have ∂z(f · γ)(z) = (cz + d)−2∂zf( az+b
cz+d ). In other words,

∂zf · γ = s2
γ∂z(f · γ). From Definition 1.2.2 (ii) and Lemma 2.1.4, the lemma is

proved. □
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We can then apply the results of the first part of the paper: for the canonical
choice r = 0 (see example 1 of 1.2.7) we obtain the following results.

Proposition 2.2.2.
(i) The homographic action of Γ on R extends to an action by automorphisms

on B defined by

(x−1|γ) = (cz + d)2x−1 for any γ =
(

a b
c d

)
∈ Γ. (2.3)

Consequently, for any q =
∑

n>−∞ fnx
n ∈ B with fn ∈ R, we have

(q|γ) =
∑

n>−∞
(fn · γ)(x−1|γ)−n for any γ ∈ Γ.

(ii) The homographic action of Γ on R extends to an action by automorphisms
on C defined by

(y|γ) = (cz + d)−1y + · · · for any γ =
(

a b
c d

)
∈ Γ,

where this Laurent series is the square root in C of (x|γ) = x(cz + d)−2,
whose term of minimal valuation is (cz + d)−1y. Consequently, for any
q =

∑
n>−∞ fny

n ∈ C with fn ∈ R, we have

(q|γ) =
∑

n>−∞
(fn · γ)(y|γ)n for any γ ∈ Γ.

(iii) The subalgebra B of C is stable under the action (ii), and the action (i) is
the restriction to B of the action (ii).

Proof. We apply Theorem 1.2.5 and Theorem 1.2.9. □

The following two theorems give explicit formulas describing the action of Γ on
B and C introduced in Proposition 2.2.2.

Theorem 2.2.3. The extension to B and C of the homographic action of Γ on R
given by Proposition 2.2.2 satisfy

(x|γ) =
∑

n≥0
(n+ 1)!(cz + d)−2

(
c

cz+d

)n

xn+1 (2.4)

(y|γ) =
∑

u≥0

(2u+1)!(2u)!
16u(u)!3 (cz + d)−1

(
c

cz+d

)u

y2u+1 (2.5)

for any γ =
(

a b
c d

)
∈ Γ.

Proof. From relations (1.1) and (2.3), we have

(x|γ) = (x−1|γ)−1 = x(cz+d)−2 =
∑

u≥1
du−1

z ((cz+d)−2)xu =
∑

u≥1

u!
c2

(
c

cz+d

)u+1
xu,

which proves formula (2.4). We find here the action of Γ described in [4, formula
1.7].

In order to prove (2.5), we introduce the expansion (y|γ) =
∑

i≥1 aiy
i in C with

ai ∈ R. Using the identity (y|γ)2 = (x|γ) we prove by induction on i that ai = 0

Rev. Un. Mat. Argentina, Vol. 65, No. 1 (2023)
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for even i and that there exists a sequence (ρj)j≥1 of complex numbers such that

(y|γ) =
∑

j≥1
ρj

c

(
c

cz+d

)j

y2j−1. Then we have

(y|γ)2 =
∑

n,m≥1

ρnρm

c2

(
c

cz+d

)n [
y2n−1

(
c

cz+d

)m]
y2m−1.

From (1.5), and using the combinatorial identity
s−1∏
i=0

(2m+ 1 + 2i) = 2−s (2m+2s)!m!
(m+s)!(2m)! for any m ≥ 0 and s ≥ 1, (2.6)

we have y2n−1f =
∑

ℓ≥n−1

(2ℓ)!(n−1)!
ℓ!(2n−2)!

dℓ−n+1
z (f)

4ℓ−n+1(ℓ−n+1)!y
2ℓ+1, and an easy computation

gives dt
z

((
c

cz+d

)m)
= (m+t−1)!

(m−1)!

(
c

cz+d

)m+t

. We deduce that

(y|γ)2 =
∑

n,m≥1

ρnρm

c2

∑
ℓ≥n−1

(2ℓ)!(n−1)!(m+ℓ−n)!
4ℓ−n+1(ℓ−n+1)!(2n−2)!ℓ!(m−1)!

(
c

cz+d

)ℓ+m+1
y2ℓ+2m

=
∑

u≥1

(
u∑

m=1

u∑
i=m

ρu+1−iρm

4i−m(i−m)!
(2u−2m)!(u−i)!(i−1)!

(2u−2i)!(u−m)!(m−1)!

)
1
c2

(
c

cz+d

)u+1
y2u,

with the change of variables u = ℓ+m, and i = u+ 1 − n. By identification in the
equality (y|γ)2 = (x|γ), the coefficients ρj satisfy, for any u ≥ 1, the equation

u∑
m=1

u∑
i=m

ρu+1−iρm

4i−m(i−m)!
(2u−2m)!(u−i)!(i−1)!

(2u−2i)!(u−m)!(m−1)! = u! (2.7)

The relation for u = 1 gives ρ2
1 = 1, then the choice of sign for ρ1 determines

inductively all the terms ρu, u ≥ 1. Hence relation (2.7) determines uniquely up to
sign the sequence (ρu)u≥1. Therefore the proof will be complete if we check that
the coefficients ρu = (2u−1)!(2u−2)!

16u−1(u−1)!3 satisfy relation (2.7). Then we have to prove
that, for any u ≥ 1,

u∑
m=1

(2u−2m)!(2m−1)!(2m−2)!
42u+m−2(m−1)!4(u−m)! A(u,m),= u! (2.8)

with the notation A(u,m) =
u∑

i=m

G(u,m, i) and G(u,m, i) = 4i(i−1)!(2u−2i+1)!
(i−m)!(u−i)!2 .

