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TRIVIAL EXTENSIONS OF MONOMIAL ALGEBRAS

MARÍA ANDREA GATICA, MARÍA VALERIA HERNÁNDEZ,
AND MARÍA INÉS PLATZECK

Abstract. We describe the ideal of relations for the trivial extension T (Λ)
of a finite-dimensional monomial algebra Λ. When Λ is, moreover, a gentle al-
gebra, we solve the converse problem: given an algebra B, determine whether
B is the trivial extension of a gentle algebra. We characterize such algebras B

through properties of the cycles of their quiver, and show how to obtain all
gentle algebras Λ such that T (Λ) ∼= B. We prove that indecomposable trivial
extensions of gentle algebras coincide with Brauer graph algebras with mul-
tiplicity one in all vertices in the associated Brauer graph, result proven by
S. Schroll.

1. Introduction

Let Λ be a finite-dimensional k-algebra (associative, with identity) over an al-
gebraically closed field k. Consider the trivial extension algebra T (Λ) = Λ nD(Λ)
of Λ by the Λ-bimodule D(Λ) = Homk(Λ, k), that is, T (Λ) = Λ⊕D(Λ) as k-vector
space and the multiplication in T (Λ) is given by (a, f)(b, g) = (ab, ag + fb) for
a, b ∈ Λ and f, g ∈ D(Λ).

The ordinary quiver of the trivial extension T (Λ) of a finite-dimensional algebra
Λ = kQΛ/IΛ was described by Fernández and Platzeck [3], where also the relations
of such trivial extension are given under the assumption that any oriented cycle in
the ordinary quiver of Λ is zero in Λ.

In this work we will describe the relations for T (Λ) when Λ is monomial. These
algebras form a broad family containing, among others, string algebras and gentle
algebras.

If Λ is monomial, the ordinary quiver of T (Λ) is obtained from QΛ by adding
t arrows, where t is the number of paths of kQΛ which are maximal nonzero in Λ.
For each of these maximal paths we add an arrow in the opposite direction. In this
way, we obtain an oriented cycle, which we call elementary. We prove that each
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nonzero path γ of the quiver of T (Λ) is contained in an elementery cycle C such
that C = γµ for some path µ, and we say that µ is a supplement of γ. The ideal
of relations for T (Λ) is generated by

(i) the paths not contained in an elementary cycle, and
(ii) the elements µ − µ′, where µ, µ′ are different paths from kQT (Λ) with a

common supplement γ in elementary cycles C and C ′, respectively.

When Λ is gentle, elementary cycles of kQT (Λ) do not overlap (that is, have no
common arrows). Thus the description of IT (Λ) is easier, because the generators
described in (ii) can be replaced by the elements C − C ′, where C and C ′ are
elementary cycles starting at the same vertex of QT (Λ).

Let Λ be a gentle algebra. Then the bound quiver of B = T (Λ) satisfies the
following properties:

(T1) Any permutation of a maximal cycle is a maximal cycle.
(T2) Any path u of kQB nonzero in B is contained in a maximal cycle of kQB ,

which is unique up to permutations if u is nontrivial.
(T3) There are at most two different cycles from j to j of kQB maximal nonzero

in B for any vertex j of (QB)0. If there are two such cycles, they are equal
in B.

(T4) If αs · · ·α1 : j → j is a nonzero cycle of kQB which is not maximal, then
α̃1αs = 0 inB and the dimension of the endomorphism ring of the projective
associated to the vertex j is four.

We prove that these properties characterize trivial extensions of gentle algebras.
Moreover, we show how to find all gentle algebras Λ such that T (Λ) ' B, as stated
in the following result.

Theorem. Let B = kQB/IB be a finite-dimensional algebra satisfying (T1), (T2),
(T3) and (T4).

(i) Let Q be the quiver obtained from QB by eliminating exactly one arrow of
each cycle of QB maximal in B, and let I = kQ ∩ IB. Then Λ = kQ/I is
a gentle algebra and T (Λ) ∼= B.

(ii) If Λ is a gentle algebra such that T (Λ) ∼= B, then Λ = kQ/I, with Q and I
as in (i).

Finally, we prove that trivial extensions of indecomposable gentle algebras co-
incide with Brauer graph algebras with multiplicity one in all vertices in the asso-
ciated Brauer graph, result proven by S. Schroll in [4] with a different approach.
To prove this result we show that an indecomposable algebra B is a Brauer graph
algebra with multiplicity one in all vertices in the associated Brauer graph if and
only if its cycles satisfy the properties (T1), (T2), (T3) and (T4) which characterize
trivial extensions of gentle algebras.
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2. Preliminaries

Throughout this paper k will denote an algebraically closed field. The algebras
considered are finite-dimensional k-algebras which we will also assume to be basic
and indecomposable. Thus, for an algebra Λ, we have that Λ ' kQΛ/IΛ, where
QΛ is a finite connected quiver and the ideal IΛ is admissible. Given an element x
of kQΛ, we will denote by x the corresponding element of kQΛ/IΛ.

If Q is a quiver, we will denote by Q0 the set of vertices, and by Q1 the set of
arrows between vertices. For each arrow α, s(α) and e(α) will denote the start and
end vertices of α, respectively. For each i ∈ Q0, Si will be the simple Λ-module
associated to i, and Pi and Ii will denote the projective cover and injective envelope
of Si, respectively. Thus, if ei is the trivial path of kQΛ corresponding to the vertex i
of QΛ, then Pi = Λei.

We recall now the description of the ordinary quiver for T (Λ) given in [3]. Let
Λ be an algebra with ordinary quiver QΛ, and let p1, . . . , pt be elements in kQΛ
such that M = {p1, . . . , pt} is a k-basis for the socle socΛeΛ of Λ considered as a
module over the enveloping algebra Λe, where each pi is a linear combination of
paths with the same origin s(pi) and the same endpoint e(pi). Then the ordinary
quiver of T (Λ) is given by

(i) (QT (Λ))0 = (QΛ)0
(ii) (QT (Λ))1 = (QΛ)1 ∪ {βp1 , . . . , βpt

}, where βpi
is an arrow from e(pi) to

s(pi) for each i = 1, . . . , t.

The notion of elementary cycle, given in [3], is essential in the description of the
relations for Λ. We recall the definition now. Let pt+1, . . . , pr be paths of QT (Λ)
such that B = {p1, . . . , pt, pt+1, . . . , pr} is a k-basis of Λ, and let B∗ = {p1

∗, . . . , pr
∗}

denote the dual basis. Following [3], we say that an oriented cycle C of kQT (Λ)
is elementary if it is of the form C = αj · · ·α1βpαm · · ·αj+1, where α1, . . . , αm ∈
(QΛ)1, p ∈M and p∗(αm · · ·α1) 6= 0.

It follows from the definition that cyclic permutations σj · · ·σ1σm · · ·σj+1 of
elementary cycles σm · · ·σ1 are elementary cycles. When we refer to a permutation
of a cycle we will always mean a cyclic permutation of it.

We will say that a path γ in kQΛ is maximal in Λ if 0 6= γ in Λ, and αγ = 0,
γα = 0 for any arrow α of QΛ.

We will also need the notion of supplement given in [3]. Let q be a path in
an elementary cycle C. If q = C we say that the supplement of q in C is the
trivial path es(q). Otherwise the supplement of q in C is the path consisting of the
remaining arrows of C. More precisely, if C = µs · · ·µ1 is an elementary cycle, with
µ1, . . . , µs ∈ (QΛ)1, and q = µj+r · · ·µj is a subpath of C, then the supplement
of q in C is µj−1 · · ·µ1µs · · ·µj+r+1.

We consider, as in [3], the morphism of k-algebras Φ : kQT (Λ) → T (Λ) defined
by

Φ(ei) = (ei, 0) for i = 1, . . . , n,
Φ(α) = (α, 0), Φ(βp) = (0, p∗) for every α ∈ (QΛ)1, p ∈M.
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Then Φ is surjective and so we can identify T (Λ) with kQT (Λ)/Ker Φ. Thus, the
class x of an element x ∈ kQT (Λ) is nonzero in T (Λ) if and only if Φ(x) 6= 0. Any
path in kQT (Λ) containing at least two arrows βp is zero in T (Λ). Moreover, a path
in kQΛ which is not zero in Λ is always contained in an elementary cycle (see [3,
Remark 3.3]) and is therefore not maximal in T (Λ). Thus maximal paths in T (Λ)
contain exactly one arrow βp.