Using Zeilberger’s algorithm (see [13]) we obtain the following relation, which is
easy to check directly:

(4u+ 6)G(u,m, i) − (u+ 1 −m)G(u+ 1,m, i) = H(u,m, i+ 1) −H(u,m, i),

where H(u,m, i) = 4i(i−1)!(2u+3−2i)!
(i−m−1)!(u+1−i)!2 . Then the summation on i gives the relation

(4u+ 6)A(u,m) − (u+ 1 −m)A(u+ 1,m) = 0, so A(u,m) = A(m,m)
u−1∏
t=m

2(2t+3)
t+1−m .

Using A(m,m) = 4m(m − 1)! and (2.6) we obtain A(u,m) = 4m (m−1)!(2u+1)!m!
(u−m)!(2m+1)!u! .

So equation (2.8) is equivalent to T (u) = 1, where T (u) =
u∑

m=1
K(u,m) with
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K(u,m) = (2u+1)!
16u−1u!2

(2m−2)!(2m−1)!m!(2u−2m)!
(2m+1)!(m−1)!3(u−m)!2 . Using again Zeilberger’s algorithm

we find the relation
K(u+ 1,m) −K(u,m) = J(u,m) − J(u,m+ 1)

with J(u,m) = (2u−2m+2)!(2u+1)!(2m−2)!
16uuu!(u+1)!(m−1)!(m−2)!(u+1−m)!2 . The summation on m gives

T (u + 1) − T (u) = 0, so T (u) = T (1) = 1 for any u ≥ 1, and the proof is
complete. □

The next step is to describe the action of Γ on any power of y. We proceed
depending on the parity and the sign of the exponent. In particular, relations
(2.10) and (2.9) below are related to the action (2.4) on B and already appeared
in previous studies about modular forms of even weight [4, 16].

Lemma 2.2.4. For any k ∈ N, we have

(y−2k|γ) = (x−k|γ) =
k−1∑
u=0

u!
(

k
u

)(
k−1

u

)
(cz + d)2k

(
c

cz+d

)u

xu−k, (2.9)

(y2k|γ) = (xk|γ) =
∑

u≥0
u!

(
k+u−1

u

)(
k+u

u

)
(cz + d)−2k

(
c

cz+d

)u

xu+k, (2.10)

(y2k+1|γ) = (k+1)!k!
(2k+2)!(2k)!

∑
u≥0

(2k+2u)!(2k+2u+2)!
16uu!(k+u)!(k+u+1)! (cz + d)−2k−1

(
c

cz+d

)u

y2k+1+2u,

(2.11)

(y−2k+1|γ) = (2k)!(2k−2)!
k!(k−1)! (cz + d)2k−1

[
k−1∑
u=0

(k−u)!(k−1−u)!
16uu!(2k−2u)!(2k−2−2u)! (

c
cz+d )uy−2k+1+2u

−
∑

u≥0

(2u)!(2u+2)!
u!(u+1)!

1
16u+k(u+k)! (

c
cz+d )u+ky2u+1

]
. (2.12)

Proof. For the negative even powers of y (the negative powers of x), we prove rela-
tion (2.9) inductively using the formulas (x−1|γ) = (cz + d)2x−1 and (x−k−1|γ) =
(x−1|γ)(x−k|γ) for k > 0 with the relation x−1f = fx−1 + ∂zf .

For the positive even powers of y (the positive powers of x) set, for any k ≥
1, (y2k|γ) =

∑
n≥0 ak(n)(cz + d)−2k−ncny2k+2n, with ak(n) ∈ C. Equations

(x−1|γ) = (cz + d)−2x−1 and (y2k|γ) = (x−1|γ)(y2k+2|γ) give, for n ≥ 1, the
relations ak+1(n) = (2k + n + 1)ak+1(n − 1) + ak(n). Then a double induction
on k and n proves relation (2.10) using the expression of a1(n) for any n ≥ 0 and
ak(0) = 1 for any k > 0.

We consider now relation (2.11). Let k ≥ 0; using (2.10), (2.5) and the relation
(y2k+1|γ) = (xk|γ)(y|γ) we obtain (y2k+1|γ) =

∑
s≥0

αk(s)
(cz+d)2k+1

(
c

cz+d

)s

y2k+1+2s,

where αk(s) =
s∑

r=0

(2r+1)!(2r)!(s−k+r−1)!
16rr!4(k−1)!k! βk,s(r), with βk,s(r) =

s−r∑
j=0

(k+s−r−j)!(r+j)!
(s−r−j)!j! .

By Zeilberger’s algorithm we deduce (k + s+ 2)βk,s(r) − (s− r + 1)βk,s+1(r) = 0,
which proves that βk,s(r) = k!r!(k+s+1)!

(s−r)!(k+r+1)! ; more precisely, we have the relation

(k + s+ 2)b(s, j) − (s− r + 1)b(s+ 1, j) = G(s, j + 1) −G(s, j),
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where b(s, j) = (k+s−r−j)!(r+j)!
(s−r−j)!j! and G(s, j) = (k+s−r−j+1)!(r+j)!

(j−1)!(s−r−j+1)! .
Applying again Zeilberger’s algorithm to C(s, r) = (2r+1)!(2r)!(k+s−r−1)!

16rr!3(s−r)!(k+r+1)! , we
obtain

(2s+2k+3)(2s+2k+1)C(s, r)−4(s+1)(k+s+2)C(s+1, r) = H(s, r+1)−H(s, r),

with H(s, r) = 4(k+s−r)!(2s+1)!(2r)!
16r(s−r+1)!(k+r)!(r−1)!r!2 .

It follows that αk(s) = (k+1)!k!(2k+2s)!(2k+2s+2)!
(2k+2)!(2k)!16ss!(k+s)!(k+s+1)! , which proves formula (2.11).

Finally, for formula (2.12), set

(y−2k+1|γ) =
∑
j≥0

α−k(j)(cz + d)2k−1
(

c
cz+d

)j

y−2k+1+2j ,

with α−k(j) ∈ C. The equality (y−2k−1|γ) = (x−1|γ)(y−2k+1|γ) gives, for any
nonnegative j, the relation

α−(k+1)(j) = α−k(j) + (2k − j)α−k(j − 1), (2.13)

with the convention α−k(−1) = 0. We then proceed inductively on k. The expres-
sion of α0(j) is given by equation (2.5). We have α−k(0) = 1 for any k ≥ 0, and by
(2.13), α−1(j) = −4j2 (2j−1)!(2j−2)!

16jj!3 for j ≥ 1 proves formula (2.12) for k = 1 and
gives the base case.

For the inductive step, we prove that α−(k+1)(j) is equal to the corresponding
term of formula (2.12) separating the three cases j ≤ k−1, j = k and j ≥ k+1. We
check by direct computations using induction hypothesis for k that the right hand
side of formula (2.13) corresponds to the expected expression in formula (2.12) for
α−(k+1)(j). □

We are now in a position to give a unified formula for the action of Γ on any
power of y.

Theorem 2.2.5. For any k ∈ Z, we have

(yk|γ) =
∑

u≥0
ωk(u)(cz + d)−k

(
c

cz+d

)u

y2u+k, (2.14)

where ωk(0) = 1 and ωk(u) = 1
4uu!

u−1∏
i=0

(k + 2i)(k + 2i+ 2) for any u ≥ 1.

Proof. Using formula (2.6), we check that formula (2.14) corresponds in each case
(k even or odd, positive or negative) to formulas (2.10)–(2.12). □

2.3. Equivariant splitting maps and noncommutative product on modu-
lar forms. The data and notations are those of previous Subsections 2.1 and 2.2.
In order to simplify the notations, we will set f (n) = ∂n

z f for any f ∈ R and
n ≥ 0. According to problem 1.4.4 and in connection with the construction already
known in the even case, we seek to construct, for any m ∈ Z, a linear morphism
ψm : R → C satisfying the following conditions:
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(C1) ψm((f |mγ)) = (ψm(f)|γ) for any f ∈ R, γ ∈ Γ;
(C2) there exists some complex sequence (αm(n))n≥0 such that

ψm(f) =
∑

n≥0
αm(n)f (n)ym+2n for any f ∈ R;

(C3) αm(0) = 1.
We prove in the following that such a map ψm exists and is unique for m ≥
0 (Proposition 2.3.1), exists but is not unique if m is negative and even (Re-
marks 2.3.5), and doesn’t exist if m is negative and odd (Proposition 2.3.6).
Proposition 2.3.1. For any nonnegative integer m, the linear map ψm : R → C0
defined by

ψm(f) =
∑

n≥0

(−1)n

4nn!

(
n−1∏
i=0

(m+2i)(m+2i+2)
(m+i)

)
f (n)ym+2n for any f ∈ R (2.15)

is the unique map satisfying the three conditions (C1), (C2) and (C3).
Proof. The aim is to prove, for any nonnegative integer k, the following formulas:

ψ2k(f) =
∑

n≥0

(2k−1)! (n+k−1)!
(n+2k−1)! (k−1)!

(−k−1
n

)
f (n)xk+n, (2.16)

ψ2k+1(f) = k!2

(2k+1)!
∑

n≥0

(−1)n

16n

(2k+1+2n)!(2k+2n)!
n!(2k+n)!(k+n)!2 f (n)y2k+1+2n. (2.17)

For even weights, formula (2.16) and the unicity follow from [4, Props. 2 and 6]
up to a multiplicative constant in order to assure condition (C3). We prove now
formula (2.17) and show that this is the unique map satisfying the conditions (C1),
(C2) and (C3) for odd positive weights.

We use at first the following equality for m ≥ 0 and n ≥ 0 integers:

((f |nγ))(m) (z) =
m∑

r=0

(−1)m−rm!(m+n−1)!
r!(m−r)!(n−1+r)!(cz+d)n+2r

(
c

cz+d

)m−r

(f (r) · γ)(z), (2.18)

which can be easily checked by induction on m. Let (α2k+1(n))n≥0 be a sequence
of complex numbers, and let ϕ2k+1(f) =

∑
n≥0 α2k+1(n)f (n)y2k+1+2n. On the one

hand, we have (ϕ2k+1(f)|γ) =
∑

n≥0 α2k+1(n)(f (n) · γ)(y2k+1+2n|γ). Using (2.11)
we obtain (with u = r + n):

(ϕ2k+1(f)|γ)(z) =
∑

u≥0

u∑
n=0

α2k+1(n)(k+n+1)!(k+n)!(2k+2u)!(2k+2u+2)!
(2k+2n)!(2k+2n+2)!(k+u)!(k+u+1)!16u−n

× (cz+d)−2k−1−2n

(u−n)!

(
c

cz+d

)u−n

(f (n) · γ)(z)y2k+1+2u.

On the other hand, using (2.18) we have
ϕ2k+1(f |2k+1γ)(z) =

∑
u≥0

α2k+1(u)(f |2k+1γ)(u)(z)y2k+1+2u

=
∑

u≥0

u∑
n=0

α2k+1(u) u!(u+2k)!(−1)u−n

n!(n+2k)!

× (cz+d)−2k−1−2n

(u−n)!

(
c

cz+d

)u−n

(f (n) · γ)(z)y2k+1+2u.
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Then we deduce that condition (C1) holds for ϕ2k+1 if and only if the sequence
(α2k+1(n))n≥0 satisfies, for any u ≥ 0 and any 0 ≤ n ≤ u, the equality

α2k+1(u)! u!(u+2k)!(−1)u−n

n!(n+2k)! = α2k+1(n) (k+n+1)!(k+n)!(2k+2u)!(2k+2u+2)!
(2k+2n)!(2k+2n+2)!(k+u)!(k+u+1)!16u−n . (2.19)

This equation is true for n = u for any u ≥ 0. Let u ≥ 1, and consider n = u− 1.
Then relation (2.19) is equivalent to

−u(u+ 2k)α2k+1(u) = α2k+1(u−1)
16

(k+u)!(k+u−1)!(2k+2u)!(2k+2u+2)!
(k+u)!(k+u+1)!(2k+2u)!(2k+2u−2)!