Associated with Φ are the compositions ϕ1 = π1Φ : kQT (Λ) → Λ and ϕ2 = π2Φ :
kQT (Λ) → D(Λ), where π1, π2 are the projections induced by the decomposition
T (Λ) = Λ⊕D(Λ).

Notice that an elementary cycle C = αj · · ·α1βpαm · · ·αj+1 : e→ e is nonzero in
T (Λ). In fact, Φ(C) = (0, ϕ2(C)), and using the structure of D(Λ) as a Λ-bimodule
we obtain

ϕ2(C)(e) = ϕ2(αj · · ·α1βpαm · · ·αj+1)(e)
= p∗(αm · · ·αj+1 e αj · · ·α1) = p∗(αm · · ·α1) 6= 0.

3. Trivial extensions of monomial algebras

From now on we will assume that Λ is a monomial algebra. That is, Λ ' kQΛ/IΛ,
where IΛ is an admissible ideal generated by paths. In this case, the set of classes
of maximal paths is a basis for socΛeΛ. We will always assume that p1, . . . , pt in
the chosen basis M = {p1, . . . , pt} of socΛeΛ are maximal paths. The extension B
of M to a basis of Λ considered above is then the set of classes of paths in kQΛ
that are nonzero in Λ. Notice that this set is a basis for Λ because Λ is a monomial
algebra.

In this section we will find generators for the ideal of relations of the trivial
extension of a monomial algebra. We do it by adapting the approach followed
in [3] to our case.

In order to describe the relations for T (Λ) we have to find generators for Ker Φ.
The next proposition gives a description of the elementary cycles of T (Λ).

Proposition 3.1. Let Λ = kQΛ/IΛ be a monomial algebra and C an oriented cycle
of kQT (Λ). Then the following conditions are equivalent:

(i) C is an elementary cycle.
(ii) C is a cyclic permutation of the cycle pβp for some p ∈M.
(iii) C is maximal in T (Λ).

Proof. (i) → (ii) Let C be an elementary cycle of kQT (Λ), C = αj · · ·α1βpαn · · ·
αj+1, with α1, . . . , αn ∈ (QA)1, p ∈M. Since B is generated by all the paths that
are nonzero in Λ and p∗(αn · · ·α1) 6= 0, it follows that αn · · ·α1 = p. Thus C is a
permutation of the cycle pβp.

(ii)→ (i) Let p ∈M. Since p∗(p) = 1 the cycle pβp is elementary by definition,
and so is any permutation C of pβp.

(i) → (iii) Let C = αj · · ·α1βpαn · · ·αj+1 be an elementary cycle, with αn · · ·
α1 = p ∈ M. We know that C 6= 0 in T (Λ). Suppose C is not maximal. Then
there is an arrow α ∈ QT (Λ) such that αC 6= 0 or Cα 6= 0. We assume that αC 6= 0.
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Thus Φ(ααj · · ·α1βpαn · · ·αj+1) 6= (0, 0). Therefore,
Φ(ααj · · ·α1)Φ(βp)Φ(αn · · ·αj+1) = (ααj · · ·α1, 0)(0, p∗)(αn · · ·αj+1, 0) 6= (0, 0).

That is, (0, ααj · · ·α1 p
∗ αn · · ·αj+1) 6= (0, 0). Thus in D(Λ) we have that

ααj · · ·α1 p
∗ αn · · ·αj+1 6= 0. So there is a path q of kQΛ such that

ααj · · ·α1 p
∗ αn · · ·αj+1(q) 6= 0. By definition of the structure of D(Λ) as a

Λ-bimodule we get ααj · · ·α1 p
∗ αn · · ·αj+1(q) = p∗(αn · · ·αj+1 q ααj · · ·α1) 6= 0,

which contradicts that p∗(p′) = 0 for any path p′ 6= p of kQΛ. In a similar way we
prove that Cα 6= 0 in T (Λ) leads to a contradiction. Therefore C is maximal.

(iii) → (i) Suppose that C is a cycle of QT (Λ) maximal in T (Λ), C : e→ e. As
observed above, C contains exactly one arrow βp. Then C = αj · · ·α1βpαn · · ·αj+1
and Φ(C) = (0, ϕ2(C)) 6= 0. So, there is a path γ in QΛ such that ϕ2(C)(γ) 6= 0.
Then ϕ2(Cγ)(e) = ϕ2(C)(γ) 6= 0, so ϕ2(Cγ) 6= 0. That is, 0 6= ϕ2(C γ) = Cγ
in T (Λ). Since C is maximal in T (Λ) it follows that γ is a trivial path, that is,
γ = e. Thus ϕ2(C)(e) 6= 0. Since ϕ2(C)(e) = p∗(αn · · ·αj+1 e αj · · ·α1) it follows
that p∗(αn · · ·α1) 6= 0. The paths p, αn · · ·α1 belong to the chosen basis B of Λ,
thus αn · · ·α1 = p, and this proves that the cycle C is elementary. �

We will briefly say that “a path has a supplement” to mean that it has a sup-
plement in some elementary cycle. If {xi}i∈I is a family of elements in an algebra,
we will denote by (xi)i∈I the two-sided ideal generated by them.

As a consequence of the preceding proposition we obtain the following result.

Corollary 3.2. Let Λ = kQΛ/IΛ be a monomial algebra. Then:
(i) Every arrow βp of QT (Λ) is contained in a single elementary cycle, up to

permutations for any p ∈M.
(ii) If a path γ ∈ (βp)p∈M has supplements µ, µ′ then µ = µ′.

Proof. (i) The only elementary cycles containing βp are the permutations of C =
pβp.

(ii) Let γ ∈ (βp)p∈M be a path of kQT (Λ) with supplements µ, µ′. Then γ = δβpρ,
with δ, ρ paths of kQΛ, and let C be the elementary cycle containing βp, which is
unique up to permutations. Then any supplement of γ is a supplement in C, and
is the path consisting of the remaining arrows in C. So µ = µ′. �

The next technical lemma will be used in what follows.

Lemma 3.3. Let Λ = kQΛ/IΛ be a monomial algebra.
(i) Let q and u be paths in kQT (Λ). If ϕ2(q)(u) 6= 0, then ϕ2(q)(u) = 1, and u

is a supplement of q.
(ii) If C : e→ e is an elementary cycle, then ϕ2(C)(e) 6= 0.

Proof. (i) Suppose that ϕ2(q)(u) 6= 0. Then q = γβpδ, with γ and δ paths of kQΛ.
So 0 6= ϕ2(q)(u) = ϕ2(γβpδ)(u) =

(
(γ, 0)(0, p∗)(δ, 0)

)
(u) =

(
(0, γ p∗)(δ, 0)

)
(u) =

(0, γ p∗δ)(u) = p∗(δuγ). Thus p∗(δuγ) 6= 0. Then u is a supplement of q in the
elementary cycle γβpδu.

This proves (i), and (ii) follows directly from the definition of ϕ2. �
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The next proposition is a first step to describe the ideal of relations of the trivial
extension of a monomial algebra.

Proposition 3.4. Let Λ = kQΛ/IΛ be a monomial algebra. Let Φ be the morphism
defined above. For each j ∈ (QT (Λ))0, let Yj be the ideal of kQT (Λ) generated by

(i) oriented cycles from j to j which are not contained in an elementary cycle,
(ii) all the elements C−C ′, where C and C ′ are elementary cycles with origin j.

Then Yj ⊆ Ker Φ ∩ ejkQT (Λ)ej.

Proof. It suffices to prove that Φ vanishes in the generators of Y j.
Suppose v is a generator of Yj as considered in (i), that is, a path from j to j

not contained in an elementary cycle. As we observed after the definition of Φ,
paths of kQΛ are contained in elementary cycles, so v contains one arrow βp, with
p ∈M. Thus Φ(v) = (0, ϕ2(v)).

If v has two or more arrows βp then ϕ2(v) = 0, so v ∈ Ker Φ ∩ ejkQT (Λ)ej .
Otherwise, v = γβpδ, with γ and δ paths of kQΛ, and ϕ2(v) = γ p∗δ. Suppose
ϕ2(v) 6= 0. Then there is a path u of kQΛ such that ϕ2(v)(u) 6= 0. That is,
p∗(δuγ) 6= 0 and therefore γβpδu is an elementary cycle containing v = γβpδ. This
contradicts the hypothesis that v is not contained in an elementary cycle. Therefore
ϕ2(v) = 0. So v ∈ Ker Φ ∩ ejkQT (Λ)ej .