= α2k+1(u− 1)(k + u+ 1
2 )(k + u− 1

2 ).

Assuming that α2k+1(0) = 1 to satisfy condition (C3), we obtain as a necessary
condition that, for any u ≥ 1, α2k+1(u)

α2k+1(u−1) = − (u+k+ 1
2 )(u+k− 1

2 )
u(u+2k) . Using formula (2.6),

it follows that

α2k+1(u) = (−1)u
u∏

i=1

(k+ 1
2 +i)(k− 1

2 +i)
i(2k+i) = (−1)u

16u
k!2

(2k+1)!
(2k+2u+1)!(2k+2u)!

u!(u+2k)!(u+k)!2 .

This proves consequently the unicity of the sequence (α2k+1(u))u≥0.
Let now u ≥ 1 and 0 ≤ n ≤ u, and let α2k+1(u) = (−1)u

16u
k!2

(2k+1)!
(2k+2u+1)!(2k+2u)!

u!(u+2k)!(u+k)!2 .
On the one hand, we have

α2k+1(u) u!(u+2k)!(−1)u−n

n!(u−n)!(n+2k)! = (−1)n

16u
k!2

(2k+1)!
(2k+2u+1)!(2k+2u)!

n!(u−n)!(n+2k)!(u+k)!2 ,

and, on the other hand,

α2k+1(n) (k+n+1)!(k+n)!(2k+2u)!(2k+2u+2)!
(2k+2n)!(2k+2n+2)!(k+u)!(k+u+1)!16u−n(u−n)!

= (−1)n

16u
k!2

(2k+1)!
(2k+2u+1)!(2k+2u)!

n!(u−n)!(n+2k)!(u+k)!2 ,

which proves that the sequence (α2k+1(u))u≥0 satisfies equation (2.19) for any
u ≥ 0 and 0 ≤ n ≤ u, and gives the existence of the lifting ψ2k+1. □

According to the general principle of quantization by deformation, we can now
transfer to modular forms the noncommutative product on operators in CΓ

0 . The
case of even weights was considered in [4] and [16].

Theorem 2.3.2. We use Notations 2.1.3 and 2.1.6, and we set M0 =
∏

j≥0 Mj

and Mev
0 =

∏
j≥0 M2j. We consider the algebras B0 = R[[x ; dz]] ⊂ C0 = R[[y ; δz]]2.

(i) The map Ψ : M0 → CΓ
0 , defined by Ψ(f̃) =

∑
m≥0 ψm(fm) for any f̃ =∑

m≥0 fm, is a vector space isomorphism, and M0 is an associative algebra
for the noncommutative product

f̃ ⋆ g̃ = Ψ−1(Ψ(f̃) · Ψ(g̃)) for all f̃ , g̃ ∈ M0. (2.20)

(ii) In particular, for any modular forms f, g of respective nonnegative weights
k and ℓ (even or odd), the product f ⋆ g in M0 is

f ⋆ g = Ψ−1(ψk(f) · ψℓ(g)) =
∑

n≥0
αn(k, ℓ)[f, g]n ∈ M0, (2.21)
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where the coefficients αn(k, ℓ) are rational constants depending only on k, ℓ
and n, and [f, g]n =

∑n
j=0(−1)j

(
k+n−1

n−j

)(
ℓ+n−1

j

)
f (j)g(n−j) ∈ Mk+ℓ+2n is

the n-th Rankin–Cohen bracket of f and g.
(iii) The restriction of Ψ to the subspace Mev

0 determines a vector space iso-
morphism Ψ2 between Mev

0 and BΓ
0 .

Proof. It is clear that Ψ is linear and injective. Let q =
∑+∞

m=m0
hmy

m be an
element of valuation m0 ≥ 0 in CΓ

0 . Then hm0 ∈ Mm0 , and by condition (C3)
the element q − ψm0(hm0) lies in CΓ

0 and its valuation is greater than m0. It
follows by induction that q ∈ Ψ(Mm0). Then Ψ is a vector space isomorphism,
and point (i) is obtained by transfer of structures. Point (ii) is a consequence of
condition (C2) satisfied by ψm, and of the property of Rankin–Cohen brackets to
be (up to constant) the unique operator

∑n
k=0 anf

(k)g(n−k) with an ∈ C mapping
Mk × Ml to Mk+l+2n (see for instance the end of Section 1 of [19]). Point (iii) is
clear by condition (C2). □

Corollary 2.3.3. The invariant subspace CΓ
k is for any k ≥ 0 isomorphic to the

space Jk,m of algebraic Jacobi forms on R of weight k and positive index m. In
particular, relation (2.20) defines a structure of noncommutative algebra on Jk,m.

Proof. It follows from Theorem 2.3.2 by Remark 2.1.7. □

Remark 2.3.4. The isomorphisms Ψ and Ψ−1 are explicit; we can separate even
and odd weights cases. In the even case, relations between the coefficients of an
element f̃ =

∑
n≥1 f2n of Mev

0 and its image Ψ2(f̃) =
∑

m≥1 hmx
m in BΓ

0 are (as
proved in [4])

hm =
m−1∑
r=0

(m−1)!(2m−2r−1)!
(m−r−1)!(2m−r−1)!

(−m+r−1
r

)
f

(r)
2m−2r,

f2n = (n−1)!
(2n−2)!

n−1∑
r=0

(2n−2−r)!
(n−1−r)!

(
n
r

)
h

(r)
n−r, (2.22)

and the coefficients αn(2k, 2ℓ) are computed for instance in [4, 16, 17]. In the odd
case, technical calculations give the following relations between the coefficients of
f̃ =

∑
n≥0 f2n+1 of

∏
n≥0 M2n+1 and its image Ψ(f̃) =

∑
m≥0 h2m+1y

2m+1:

h2m+1 = (2m+1)!(2m)!
m!2

m∑
r=0

(−1)r(m−r)!2

16rr!(2m−2r+1)!(2m−r)!f
(r)
2m−2r+1,

f2n+1 = (2n)!(2n+1)!
(2n−1)!n!2

n∑
r=0

(2n−1−r)!(n−r)!2

16r(2n−2r)!r!(2n−2r+1)!h
(r)
2n−2r+1.

Remarks 2.3.5. (i) The coefficients αm(n) = (−1)n

4nn!

n−1∏
i=0

(m+2i)(m+2i+2)
(m+i) appearing

in Proposition 2.3.1 are also well defined for m even and non-positive. For n ≥ −m
2 ,

αm(n) = 0 since α−2k(n) = 1
4nn!

n−1∏
i=0

(2k−2i)(2k−2−2i)
(2k−i) vanishes for n ≥ k because of
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the term i = k − 1. Therefore relation (2.16) can be completed for k > 0 by

ψ−2k(f) =
k∑

n=0

k! (2k−n)!
(k−n)! (2k)!

(
k−1

n

)
f (n)x−k+n. (2.23)

The map ψ−2k : R → B satisfies the three conditions (C1), (C2) and (C3); see
for instance [4]. Then we can build a vector space isomorphism Ψ2 : Mev

∗ → BΓ

whose restriction to Mev
0 is the isomorphism Ψ2 of point (iii) of Theorem 2.3.2.

(ii) Observe, however, that the lifting ψ−2k is not the only map satisfying the
three conditions (C1), (C2) and (C3). Indeed, using the well-known Bol’s identity

(f |2−hγ)(h−1) = (f (h−1)|hγ) for any γ ∈ SL(2,C), f ∈ R, h > 0,
the operator ϕc : f 7→ ψ−2k(f)+cψ2k+2(f (2k+1)) satisfies, for any c ∈ C, conditions
(C2) and (C3), as well as the equivariance condition (C1):

(ϕc(f)|γ) = (ψ−2k(f)|γ) + c(ψ2k+2(f (2k+1))|γ)

= ψ−2k(f |−2kγ) + cψ2k+2(f (2k+1)|2k+2γ)

= ψ−2k(f |−2kγ) + cψ2k+2
(
(f |−2kγ)(2k+1))

= ϕc(f |−2kγ).
The lifting map ψ−2k is canonical in the sense that it’s the only one which is
polynomial, that is, of the form ψ−2k(f) =

∑k
n=0 αnf

(n)xn−k ∈ A for any f ∈ R.

The coefficients αm(n) introduced in Remarks 2.3.5 (i) are not defined for m =
−2k + 1 with k > 0 (for n ≥ 2k, the denominator vanishes without vanishing of
the numerator). In this negative and odd case, we have the following result.

Proposition 2.3.6. Let k be a positive integer. There is no map ψ−2k+1 : R → C
satisfying the three conditions (C1), (C2) and (C3). More precisely, the only map
ψ−2k+1 : R → C satisfying conditions (C1) and (C2) is defined (up to constant)
by ψ−2k+1(f) = ψ2k+1(f (2k)) for any f ∈ R, and it doesn’t satisfy condition (C3).

Proof. Relation (2.18) can be extended to the cases where m ≥ 0 and n ∈ Z by

(f |nγ)(m)(z) =
m∑

r=0

m!
r!

(
m+n−1

m−r

) (−c)m−r

(cz+d)n+m+r f
(r)(γz) (2.24)

which gives Bol’s identity in the particular case m = 1 −n. Let k > 0 and suppose
that there exists a linear morphism ψ−2k+1 : R → C satisfying (C1) and (C2).
Using (2.12) and (2.24), we can show as in the proof of Proposition 2.3.1 that the
coefficients of the series ψ−2k+1(f) =

∑
n≥0 α−2k+1(n)f (n)y−2k+1+2n must satisfy

the equality

α−2k+1(n) n!
r!

(
n−2k
n−r

)
(−1)n−r

=


α−2k+1(r)

16n−r(n−r)!
(2k−2r)!(2k−2r−2)!(k−n)!(k−n−1)!
(k−r)!(k−r−1)!(2k−2n)!(2k−2n−2)! if r ≤ n ≤ k − 1,

− α−2k+1(r)
16n−r(n−r)!

(2k−2r)!(2k−2r−2)!(2n−2k)!(2n−2k+2)!
(k−r)!(k−r−1)!(n−k)!(n−k+1)! if r ≤ k − 1 < n,

α−2k+1(r)
16n−r(n−r)!

(r−k+1)!(r−k)!(2n−2k)!(2n−2k+2)!
(2r−2k+2)!(2r−2k)!(n−k)!(n−k+1)! if k ≤ r ≤ n.
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For n = 2k and r < 2k, we deduce that α−2k+1(r) = 0 (separating the cases
r > k and r ≤ k). Then condition (C3) cannot be satisfied. Moreover, if we fix
α−2k+1(2k) = 1, it is easy to show that we have α−2k+1(n) = α2k+1(n − 2k) for
any n ≥ 2k, which proves the second assertion of the proposition. □

2.4. Invariants for the homographic action on B. The data and notations
are those of previous Subsections 2.1, 2.2 and 2.3.

Theorem 2.4.1. We assume that there exists a weight 2 modular form χ ∈ R,
which is invertible in R. Then BΓ = RΓ((u;D)) and BΓ

0 = RΓ[[u;D]] for u =
xχ ∈ BΓ and D = −χ−1∂z.

Proof. It is clear that u = xχ lies in BΓ, since its inverse w = χ−1x−1 is invariant
by (2.3). Then we apply Theorem 1.3.1 with g = χ−1, h = 0 and d = −∂z. □

Remark 2.4.2. It follows from the previous theorem that the invariant algebra
BΓ is noncommutative if and only if the restriction of D to RΓ is not trivial, or
equivalently RΓ ̸= C. Since the product of any modular form of even weight 2k by
χ−k lies in RΓ, this condition is also equivalent to M2k ̸= Cχk. In the degenerate
case where RΓ = C, the product ⋆ defined by (2.21) is commutative and most of
the following results become much simpler. We refer to Examples 2.1.2 to give
examples of fields R such that RΓ is different from C, and containing an invertible
weight 2 modular form.