Suppose now that v is a generator of Yj of the type (ii), that is v = C − C ′,
where C and C ′ are elementary cycles with origin j. Then Φ(v) = (0, ϕ2(v)) and
ϕ2(v) = ϕ2(C)− ϕ2(C ′).

Let u ∈ kQΛ. We will prove that ϕ2(v)(u) = 0.
If u 6= ej , then u is not a supplement for C, and thus ϕ2(C)(u) = ϕ2(C ′)(u) =

0, by Lemma 3.3 (i), so ϕ2(v)(u) = 0. On the other hand, ϕ2(C)(ej) = 1 and
ϕ2(C ′)(ej) = 1, by Lemma 3.3 (ii). Thus ϕ2(v)(ej) = 1− 1 = 0.

Thus, ϕ2(v) = 0, that is, v ∈ Ker Φ ∩ ejkQT (Λ)ej . �

Now we state the main result of this section.

Theorem 3.5. Let Λ = kQΛ/IΛ be a monomial algebra. Let I ′ be the ideal in
kQT (Λ) generated by

(i) the paths not contained in an elementary cycle, and
(ii) the elements µ − µ′, where µ, µ′ are different paths from kQT (A) whith a

common supplement γ in elementary cycles C and C ′, respectively.
Then I ′ is admissible and I ′ = Ker Φ. That is, T (Λ) ' kQT (Λ)/I

′.

Before proving this theorem, we will make some useful observations about the
ideal I ′ defined in its statement.

Remark 3.6.
(a) IΛ ⊆ I ′, because if q is a path of IΛ, then q = 0 in Λ and so q is not contained

in an elementary cycle, because elementary cycles are nonzero in T (Λ). Thus
IΛ ⊆ I ′∩kQΛ. Conversely, a path in kQΛ which is not zero in Λ is contained
in an elementary cycle, as observed above. Thus IΛ = I ′ ∩ kQΛ.
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(b) If µ−µ′ is a generator of I ′ of type (ii) in Theorem 3.5, then µ, µ′ ∈ (βp)p∈M.
In fact, since they are different paths with a common supplement γ it follows
from Corollary 3.2 (ii) that γ ∈ kQΛ. Thus any supplement of γ has an
arrow βp.

(c) Suppose q in kQT (Λ) is not in I ′. Then q has a supplement in some elementary
cycle. In fact, q is contained in an elementary cycle C, by the definition of I ′.
Thus q has a supplement in C.

Now we will prove Theorem 3.5

Proof. We must prove that I ′ = Ker Φ, where Φ is the morphism defined above.
We will prove first that I ′ ⊆ Ker Φ. For this, we prove that the generators given

in I ′ belong to Ker Φ.
Case 1. The generator is a path q in I ′ not contained in an elementary cycle.

Then:
• If q ∈ kQΛ, then q ∈ kQΛ ∩ I ′ = IΛ, by Remark 3.6 (a). Then q = 0 and

thus Φ(q) = (0, 0).
• If q ∈ (βp)p∈M, then q = γβpδ, with p ∈ M, where γ and δ are paths of
kQΛ. Thus Φ(q) = (0, ϕ2(q)).

Suppose that ϕ2(q) 6= 0. Then there is a path u of kQΛ such that ϕ2(q)(u) 6= 0.
Thus p∗(δuγ) 6= 0. So u is a supplement of q in the elementary cycle γβpδu. This is
a contradiction because we are assuming that q is not contained in an elementary
cycle. Thus ϕ2(q) = 0 and then q ∈ Ker Φ.

Case 2. Suppose v is a generator of I ′ of the form v = µ − µ′, where µ, µ′ are
different paths of kQT (Λ) from i to j with a common supplement γ in elementary
cycles C and C ′, respectively. Then C = γ µ and C ′ = γ µ′, and we have that
γ ∈ kQΛ, because µ, µ′ ∈ (βp)p∈M by Remark 3.6 (b). Since v ∈ (βp)p∈M we know
that Φ(v) = (0, ϕ2(v)). We will prove that ϕ2(v) = 0.

The product γ v = γµ−γµ′ = C−C ′ is in the ideal Yj defined in Proposition 3.4.
We proved in the same proposition that Yj ⊆ Ker Φ, so γv ∈ Ker Φ and therefore
ϕ2(γ v) = 0. Then 0 = ϕ2(γ v)(ei) = ϕ2(v)(eiγ) = ϕ2(v)(γ). Thus ϕ2(v)(γ) = 0.

Suppose that there is a path q ∈ kQΛ such that ϕ2(v)(q) 6= 0. Then ϕ2(v)(q) =
ϕ2(µ − µ′)(q) = ϕ2(µ)(q) − ϕ2(µ′)(q) 6= 0. So either ϕ2(µ)(q) or ϕ2(µ′)(q) is not
zero.

Without loss of generality we may assume that ϕ2(µ)(q) 6= 0. Then q is a
supplement of µ by Lemma 3.3, and therefore q = γ, because paths in (βp)p∈M
have a unique supplement, by Corollary 3.2 (ii). So ϕ2(v)(γ) = ϕ2(v)(q) 6= 0, which
contradicts that ϕ2(v)(γ) = 0. This proves that ϕ2(v) = 0, as desired.

The preceding case-by-case analysis proves that I ′ ⊆ Ker Φ.
Let π : kQT (Λ) → kQT (Λ)/I

′ be the canonical epimorphism and denote π(y) = ỹ.
Since I ′ ⊆ Ker Φ, the epimorphism Φ : kQT (Λ) � kQT (Λ)/Ker Φ = T (Λ) in-

duces an epimorphism Φ : kQT (Λ)/I
′ � kQT (Λ)/Ker Φ = T (Λ) such that Φ ◦ π =

Φ. To prove the equality I ′ = Ker Φ it is enough to prove that dimk kQT (Λ)/I
′ =

dimk T (Λ) = 2 dimk Λ.
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The inclusion of Λ in T (Λ) factors through kQT (Λ)/I
′ because IΛ ⊆ I ′. So,

the morphism ι : Λ → kQT (Λ)/I
′ induced by the inclusion of kQΛ en kQT (Λ) is a

monomorphism.
Thus we have the following commutative diagram:

kQΛ
� � //

����

kQT (Λ)

π
����

Λ = kQΛ/IΛ
� � ι //
� v

))

kQT (Λ)/I
′

Φ����
T (Λ) = kQT (Λ)/Ker Φ

with Φ ◦ π = Φ.
We know that kQT (Λ) = kQΛ + (βp)p∈M. Therefore ejkQT (Λ)ei = ejkQΛei +

ej(βp)p∈Mei for each i, j ∈ (QT (Λ))0. We consider in kQT (Λ)/I
′ the subspaces

Pij = π(ejkQΛei) and Fij = π(ej(βp)p∈Mei). Then Pij = ι(ejΛei) ' ejΛei. So∑
i,j dimk Pij = dimk Λ. We will show that dimk(Pij) ≥ dimk(Fji).
We start by proving that Fji 6= 0 if and only if Pij 6= 0. In fact, if Fji 6= 0,

there is a path q of ei(βp)p∈Mej which is not in I ′. So q has a supplement γ by
Remark 3.6 (c). Then γ is a path of kQΛ, because q is in (βp)p∈M, and γ does not
belong to I ′. Then 0 6= γ̃ ∈ Pij and so Pij 6= 0. Conversely, if Pij 6= 0 there is a
path q in kQΛ such that q does not belong to I ′. Then q has a supplement γ, again
by Remark 3.6 (c), and γ is a path of ei(βp)p∈Mej which does not belong to I ′.
Then 0 6= γ̃ ∈ Fji and so Fji 6= 0.