Problem 2.4.3. The explicit description of BΓ given by Theorem 2.4.1 and the
isomorphism Ψ2 : Mev

∗ → BΓ introduced in Remarks 2.3.5 lead naturally to the
question of finding relations between the terms of a sequence of modular forms in
Mev

∗ and the coefficients in RΓ of its image in BΓ by Ψ2. We answer this problem
for positive weights, that is, for the isomorphism Ψ2 : Mev

0 → BΓ
0 . Our first goal

is to calculate, for any invariant pseudodifferential operator q ∈ BΓ
0 , the modular

forms f2m ∈ M2m appearing in Ψ−1
2 (q) =

∑
m≥0 f2m. For this we introduce the

following notation for the powers of the generator u:
for any k ∈ N, Ψ−1

2 (uk) =
∑

n≥k

gk,2n, with gk,2n ∈ M2n. (2.25)

Proposition 2.4.4. The assumptions are those of Theorem 2.4.1. Let q ∈ BΓ
0

and (ak)k≥0 be the sequence of elements of RΓ such that q =
∑

k≥0 aku
k. Then

the modular forms f2m ∈ M2m appearing as the terms of Ψ−1
2 (q) =

∑
m≥0 f2m are

given by

f2m = (−1)m (m−1)!
(2m−2)!

m∑
k=0

m∑
n=k

(−1)n (2n−1)!(m−n)!
(n−1)!(m+n−1)

(
m

m−n

)
[ak, gk,2n]m−n.

Proof. The expression of any element of BΓ
0 as q =

∑
k≥0 aku

k, with ak ∈ RΓ,
follows directly from Theorem 2.4.1. By Theorem 2.3.2 we have

Ψ−1
2 (q) =

∑
k

Ψ−1
2 (aku

k) =
∑
k

ak ⋆Ψ−1
2 (uk)

=
∑
k,n

ak ⋆ gk,2n =
∑

k,n,r

αr(0, 2n)[ak, gk,2n]r.
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Then f2m =
∑m

k=0
∑m

n=k αm−n(0, 2n)[ak, gk,2n]m−n for any m ≥ 0. By formula
(2.16), we obtain ak · ψ2n(gk,2n) =

∑
t≥n htx

t, with

ht = (2n−1)!(t−1)!
(t+n−1)!(n−1)!

(−n−1
t−n

)
ak (gk,2n)(t−n)

.

We deduce with formula (2.22) that, for any m ≥ n ≥ k,

αm−n(0, 2n)[ak, gk,2n]m−n = (m−1)!
(2m−2)!

m−1∑
r=0

(2m−2−r)!
(m−1−r)!

(
m
r

)
h

(r)
m−r.

The left hand side is equal to

αm−n(0, 2n)
m−n∑
i=0

(−1)i
(

m−n−1
m−n−i

)(
m+n−1

i

)
a

(i)
k g

(m−n−i)
k,2n ,

and expanding the right hand side gives the formula

(m−1)!(2n−1)!
(2m−2)!(n−1)!

m−n∑
i=0

1
i!a

(i)
k g

(m−n−i)
k,2n

[
m−n∑
r=i

(2m−2−r)!r!
(m−r+n−1)!(r−i)!

(
m
r

)( −n−1
m−r−n

)]
.

Identifying the terms for i = m− n of each side gives the identity

αm−n(0, 2n) = (−1)m−n (m−1)!(2n−1)!(m−n)!
(2m−2)!(n−1)!(m+n−1)

(
m

m−n

)
,

which proves the proposition. □

The next step is to obtain an explicit expression of the modular forms gk,2n as
functions of χ.

Proposition 2.4.5. For any nonnegative integers k and i, we have

gk,2k+2i = (−1)i (k+i)!(k+i−1)!
(2k+2i−2)!k!

∑
(t1,...,tk)∈(Z≥0)k

t1+...+tk=i

γi(t1, . . . , tk) χ(t1)

(t1+1)! · · · χ(tk)

(tk+1)! , (2.26)

where the coefficients γi(t1, . . . , tk) are defined for (t1, . . . , tk) ∈ (Z≥0)k such that∑k
j=1 tj = i by

γi(t1, . . . , tk) =
i∑

r=0
(−1)r (2k+2i−2−r)!

(k+i−1−r)!
∑

b1+···+bk=r
0≤b1≤t1

...
0≤bk≤tk

(
t1+1

b1

)
. . .

(
tk+1

bk

)
(2.27)

and satisfy
γi(t1,...,tk)
(k+i−1)!

=
∑

a1+...+ak≤k+i−1

(
k+i−2

a1+...+ak−1
) k∏

j=1
[(−1)tjδ(aj = 0) + δ(aj = tj + 1)],

(2.28)

where δ stands for the Kronecker symbol.

Proof. Firstly, let us observe that the sum in the right hand side of (2.28) contains
2k − 2 terms corresponding to all k-tuples (a1, a2, . . . , ak) with aj ∈ {0, tj + 1} for
any 1 ≤ j ≤ k, except the two k-tuples (0, 0, . . . , 0) and (t1 + 1, t2 + 1, . . . , tk + 1).
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The proofs of identities (2.26), (2.27) and (2.28) are straightforward but quite
technical, and we give only the main steps intentionally omitting some details.
Applying relation (1.2) to u = xχ we prove by induction on k that

uk =
∑

n≥0

(
(−1)n(k+n)!

k!
∑

s1+...+sk=n

χ(s1)

(s1+1)! . . .
χ(sk)

(sk+1)!

)
xk+n.

Then we apply (2.22) to obtain

gk,2n = (−1)n−kn!(n−1)!
(2n−2)!k!