Therefore we assume that both, Fji and Pij are nonzero and we choose paths
µ1, . . . , µf ∈ (βp)p∈M such that {µ̃1, . . . , µ̃f} is a basis of Fji. Then µt /∈ I ′ if
t ∈ {1, . . . , f}. So, µt has a supplement in an elementary cycle Ct = µt γt for all
t ∈ {1, . . . , f} by Remark 3.6 (c). The paths γ1, . . . , γf belong to kQΛ. We will
prove that that γ̃1, . . . , γ̃f are linearly independent in kQT (Λ)/I

′. Assume, on the
contrary, that γ̃1, . . . , γ̃f are linearly dependent in kQT (Λ)/I

′. Then γ1, . . . , γf are
linearly dependent in Λ, because ι is a monomorphism. Since γt is not zero in
Λ for t ∈ {1, . . . , f}, we have that γ1, . . . , γf are not pairwise different, because
Λ is monomial, and therefore classes in Λ of pairwise different nonzero paths are
linearly independent. Therefore two of the paths γ1, . . . , γf are equal, let’s say
γ1 = γ2. Then C1 = µ1γ1 and C2 = µ2γ1, so the elementary cycles C1 and C2
contain the common path γ1, and this proves that µ2 − µ1 is an element of I ′.
Then µ̃2 = µ̃1, which contradicts the fact that µ̃1, µ̃2 are elements of a basis of Fji.
This contradiction shows that γ̃1, . . . , γ̃f are linearly independent in kQT (Λ)/I

′. So
dimk(Pij) ≥ dimk(Fji).

Therefore

dimk kQT (Λ)/I
′ ≤

∑
i,j

(dimk Pij + dimk Fij) ≤
∑
i,j

(dimk Pij + dimk Pji)

= 2 dimk Λ = dimk T (Λ).
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Thus dimk kQT (Λ)/I
′ ≤ dimk T (Λ), and this proves that the surjective morphism

Φ : kQT (Λ)/I
′ � T (Λ) is an isomorphism, which ends the proof of the theorem. �

Example 3.7. Let Λ = kQΛ/IΛ, where

QΛ:
•

•α1 ::

α2

??

α3 ��
•

with relation (α1)2 = 0.

The maximal paths are p1 = α2α1 and p2 = α3α1, which induce in QT (Λ) elemen-
tary cycles C1 = βp1α2α1 and its permutations C2 = α1βp1α2, C3 = α2α1βp1 , and
C4 = βp2α3α1 and its permutations C5 = α1βp2α3, C6 = α3α1βp2 . Then T (Λ) is
given by

QT (Λ):
•

βp1��•α1 ::

α2

??

α3

��
•

βp2

__

with relations
(α1)2, α3βp1 , α2βp2 ,
α3α1βp1 , α2α1βp2 ,
α1C1, α2C2, βp1C3,
α1C4, α3C5, βp2C6,
βp1α2 − βp2α3.

Example 3.8. Let Λ = kQΛ/IΛ, where

QΛ:

•1
α1

++

γ1

33 •2
α2

++

γ2

33 •3
α3

++

γ3

33 •4

with relations
αi+1 αi, γi+1 γi for i = 1, 2.

The maximal paths are p1 = α3γ2α1 and p2 = γ3α2γ1, which induce in QT (Λ)
elementary cycles C1 = βp1α3γ2α1 and its permutations, C2 = α1βp1α3γ2, C3 =
γ2α1βp1α3, C4 = α3γ2α1βp1 and C5 = βp2γ3α2γ1 and its permutations, C6 =
γ1βp2γ3α2, C7 = α2γ1βp2γ3, and C8 = γ3α2γ1βp2 .
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Then T (Λ) is given by

QT (Λ):

•1
α1

++

γ1

33 •2

γ2





α2

��
•4

βp1

JJ

βp2

TT

•3
α3

kk
γ3

ss

with relations
αi+1 αi, γi+1 γi for i = 1, 2,
α1 C1, γ2 C2, α3 C3, βp1 C4,
γ1 C5, α2 C6, γ3 C7, βp2 C8,
α1βp2 , βp2α3, βp1 γ3, γ1 βp1 ,
C1 − C5, C3 − C7, C2 − C6, C4 − C8.

Example 3.9. Let Λ = kQΛ/IΛ, where

QΛ:

•2
α2

��
•1

α1
66

•3
α3

kk

with relations α2 α1, α1 α3.

The maximal paths are p1 = α1 and p2 = α3α2, which induce in QT (A) the
elementary cycles C1 = βp1α1 and its permutation, C2 = α1βp1 , C3 = βp2α3α2
and its permutations, C4 = α2βp2α3 and C5 = α3α2βp2 .

Then T (Λ) is given by

QT (A):

•2
α2

��βp1vv•1

α1
66βp2 --

•3
α3

kk

with relations
α2 α1, α1 α3, βp2βp1 , βp1βp2

α1C1, βp1C2, α2C3, βp2C5, α3C4,
C1 − C5, C2 − C3.

4. The gentle case

In this section we study the trivial extension T (Λ) in the particular case when Λ
is a gentle algebra. We will prove that the given description of the relations of the
trivial extension of a monomial algebra can be formulated in a simple way when the
monomial algebra is gentle. Also, we will see that it is possible to determine when
an algebra B = kQB/IB , given by its quiver and relations, is the trivial extension
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of a gentle algebra. Moreover, we characterize such algebras B using properties of
their cycles and show how to find all the gentle algebras Λ such that T (Λ) ∼= B.

We recall from [1] that an algebra Λ is called gentle if it is Morita equivalent to
kQ/I, where:

(G1) I is generated by paths of length two.
(G2) Each vertex of Q is the beginning and the target of at most two arrows.
(G3) For each arrow α of Q there exists at most one arrow β such that αβ ∈ I,

and there exists at most one arrow γ such that γα ∈ I.
(G4) For each arrow α of Q there exists at most one arrow δ such that αδ /∈ I

and there exists at most one arrow ε such that εα /∈ I.
It follows from the definition of a gentle algebra that every arrow is contained in

a unique maximal path, at most two maximal paths begin at the same given vertex,
and at most two maximal paths end at a given vertex. Thus, different maximal
paths can not have common arrows.

In the next proposition we prove properties of the maximal cycles of the trivial
extension of a gentle algebra, which will be very useful in what follows.

Proposition 4.1. Let Λ = kQΛ/IΛ be a gentle algebra. Then the trivial extension
T (Λ) satisfies the following properties:

(i) Any nontrivial path of kQT (Λ) which is nonzero in T (Λ) is contained in a
maximal cycle, unique up to permutations.

(ii) If C1 and C2 are two maximal cycles from j to j, then either C1 is a
permutation of C2, or C1 and C2 do not overlap (i.e., they do not have
common arrows) and C̃1 = C̃2 in T (Λ).

(iii) In kQT (Λ) there are at most two different cycles from j to j which are
maximal in T (Λ) for all j in {1, . . . , n}.

Proof. (i) Gentle algebras are monomial, so we know from Theorem 3.5 that every
nontrivial path γ of kQT (Λ) which is nonzero in T (Λ) is contained in an elementary
cycle C. On the other hand, we know from Proposition 3.1 that elementary cycles
coincide with maximal cycles in T (Λ), and are permutations of cycles of the form
phβph

, with ph ∈M. Then the uniqueness up to permutations of the maximal cy-
cle C containing γ is clear when γ contains an arrow βp. Otherwise such uniqueness
follows from the fact that every nontrivial path of kQΛ is contained in a unique
maximal path, because Λ is a gentle algebra.

(ii) If C1 and C2 are two maximal cycles from j to j, then they have the common
supplement ej . So the path C1 − C2 ∈ I ′ because it satisfies condition (ii) in
Proposition 3.5. Thus C̃1 = C̃2 in T (Λ). The fact that C1 and C2 do not overlap
is a direct consequence of (i).

(iii) Suppose that there are three cycles C1, C2, C3 from j to j in kQT (Λ) maxi-
mal in T (Λ). Then each Ci has exactly one arrow βpi

, with pi ∈M, and the length
of Ci is at least 2. So we write C1 = δ1 q1 γ1, C2 = δ2 q2 γ2 and C3 = δ3 q3 γ3, where
γi, δi are arrows of QT (Λ) and qi is a path of kQT (Λ) for i ∈ {1, 2, 3}.
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By (ii) we have that the cycles C1, C2, C3 have no common arrow. Moreover,
γ1, γ2, γ3 are not all arrows of QΛ because Λ is gentle. If none of them is an
arrow of QΛ then δ1, δ2, δ3 lie in QΛ, and this can not happen because Λ is gentle.
Assume two of the arrows γi, say γ1 and γ2, are arrows of QΛ. Then γ3 = βp3 ,
and therefore δ3 is an arrow of QΛ. Thus one of the paths γ1 δ3, γ2 δ3 determines a
nonzero class in Λ, because Λ is a gentle algebra. Then such a path is contained in
a maximal cycle C ′. The maximal cycles C ′ and C3 have the common arrow δ3, so
C ′ = C3, because maximal cycles do not overlap. This is a contradiction because
γ1, γ2 are not arrows of C3. This proves that only one arrow γi is an arrow of QΛ.
In the same way one proves that only one arrow δi is an arrow of QΛ. We may
assume that the arrow γi in QΛ is γ1. Then γ2 = βp2 and γ3 = βp3 . So δ2, δ3 are
arrows of QΛ, and this contradiction shows that there are at most two maximal
cycles from j to j. �

The above result shows that the description of the ideal of relations for T (Λ)
given in Theorem 3.5 can be simplified in the gentle case, as we state in the following
theorem.

Theorem 4.2. Let Λ = kQΛ/IΛ be a gentle algebra. Let I ′ be the ideal in kQT (Λ)
generated by

(i) the paths not contained in elementary cycles, and
(ii) the elements C −C ′, where C and C ′ are elementary cycles starting at the

same vertex of QT (Λ).
Then I ′ is admissible and I ′ = Ker Φ. That is, T (Λ) ' kQT (Λ)/I

′.

We illustrate the previous theorem with an example.

Example 4.3. Let Λ be given the quiver

•1

α2

>> •2

α1

��

with the relation α1 α2 = 0. Then the unique maximal path is p1 = α2α1. So
QT (Λ) is the quiver

•1

α2

>> •2

α1

��
βp1

yy

The elementary cycles are C1 = α2α1βp1 and its permutations, C2 = βp1α2α1 and
C3 = α1βp1α2. The relations are

α1 α2 = 0, β2
p1

= 0, βp1α2 α1βp1 = 0,
α1βp1α2 α1 = 0, α2 α1βp1α2 = 0, α2 α1βp1 = βp1α2α1.
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Our next goal is to give a characterization of the trivial extension of a gentle
algebra through the description of its cycles. We will see that maximal cycles play
a fundamental role. This will require some preliminary lemmas.

Lemma 4.4. If Λ = kQΛ/IΛ is an algebra such that IΛ is generated by paths
of length two and C = αs · · · α1 is a cycle with origin j and nonzero in Λ, then
α1 αs = 0.

Proof. We have that αs · · · α1 6= 0 because C is not zero. Suppose α1 αs 6= 0.
Then α1 C = α1αs · · · α1 6= 0 since IΛ is generated by paths of length two. For
the same reason α1 Ck 6= 0 for all k greater than one. This contradicts that A is
of finite dimension. Thus α1 αs = 0. �

Observe that the previous lemma holds for gentle algebras.

Lemma 4.5. Let Λ = kQΛ/IΛ be a gentle algebra. Then
(i) There is at most one cycle of kQΛ with origin j and nonzero in Λ for any

vertex j of QΛ.
(ii) There are at most two elementary cycles of kQT (Λ) with origin j in the

same permutation class.

Proof. (i) Assume that there are two nonzero cycles C1, C2 of kQΛ with origin j
and nonzero in Λ. Let C1 = αr · · ·α1, C2 = βs · · ·β1, with α1, . . . , αr, β1, . . . , βs
arrows of QΛ. Since Λ is gentle and C1, C2 are nonzero in Λ we have that α1 6= β1
and αr 6= βs. By Lemma 4.4 we know that α1αr = 0 and β1βs = 0. Then, β1αr 6= 0
and α1βs 6= 0 because Λ is gentle. Therefore (C1C2)t 6= 0 for all t greater than
zero, because Λ is generated by paths of length two. This contradicts that Λ is a
finite-dimensional algebra.

• ++ •

αr
~~
•j

α1

``

β1

~~
• 33 •

βr

``

Thus (i) holds, and (ii) is a direct consequence of Proposition 4.1 �

Lemma 4.6. Let Λ = kQΛ/IΛ be a gentle algebra. If dimk EndT (Λ)(Pj) > 2 for
some indecomposable projective T (Λ)-module Pj, then there is a cycle of kQΛ with
origin j and nonzero in Λ.

Proof. We know from Proposition 4.1 (ii) that elementary cycles with the same
origin are equal in T (Λ). Thus the hypothesis dimk EndT (Λ)(Pj) > 2 implies that
there is a cycle γ from j to j which is not elementary and is nonzero in T (Λ). Then
there is an elementary cycle C with origin j containing γ, so C = δγ, with δ not
trivial. Then δ is a cycle with origin j and is nonzero in T (Λ) because elementary
cycles do not vanish in T (Λ). On the other hand, a permutation of C has the form
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p βp with p ∈ M, by Proposition 3.1. The arrow βp is either in δ or in γ. In the
first case the cycle γ is in kQΛ, and otherwise the cycle δ is in kQΛ. This ends the
proof of the lemma because both cycles are nonzero in T (Λ). �

The previous lemmas are helpful to determine dimk EndT (Λ) (Pj) when Λ is a
gentle algebra with a cycle in j nonzero in Λ, as we show in the next proposition.

Proposition 4.7. Let Λ = kQΛ/IΛ be a gentle algebra with a cycle γ with origin j
nonzero in Λ. Then there is a cycle δ with origin j in kQT (Λ) nonzero in T (Λ),
δ 6= γ, such that ẽj , γ̃, δ̃, γ̃ δ = δ̃ γ form a basis of EndT (Λ) Pj.

Proof. Suppose γ is a cycle with origin j of kQΛ nonzero in Λ, γ = αs · · · α1, where
αi are arrows of QΛ for all i ∈ {1, . . . , s}. We know that there is an elementary
cycle C of kQT (Λ) with origin j containing γ which is unique up to permutations, by
Proposition 4.1 (i). Let δ = εr · · · ε1 be the supplement of γ in C, where ε1, . . . , εr
are arrows of QT (Λ). Then δ is a cycle with origin j and is nonzero in T (Λ), δ 6= γ,
and C is a permutation of δγ. From the fact, proven in Lemma 4.5 that there is at
most one cycle of QΛ starting at j, we can conclude that either C = δγ or C = γδ.
We may assume C = γ δ.

We have that α̃1 αs = 0 from Lemma 4.4. Moreover, ε̃1 εr = 0 because the path
ε1 εr is not contained in any elementary cycle. Moreover, the paths ε̃1 αs and α̃1 εr
are nonzero in kQT (Λ) because any permutation of a maximal cycle is a maximal
cycle.

We claim that the only cycles with origin j and nonzero in T (Λ) are γ, δ, C = γ δ
and C ′ = δ γ. In fact, we know that C = αs · · · α1εr · · · ε1 and α̃1 αs = 0.
Then εr 6= αs and ε1 6= α1. Suppose that there is another cycle of kQT (Λ) with
origin j and nonzero in T (Λ). Such a cycle is contained in an elementary cycle
C ′′ = ρt · · · ρ1 starting at j. Then either C ′′ is a permutation of C, or C and C ′′

do not have common arrows, by Proposition 4.1 (ii). We also know that C ′′ has
a permutation of the form p′ βp′ with p′ ∈ M. On the other hand, we know that
the permutation class of C contains at most two cycles, by Lemma 4.5 (ii), so C
and C ′′ have no common arrow. We consider two cases:

Case 1. γ is maximal in Λ. Then δ = βp. Since C ′′ is an elementary cycle,
it contains only one arrow β′p, so ρ1 6= βp′ or ρt 6= βp′ . Suppose ρ1 6= βp′ . Then
ρ1αs 6= 0 because Λ is gentle. This contradicts the maximality of γ. Analogously,
if ρt 6= βp′ we have a contradiction.

Case 2. γ is not maximal in Λ. So ε1 6= βp or εr 6= βp. Suppose ε1 6= βp. Then
ρ1 = βp′ because Λ is gentle. So ρt 6= βp′ and α1ρt 6= 0 again because Λ is gentle.
Therefore α1ρt is contained in a maximal cycle C ′′ and so α1 is contained in two
different cycles, which is a contradiction.

Therefore the only cycles with origin j and nonzero in T (Λ) are γ, δ, C = γ δ

and its permutation δ γ. So EndT (A) Pj is generated by ẽj , γ̃, δ̃, γ̃ δ = δ̃ γ. �
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Summarizing the previous results we can state important properties of the cycles
of the trivial extension of a gentle algebra, which we list in the following proposition.