×
∑

t1+...+tk=n−k

(
n−k∑
r=0

(−1)r(2n−2−r)!
(n−1−r)! βr(t1, . . . , tk)

)
χ(t1)

(t1+1)! . . .
χ(tk)

(tk+1)! ,

where, for any 0 ≤ r ≤ n− k,
βr(t1, . . . , tk) =

∑
b1+...+bk=r

b1 ̸=t1+1,...,bk ̸=tk+1

(
t1+1

b1

)
. . .

(
tk+1

bk

)
,

which proves (2.26) and (2.27) with

γi(t1, . . . , tk) =
i∑

r=0
(−1)r (2k+2i−2−r)!

(k+i−1−r)! βr(t1, . . . , tk).

Observe that βr(t1, . . . , tk) is the Xr-coefficient in A(X) =
k∏

j=1
[(X+1)tj+1−Xtj+1].

We have γi(t1, . . . , tk) = Q(k+i−1)(1), with the notation

Q(X) =
i∑

r=0
(−1)rβr(t1, . . . , tk)X2k+2i−2−r = X2i+2k−2A(− 1

X ).

We deduce that

γi(t1, . . . , tk) =
[
Xk+i−2

k∏
j=1

(
(X − 1)tj+1 − (−1)tj+1)](k+i−1)

∣∣∣∣∣∣
X=1

,

which leads to (2.28) using the relations[
Xk+i−2](b)

∣∣∣
X=1

=
{

(k+i−2)!
(k+i−2−b)! = b!

(
k+i−2

b

)
if b ≤ k + i− 2,

0 if b = k + i− 1,
and [

(X − 1)tj+1 − (−1)tj+1](aj)
∣∣∣
X=1

= aj !
[
(−1)tjδaj=0 + δaj=tj+1

]
. □

Corollary 2.4.6. We have gk,2k+2i = 0 for any nonnegative integer k and any
nonnegative odd integer i.

Proof. We use the expression of the gk,2k+2i given in the previous proposition. Let
i be an odd integer, and let (t1, . . . , tk) ∈ (Z≥0)k be such that t1 + . . . + tk = i.
In the right hand side of (2.28), we can group into pairs the k-tuples (a1, . . . , ak)
and (t1 + 1 − a1, . . . , tk + 1 − ak). The associated summands are opposite numbers
because i is odd. Hence γi(t1, . . . , tk) = 0. □
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28 FRANÇOIS DUMAS AND FRANÇOIS MARTIN

Remark 2.4.7. The result obtained in Corollary 2.4.6 as a consequence of Propo-
sition 2.4.5 can also be proved by theoretical arguments using algebraic properties
of the product ⋆ defined in (2.21) and some combinatorial identity conjectured in
[4, relation (3.4)] (see [17] for a proof). We proceed by induction on k ≥ 2. For
k = 2, applying (2.21) with the notation from (2.25) we have

Ψ−1
2 (u2) = χ ⋆ χ =

∑
n≥0

αn(2, 2)[χ, χ]n,

which proves by (−1)i-symmetry of the Rankin–Cohen brackets that g2,4+2i =
αi(2, 2)[χ, χ]i = 0 for any odd i. Suppose now that Ψ−1

2 (uk) =
∑

i∈2Z≥0
gk,2k+2i

with gk,2k+2i ∈ M2k+2i. Then we compute

Ψ−1
2 (uk+1) = Ψ−1

2 (uk · u) =
∑

n≥k, 2|n−k

gk,2n ⋆ χ

=
∑

n≥k, 2|n−k

∑
m≥0

αm(2n, 2)[gk,2n, χ]m,

and similarly,

Ψ−1
2 (uk+1) = Ψ−1

2 (u · uk) =
∑

n≥k, 2|n−k

χ ⋆ gk,2n

=
∑

n≥k, 2|n−k

∑
m≥0

αm(2n, 2)[χ, gk,2n]m.

Hence we deduce that, for each r ≥ k + 1,∑
n+m=r

αm(2n, 2)[gk,2n, χ]m =
∑

n+m=r
αm(2, 2n)(−1)m[gk,2n, χ]m = gk+1,2r.

It follows from formula (3.4) of [4] that αm(2, 2n) = αm(2n, 2). Using this identity
and the induction hypothesis gk,2n = 0 if n− k is odd, we conclude that

gk+1,2r =
r−k∑
m=0

m odd

αm(2r − 2m, 2)[gk,2r−2m, χ]m

= −
r−k∑
m=0

m odd

αm(2, 2r − 2m)[gk,2r−2m, χ]m = 0.

Remark 2.4.8. For even nonnegative integers i, the modular forms gk,2k+2i de-
fined by (2.25) are described in Proposition 2.4.5 as multidifferential polynomials
of the fundamental weight two modular form χ. Then we can necessarily express
them in terms of Rankin–Cohen brackets. For small values of i, we compute

gk,2k = χk,

gk,2k+4 = (k+2)!
72(2k+1)(k−2)! χ

k−2[χ, χ]2,

gk,2k+8 = 2 (2k+1)!(k+4)!(k+5)!
(2k+6)!(k−1)!(k−2)! χ

k−4
(

[χ,χ3]4
16920 + 47k2−187k+282

121824k [χ, χ]22
)
.
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2.5. Invariants for the homographic action on C. The data and notations
are those of previous Subsections 2.1, 2.2 and 2.3. A natural question is whether
there exists, for the action of Γ on C studied in Subsection 2.2, a description of the
invariant subalgebra CΓ similar to the one obtained in Theorem 2.4.1 for BΓ.

Theorem 2.5.1. We suppose that there exists a weight 1 modular form ξ which is
invertible in R. Then we have CΓ = RΓ((v ; ∆))2 for ∆ = − 1

2ξ
−2∂z and v = ξy+· · ·

a square root of y2ξ2.