Proposition 4.8. Let Λ be a gentle algebra. Then the bound quiver of B = T (Λ)
satisfies the following properties:

(T1) Any permutation of a maximal cycle is a maximal cycle.
(T2) Any path u of kQB which is nonzero in B is contained in a maximal cycle

of kQB, which is unique up to permutations if u is nontrivial.
(T3) There are at most two different cycles with origin j in kQB which are

maximal and nonzero in B for any vertex j of (QB)0. If there are two such
cycles, they are equal in B.

(T4) If αs . . . α1 : j → j is a cycle of kQB which is nonzero and not maximal
in B, then α̃1αs = 0 in B and dimk EndK(Pj) = 4.

Proof. Property (T1) holds because maximal cycles coincide with elementary cycles,
by Proposition 3.1. Properties (T2) and (T3) follow directly from Proposition 4.1,
and property (T4) is a consequence of Proposition 4.7. �

Notice that (T1) holds for any monomial algebra as proven in Proposition 3.1.
However, (T2), (T3) and (T4) do not hold in general for monomial algebras. In fact,
in Example 3.7 the arrow α1 belongs to the elementary cycles C1 and C4, so (T2)
does not hold in this case.

On the other hand, let Λ be the hereditary algebra
•2

•1

α1
33

α2
++

α3

!!

•3

•4
Then T (Λ) has quiver

•2
βp1

		
•1

α1
33

α2
++

α3

!!

•3βp2kk

•4βp3

YY

where the elementary cycles are C1 = βp1α1, C2 = βp2α2, C3 = βp3α3 and their
permutations. Then the vertex 1 is the origin of C1, C2 and C3, so (T3) does not
hold.

Finally, if Λ is given by the quiver •α :: with relation α4 = 0, then T (Λ)
does not satisfy (T4).
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Remark 4.9. Let B = kQB/IB be an algebra satisfying (T1), (T2), (T3) and (T4).
Then (T2) implies that B is not semisimple, and any arrow of QB is contained in
a nonzero cycle.

Let j be a vertex of QB . Then:
(a) If there is only one cycle C in kQB with origin j and nonzero in B then

C is maximal by (T2), and there is a unique arrow starting at j.
(b) If there are exactly two different cycles C1 and C2 with origin j nonzero

in B then these are maximal in B from (T4), since otherwise we would have
dimk EndB(P ) = 4. This situation is illustrated in the following diagram:

• ++ •

��

C1

•j

__

��
• 33 •

__

C2

where C1 = C2, and dimk EndB(Pj) = 2.
(c) If there are more than two different cycles with origin j and nonzero

in B, then we know from (T3) that one of them is not maximal. So
dimk EndB(Pj) = 4 from (T4), and kQB contains four cycles with ori-
gin j. Two of them are maximal and are in the same permutation class.
The situation is locally as follows:

•
q1

++ •

α1
��

γ = α1 q1 ε1

•j
ε1

__

ε2

��
•

q2

33 •

α2
__

δ = α2 q2 ε2

where γ and δ nonmaximal cycles. The cycles of kQB maximal in B are
C1 = γ δ, C2 = δ γ, and they are equal in B.

In any case, at most two arrows start at j and at most two arrows end at j.

Remark 4.10.
(a) An algebra B = kQB/IB that satisfies properties (T1), (T2), (T3) and (T4)

is uniquely determined by its quiver QB and by the cycles of kQB maximal
in B. That is, if the algebras A, B satisfy (T1), (T2), (T3) and (T4), then
they are isomorphic if and only if they have the same quiver and the same
maximal cycles.
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(b) Assume B is an algebra satisfying (T1) and (T2). Let C1, . . . , Ct be a com-
plete set of representatives of the equivalence classes under permutations
of nonzero cycles of QB maximal in B, and let αi be an arrow in Ci for
i = 1, . . . , t. Then αi is not an arrow of Cj for i 6= j, because (T2) holds.
Thus we can always consider a quiver obtained from QB by eliminating ex-
actly one arrow of each cycle of QB maximal in B.

For an algebra B satisfying properties (T1), (T2), (T3) and (T4), it is possible to
construct a gentle algebra whose trivial extension is isomorphic to B. The following
theorem shows this fact and describes all such gentle algebras.

Theorem 4.11. Let B = kQB/IB be a finite-dimensional algebra satisfying (T1),
(T2), (T3) and (T4).

(i) Let Q be the quiver obtained from QB by eliminating exactly one arrow of
each cycle of QB maximal in B, and let I = kQ ∩ IB. Then Λ = kQ/I is
a gentle algebra and T (Λ) ∼= B.

(ii) If Λ is a gentle algebra such that T (Λ) ∼= B, then Λ = kQ/I, with Q and I
as in (i).

Proof. (i) Let Q be the quiver obtained from QB by eliminating exactly one arrow
of each cycle of QB maximal in B. We will prove all the conditions that must be
satisfied so that Λ = kQ/I is gentle.

(G1) I is generated by paths of length two. Indeed:
Assume that there is a relation k1q1 + k2q2 + . . . + krqr = 0, where 0 6= ki ∈ k

for all i ∈ {1, . . . , r} and all the qi are different paths of kQΛ nonzero in Λ. We
choose such a sum with r minimum. If one of the qi’s, say q1, is not maximal
in Λ, then it can be extended to a maximal nonzero path q′q1q and we replace the
original relation by k1q′q1q + k2q′q2q + . . . + krq′qrq = 0. So we may assume that
all the qi’s are maximal paths in Λ. From the construction of Q we know that
there is an arrow ε ∈ QB such that q1ε is a maximal cycle of B, and ε /∈ Q. Then
k1q1ε+ k2q2ε+ . . . + krqrε = 0 in B with the first summand nonzero. Then there
is another summand which is nonzero. Let’s say q2ε 6= 0. Next we prove that the
path q2ε is maximal in B. Since property (T2) holds, this path can be completed
to a maximal cycle C. On the other hand, by (T1) we know that permutations
of maximal cycles are maximal cycles, so we may assume that C = gq2ε, where
g is a path in kQB . Since ε is not an arrow of Q, we have that g q2 is in kQ.
Since g q2 is nonzero and q2 is maximal in Λ, it follows that the path g is trivial,
so C = q2ε is a maximal cycle of B. Thus q1ε, q2ε are maximal cycles of B and
they contain ε. Since (T2) holds, there is, up to permutations, a unique cycle
containing ε, so q1ε = q2ε. Thus q1 = q2, and this is a contradiction because all
the qi’s are different paths of kQ. This proves that I is generated by paths.

Suppose now that αr · · ·α2α1 is an element of I with r > 2, where each αi
is an arrow of Q, and αr · · ·α2, αr−1 · · ·α1 /∈ I. Then αr · · ·α2 and αr−1 · · ·α1
are nonzero paths in Λ whith a common arrow α2. From (T2) we know that α2
is contained in a cycle of kQB , maximal in B, and such a cycle is unique up
to permutations. Thus αr−1 · · ·α1 and αr · · ·α2 are both contained in the same

Rev. Un. Mat. Argentina, Vol. 67, No. 1 (2024)



190 M. A. GATICA, M. V. HERNÁNDEZ, AND M. I. PLATZECK

maximal cycle C. We observe first that α1 6= α2, · · ·αr. In fact, if we assume,
on the contrary, that α1 = αk, with 2 ≤ k ≤ r, we get that α1αk−1 · · ·α2 is a
cycle contained in C, and it is not maximal because any maximal cycle contains
one arrow which is not an arrow of Q, and all αi’s are in Q1. Since (T4) holds
we have that α2α1 = 0, contradicting our assumption that αr−1 · · ·α1 6= 0. Thus
αr 6= α2, · · ·α1, and therefore C = αr · · ·α2βs · · ·β1, where β1, . . . , βs are arrows
of QB , and one of them is α1. Then we have βk = α1, with 1 ≤ k ≤ s, and
α1βk−1 · · ·β1αr · · ·α2 = C1 is a cycle contained in C, which is not maximal unless
s = k. Thus, if s 6= k, then (T4) implies that α2α1 = 0, contradicting again that
αr−1 · · ·α1 6= 0. So s = k and C1 = C is a maximal cycle. Since (T1) holds we
obtain that the permutation βk−1 · · ·β1αr · · ·α2α1 of C1 is also a maximal cycle,
contradicting that αr · · ·α2α1 ∈ I. This contradiction proves that I is generated
by paths of length two.

(G2) Each vertex of Q is the beginning and the target of at most two arrows.
Indeed:

The vertices of QB satisfy this property from Remark 4.9. Then the subquiver Q
of QB inherits this property.

(G3) For each arrow α of Q there exists at most one arrow β such that αβ ∈ I,
and there exists at most one arrow γ such that γα ∈ I, and (G4) For each arrow
α of Q there exists at most one arrow δ such that αδ /∈ I and there exists at most
one arrow ε such that εα /∈ I is satisfied because any arrow α of Q is an arrow
of QB and so it is a consequence of Remark 4.9.

Further, by the construction of Λ we have that the quiver of the trivial extension
T (Λ) of Λ is precisely the quiver QB of the algebra B and, moreover, the cycles of
kQB maximal in B coincide with the cycles of kQT (Λ) maximal in T (Λ). On the
other hand, we know from Proposition 4.8 that T (Λ) satisfies the properties (T1),
(T2), (T3) and (T4). Thus T (Λ) ∼= B by Remark 4.10.

(ii) The quiver QΛ is obtained from QT (Λ) by deleting the arrow βp in each
elementary cycle pβp. Then (ii) holds because the maximal cycles of B coincide
with the elementary cycles of T (Λ) ∼= B. �

The previous theorem and Proposition 4.8 yield the following characterization
of trivial extensions of gentle algebras.

Theorem 4.12. Let B an indecomposable finite-dimensional k-algebra. Then B
satisfies (T1), (T2), (T3) and (T4) if and only if there is a gentle algebra Λ such
that T (Λ) ∼= B.

Given an algebra Λ, the quiver of its trivial extension is obtained from the quiver
of Λ by adding certain arrows βp. When Λ is a monomial algebra, we proved in
Proposition 3.1 that elementary cycles coincide with maximal nonzero cycles in
T (Λ). Since Λ is obtained from T (Λ) by deleting the arrows βp, and there is one
arrow βp in each elementary cycle, it follows that Λ is obtained from T (Λ) by
deleting exactly one arrow from each maximal cycle, and considering the induced
relations. This shows that the construction in Theorem 4.11 of a gentle algebra Λ
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whose trivial extension is isomorphic to B gives us in fact all gentle algebras with
trivial extension isomorphic to B.

5. Trivial extensions and Brauer graph algebras

In this section we relate Brauer graph algebras with the finite-dimensional al-
gebras satisfying the properties (T1), (T2), (T3) and (T4) defined in the previous
section.

We start with the necessary definitions, which generalize notions from the repre-
sentation theory of finite groups, following the approach of Benson [2, section 4.18].

A Brauer graph is a finite connected graph (possibly with multiple edges and
loops) where each vertex is assigned a cyclic ordering of the edges which are incident
on it, and an integer greater than zero called the multiplicity of the vertex. We
will always assume that the multiplicity at each vertex is one. If j1, j2, . . . , jr, j1 is
the cyclic ordering of the edges around the vertex u, then j1, j2, . . . , jr is called a
sequence of successors of j1 at the vertex u.

If a loop jk is incident on u it occurs twice in any sequence of successors at u,
and these occurrences are labeled jk, ĵk.

The sequence of successors of j1 at the vertex u is unique if j1 is not a loop;
otherwise there are two: one starts at j1, the other at ĵ1.

We recall the definition of the Brauer graph algebra associated to a Brauer
graph, which is a generalization of the classical Brauer tree algebra.

Definition 5.1. BΓ is the Brauer graph algebra associated to the Brauer graph Γ
if there is a one to one correspondence between the edges j of Γ and the simple
modules Sj over BΓ, and Pj = P0(Sj) is described by:

Pj/rad(Pj) ∼= soc(Pj) ∼= Sj

rad(Pj)/soc(Pj) = Uj ⊕ Vj ,

where Uj , Vj are the uniserial modules at the vertices u, v on which the edge j is
incident, defined as follows: Let j = j1, j2, . . . , jr be the sequence of successors of j
at the vertex u. Then Uj is the uniserial module with composition factors (from the
top) Sj2 , Sj3 , . . . , Sjr

(Uj = 0 if r = 1). If j is not a loop, Vj corresponds analogously
to the sequence of successors of j at the vertex v; otherwise, it corresponds to the
sequence of successors at the vertex u starting at ĵ1.

The quiver QΓ associated to the Brauer graph Γ is defined as follows. For each
edge jk of Γ there is a vertex vjk

of QΓ. If the edge jk+1 of Γ immediately follows
the edge jk in some sequence of successors, there is an arrow ujk

→ ujk+1 of QΓ.
We observe that QΓ coincides with the quiver associated to the algebra BΓ.

We describe next the maximal cycles in BΓ. For each sequence of successors
j1, j2, . . . , jr of j1 at the vertex u with r > 1, there is a cycle u = uj1 → uj2 →
· · · → ujr

→ uj1 which is maximal in BΓ. If j1 is not a loop, we will denote this
cycle by Cj1,u. If j1 is a loop, we will call Cj1,u, C

ĵ1,u
the cycles which correspond

to the two occurrences of j1 in the cyclic ordering of the edges around the vertex u.
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Then the cycles described are all the maximal cycles in BΓ, and every arrow is
contained in one of them.

From the description of the indecomposable projective modules we can describe
the relations for BΓ, which are of the following three types:
• Relations of type one: Cj1,u − Cj1,v if the edge j1 of Γ is incident on two

different vertices u, v ∈ Γ; Cj1,u − Cĵ1,u if the edge j1 of Γ is a loop in u.
• Relations of type two: αCj1,u, where uj1

α→uj2 .
• Relations of type three: paths of length two of kQΓ which are not subpaths of

a cycle Cj1,u.
In the next theorem we characterize Brauer graph algebras given by their quiver

and relations from the properties of their cycles, using for this the properties (T1),
(T2), (T3) and (T4) given in Section 4.

Theorem 5.2. Let B = kQ/I be an indecomposable finite-dimensional algebra.
Then B satisfies (T1), (T2), (T3) and (T4) if and only if there is a Brauer graph Γ
with multiplicity one in all the vertices such that the associated Brauer graph algebra
BΓ is isomorphic to B.

Proof. Let BΓ be a Brauer graph algebra with associated Brauer graph Γ. We will
prove that BΓ satisfies the properties (T1), (T2), (T3) and (T4). In fact:

(T1) Any permutation of a maximal cycle in BΓ is a maximal cycle in BΓ.
This property is a direct consequence of the description of the maximal cycles

of a Brauer graph algebra. In fact, a maximal cycle in BΓ is of the form Cj1,u, and
every permutation of the cycle Cj1,u is obtained by considering a cyclic permutation
of the sequence of successors j1, j2, . . . , jr of j1 at the vertex u, which is also a
sequence of successors at the same vertex, and therefore gives rise to another cycle
of kQΓ maximal in BΓ.

(T2) Any path u of kQB which is nonzero in B is contained in a maximal cycle
of kQB , unique up to permutations if u is nontrivial.

Since Brauer graph algebras are indecomposable and not semisimple, the trivial
paths are not maximal. Suppose u = uj1 → uj2 → · · · → ujk

is a nontrivial path
of kQΓ which is nonzero in BΓ. From the description of QΓ we know that the
edge jt+1 immediately follows the edge jt in a sequence of successors of j1 at some
vertex u of Γ for t = 1, . . . , k−1. Then the path considered is a subpath of the cycle
Cj1,u, which is maximal in BΓ, and is the only maximal nonzero cycle containing
the path u up to permutations, by construction.

(T3) There are at most two different cycles with origin j in kQB which are
maximal nonzero in BΓ for any vertex j of (QB)0. If there are two such cycles,
they are equal in BΓ.
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The fact that this property holds in BΓ follows from the above description of
the maximal cycles of BΓ. In fact, if there are two maximal cycles starting at the
same vertex, they are of the form Cj1,u and Cj1,v if j1 is not a loop, or Cj1,u and
C
ĵ1,u

if j1 is a loop. In the first case Cj1,u − Cj1,v is a relation of type one and
in the second Cj1,u − Cĵ1,u is also a relation of type one. Thus the two cycles are
equal in BΓ.