Proof. It is the direct application in the modular situation of Theorem 1.3.2. □

Remark 2.5.2. The previous theorem describes the elements of CΓ = RΓ((v ; ∆))2
as series with coefficients in RΓ, where the uniformizer v is choosen as a square root
of u = xξ2 = ψ2(ξ2). In particular, CΓ contains the ring of differential operators
AΓ = RΓ[u−1 ; −2∆]. The main obstacle to explicit calculations in this case is the
complicated shape of the square root v.

Another more natural idea would be to consider the uniformizer z = ψ1(ξ). By
reasoning as in Theorem 1.3.2, we can prove then that CΓ = RΓ((z ; S)), where the
product zf with f ∈ RΓ is twisted by some higher derivation S = (δk)k≥0 giving rise
to commutation laws more general than (1.1) or (1.4) (see [6] for precise definitions).
The main difficulty in this case lies in the complexity of these commutation laws.

Straightforward calculations show that z−2 = u−1 − 5
64

[ξ,ξ]2
ξ6 u− 5

64
[ξ,ξ2]3

ξ9 u2 + · · · .
In particular, z−2 ̸= fu−1 + g for any f, g ∈ RΓ, f ̸= 0. By uniqueness of the
subring AΓ in CΓ (see [6, Section 5.3]), it follows that the higher derivation S is
actually different from the sequence

(
(2k)

2k(k !)2 d
k
)

k≥0
of (1.4) for any derivation d of

RΓ.

Under the assumption of Theorem 2.5.1 we can extend part of Theorem 2.3.2 to
the space M∗ introduced in Notations 2.1.6.

Proposition 2.5.3. We suppose that there exists a weight 1 modular form ξ which
is invertible in R. For k > 0, let ψ−k : M−k → CΓ

−k be the vector space morphism
defined by

ψ−k(f) = ψ2k(ξ2k)−1ψk(fξ2k). (2.29)

Then the morphisms ψm defined by (2.15) if m ≥ 0 and by (2.29) if m < 0 induce
canonically a vector space isomorphism Ψ : M∗ → CΓ, which defines by transfer a
structure of associative algebra on M∗.

Proof. Let k > 0 and let f ∈ M−k, f ̸= 0. Then fξ2k ∈ Mk and ψk(fξ2k) ∈ CΓ
k .

In the same way ξ2k ∈ M2k, so ψ2k(ξ2k) ∈ CΓ
2k. Since its 2k-valuation term is

ξ2ky2k and ξ ∈ U(R) by assumption, we deduce that ψ2k(ξ2k) ∈ U(CΓ) and so
ψ2k(ξ2k)−1 ∈ CΓ

−2k. We have consequently ψ−k(f) ∈ CΓ
−k, and it is easily checked

that its term of valuation −k is fy−k. The map ψ−k is clearly linear, and we prove
the surjectivity of Ψ recursively as in the proof of Theorem 2.3.2. □
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Remarks 2.5.4. (i) Notice that we don’t have in the previous proposition an
equivalent of point (ii) of Theorem 2.3.2, because the morphism ψk doesn’t satisfy
condition (C2) for k < 0.

(ii) For k < 0 an even integer, the map ψk defined by (2.29) can be replaced
by the more canonical one introduced previously in formula (2.23), which satisfies
condition (C2). In this case, the isomorphism Ψ2 in Remarks 2.3.5 is the restriction
of Ψ to Mev

∗ .

2.6. Additional comment. The action of Γ on B and C described in Proposi-
tion 2.2.2 and studied throughout the rest of the article is based on the choice
r = 0 in formula (1.12). For the same 1-cocycle s defined by (2.2), we know by
example 2 of 1.2.7 that another choice for r could be the map r′ : Γ → R defined
by r′

γ = −s−2
γ d(s2

γ). Using (2.2), we have r′
γ = (cz + d)−2∂z((cz + d)2) = 2c

cz+d for
any γ =

(
a b
c d

)
∈ Γ. In other words, the homographic action of Γ on R extends to

an action by automorphisms on B defined by

(x−1|γ)1 = (cz + d)2
(
x−1 + 2c

cz+d

)
for any γ =

(
a b
c d

)
∈ Γ.

As explained in example 3 of 1.2.7, we can extend, for any κ ∈ C∗, the homo-
graphic action of Γ on R by the action by automorphisms on B defined by

(x−1|γ)κ = (cz + d)2
(
x−1 + κ 2c

cz+d

)
for any γ =

(
a b
c d

)
∈ Γ,

but the algebraic study of these actions and associated invariant algebras reduces
to the case κ = 1. Arithmetical interpretations of these actions were studied in [4].
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[13] M. Petkovšek, H. S. Wilf, and D. Zeilberger, A = B, A K Peters, Wellesley, MA, 1996.
MR 1379802.

[14] M. Pevzner, Rankin-Cohen brackets and representations of conformal Lie groups, Ann. Math.
Blaise Pascal 19 (2012), no. 2, 455–484. MR 3025141.

[15] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in
Mathematics, 151, Springer, New York, 1994. MR 1312368.

[16] A. Unterberger and J. Unterberger, Algebras of symbols and modular forms, J. Anal. Math.
68 (1996), 121–143. MR 1403254.

[17] Y.-J. Yao, Autour des déformations de Rankin-Cohen, PhD thesis, École Polytechnique,
2007. https://pastel.archives-ouvertes.fr/pastel-00002414.

[18] Y.-J. Yao, Rankin-Cohen deformations and representation theory, Chinese Ann. Math. Ser.
B 35 (2014), no. 5, 817–840. MR 3246938.

[19] D. B. Zagier, Modular forms and differential operators, Proc. Indian Acad. Sci. Math. Sci.
104 (1994), no. 1, 57–75, 1994. MR 1280058.

[20] D. B. Zagier, Elliptic modular forms and their applications, in The 1-2-3 of Modular Forms,
1–103, Universitext, Springer, Berlin, 2008. MR 2409678.

François Dumas
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