(T4) If αs . . . α1 : j → j is a nonzero cycle of kQBΓ which is not maximal in BΓ,
then α̃1αs = 0 in BΓ and dimk EndK(Pj) = 4.

Let γ : uj1 → uj2 → · · · → ujs−1 → uj1 be a cycle of kQΓ nonzero and
not maximal in BΓ. From the above description of the maximal cycles of BΓ
we conclude that the edge j1 is a loop, there are two sequences of successors
j1, j2, . . . , js−1, ĵ1, js+1, . . . , jr and ĵ1, js+1, . . . , jr, j1, j2, . . . , js−1, and the maximal
cycles with origin uj1 are Cj1,uj1

, C
ĵ1,uj1

. Since the path ujs−1
αs→ uj1

α1→ uj2 is not
a subpath of any of these two maximal cycles, it follows that α1αs is a relation of
type three. Therefore α1αs = 0 in BΓ.

The cycle γ′ : uj1 → ujs+1 → · · · → ujr → uj1 with origin uj1 is also nonzero
and not maximal in BΓ, since it is properly contained in C

ĵ1,u
. Then, the cycles

starting at uj are γ, γ′ and the maximal cycles γ′γ = Cj1,uj1
and γγ′ = C

ĵ1,uj1
.

Since Cj1,uj1
−C

ĵ1,uj1
is a relation of type one, we have that EndBΓ Pj1 is generated

by ej1 , γ, γ
′ and Cj1,uj1

. Thus dimk EndBΓ Pj1 = 4, so (T4) holds for BΓ. This
ends the proof that Brauer graph algebras satisfy the properties (T1), (T2), (T3)
and (T4).

Now consider B = kQ/I satisfying (T1), (T2), (T3) and (T4). We will construct
a Brauer graph Γ such that B ' BΓ. The set of maximal cycles of B is not
empty because (T2) holds. Consider the equivalence relation defined in this set by
C ∼ C ′ if and only if C is a permutation of C ′, if C,C ′ are maximal cycles. Let
{C1, . . . , Cs} be the set of equivalence classes.

We associate to the quiver Q a Brauer graph Γ as follows. The set of vertices
of Γ is

{uC1
, uC2

, . . . , uCs
}

∪ {uvj
: vj ∈ Q0 and vj is the origin of a unique maximal cycle}.

The edges ai of Γ correspond to vertices vi of Q in the following way: If vi is the
beginning of two different maximal cycles C1, C2, the endpoints of ai are uC1

, uC2
.

Notice that when C1 = C2 we obtain a loop. If vi is the beginning of a unique
maximal cycle C ′ then the endpoints of ai are uC′ , uvi

, and so ai is the only edge
with uvi

as an endpoint. For each equivalence class Ck, the edges that are incident
on the vertex uCk

correspond to the vertices of the maximal cycle Ck, and we define
a cyclic ordering in this set of edges as follows. The edge aj+1 is the immediate
successor of the edge aj if there is an arrow vj → vj+1 of Q contained in a maximal
cycle of Ck. This ordering is well defined since any arrow is contained in a unique
maximal cycle up to permutations, by (T2). Finally, we assign the multiplicity one
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to each vertex of Γ, and Γ is then a Brauer graph. From the Brauer graph Γ we
obtain the Brauer graph algebra BΓ = QΓ/IΓ. We know that BΓ satisfies (T1),
(T2), (T3) and (T4), since we just proved that Brauer graph algebras do.

We will prove that Q = QΓ, and that the cycles of Q maximal in B coincide
with the cycles of Q = QΓ maximal in BΓ.

We prove next that Q = QΓ. The Brauer graph Γ was constructed in such a
way that the vertices of Q are in bijective correspondence with the edges of Γ.
On the other hand, these edges are in bijective correspondence with the vertices
of QΓ, as follows from the definition of Brauer graph algebra associated to a Brauer
graph. Then the vertices of Q are in bijective correspondence with those of QΓ.
We will denote by ui the vertex of QΓ corresponding to the vertex vi of Q under
this bijection. Then ai is the edge of Γ corresponding to ui in QΓ and to vi in Q.

Let vj → vj+1 be an arrow in Q. Then this arrow belongs to a unique maximal
cycle C, by (T2), and the edge aj+1 of Γ is an immediate predecessor of aj in the
cyclic ordering of the edges of Γ at the vertex uC . This means that there is an
arrow uj → uj+1 in QΓ. Conversely, if there is an arrow uj → uj+1 in QΓ a similar
argument shows that there is an arrow vj → vj+1 in Q. Thus Q and QΓ have the
same arrows, so we can identify the quivers Q and QΓ.

Finally, we will prove that the cycles of Q maximal in B coincide with the cycles
of QΓ maximal in BΓ. In fact, saying that Cj = vj1 → vj2 → · · · → vjt

is a cycle of
kQ maximal in B is equivalent to saying that aj1 , aj2 , . . . , ajt

are all the edges of Γ
with endpoint uCj

with the cyclic ordering aj1 ≤ aj2 ≤ · · · ≤ ajt
. This means that

aj1 , aj2 , . . . , ajt is a sequence of successors of aj1 at the vertex uCj
, which amounts

to say that Cj1,uCj
= uj1 → uj2 → · · · → ujt

is a cycle of QΓ maximal in BΓ.
Then cycles of Q maximal in B coincide with cycles of QΓ maximal in Γ.

We know from Remark 4.10 that algebras that satisfy the properties (T1), (T2),
(T3) and (T4) with the same quiver and the same maximal cycles are isomorphic,
thus BΓ ∼= B. �

In Theorem 4.12 we proved that properties (T1), (T2), (T3) and (T4) characterize
trivial extensions of gentle algebras. Combining this result with the previous the-
orem we get the following characterization of trivial extensions of gentle algebras,
which was obtained by S. Schroll using a different approach.

Corollary 5.3 ([4, Theorem 1.2 and Corollary 1.4]). Let B be an indecomposable
finite-dimensional algebra. Then B is a Brauer graph algebra with multiplicity one
in all the vertices of the associated Brauer graph if and only if B is the trivial
extension of a gentle algebra.

We summarize the results of the last two sections in the following theorem.
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Theorem 5.4. Let B = kQB/IB be a finite-dimensional indecomposable k-algebra.
Then the following conditions are equivalent:

(i) B is isomorphic to the trivial extension of a gentle algebra.
(ii) B satisfies the properties (T1), (T2), (T3) and (T4).
(iii) B is isomorphic to the Brauer graph algebra BΓ associated to a Brauer

graph Γ with multiplicity one in all the vertices.

Let us see an example to illustrate this result.

Example 5.5. Let B = kQB/IB , where

QB :

•1
α2

++ •2
α1

kk
α3

++ •3
α5

kk α4gg

IB = (α1 α2 α1, α2 α1 α2, α3 α2,
α1 α5, α5 α3, α4 α4, α3 α5 α4 α3,
α4 α3 α5 α4, α5 α4 α3 α5,
α2 α1 − α5 α4 α3,
α3 α5 α4 − α4 α3 α5).

The cycles of kQB maximal in B are C1 = α1 α2 and its permutation α2 α1,
C2 = α5 α4 α3 and its permutations α3 α5 α4 and α4 α3 α5. Then the algebra B
satisfies the properties (T1), (T2), (T3) and (T4). To describe the Brauer graph Γ
associated to QB we observe that the vertex 1 is the beginning of a unique maximal
cycle. The vertices of Γ are u1, u2 = uC1

and u3 = uC2
. Since QB has three

vertices, Γ has three edges: a1 with endpoints u1 and u2, a2 with endpoints u2
and u3, and a3, which is a loop at u3. Thus Γ is the graph

where we choose the cyclic counterclockwise ordering of the edges around each
vertex and we assign multiplicity one to each vertex.

On the other hand, if we delete in QB one arrow of each maximal cycle we obtain
a gentle algebra Λ such that T (Λ) ' B. For example, when we choose the arrows
α2 and α5 we obtain Λ = kQΛ/IΛ, with

QΛ: •1 •2
α1oo α3 // •3 α4gg IΛ = (α2

4).
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Sur (UNS)-CONICET, Bah́ıa Blanca, Argentina
mariaandrea.gatica@gmail.com

M. V. HernándezB
Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa,
Argentina
maria.valeria.hernandez@gmail.com

M. I. Platzeck
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