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TRIVIAL EXTENSIONS OF MONOMIAL ALGEBRAS

MARIA ANDREA GATICA, MARIA VALERIA HERNANDEZ,
AND MARIA INES PLATZECK

ABSTRACT. We describe the ideal of relations for the trivial extension T(A)
of a finite-dimensional monomial algebra A. When A is, moreover, a gentle al-
gebra, we solve the converse problem: given an algebra B, determine whether
B is the trivial extension of a gentle algebra. We characterize such algebras B
through properties of the cycles of their quiver, and show how to obtain all
gentle algebras A such that T'(A) = B. We prove that indecomposable trivial
extensions of gentle algebras coincide with Brauer graph algebras with mul-
tiplicity one in all vertices in the associated Brauer graph, result proven by
S. Schroll.

1. INTRODUCTION

Let A be a finite-dimensional k-algebra (associative, with identity) over an al-
gebraically closed field k. Consider the trivial extension algebra T(A) = A x D(A)
of A by the A-bimodule D(A) = Homy (A, k), that is, T(A) = A® D(A) as k-vector
space and the multiplication in T(A) is given by (a, f)(b,g9) = (ab,ag + fb) for
a,be€ Aand f,g € D(A).

The ordinary quiver of the trivial extension T'(A) of a finite-dimensional algebra
A = kQp/Ix was described by Ferndndez and Platzeck [3], where also the relations
of such trivial extension are given under the assumption that any oriented cycle in
the ordinary quiver of A is zero in A.

In this work we will describe the relations for T'(A) when A is monomial. These
algebras form a broad family containing, among others, string algebras and gentle
algebras.

If A is monomial, the ordinary quiver of T'(A) is obtained from @, by adding
t arrows, where ¢ is the number of paths of kQ, which are maximal nonzero in A.
For each of these maximal paths we add an arrow in the opposite direction. In this
way, we obtain an oriented cycle, which we call elementary. We prove that each

2020 Mathematics Subject Classification. 16G10 16G20 16S70.

Key words and phrases. Trivial extensions, monomial algebras, gentle algebras, Brauer graph
algebras.

The authors thank partial financial support received from Universidad Nacional del Sur, Bahia
Blanca, Argentina. The first and third authors also thank partial support from CONICET,
Argentina.

173


https://doi.org/10.33044/revuma.2070

174 M. A. GATICA, M. V. HERNANDEZ7 AND M. I. PLATZECK

nonzero path v of the quiver of T'(A) is contained in an elementery cycle C' such
that C' = vyu for some path p, and we say that p is a supplement of . The ideal
of relations for T'(A) is generated by

(i) the paths not contained in an elementary cycle, and
(ii) the elements p — ', where u, ' are different paths from kQp(y) with a
common supplement v in elementary cycles C' and C”’, respectively.

When A is gentle, elementary cycles of Q) do not overlap (that is, have no
common arrows). Thus the description of Ip(s) is easier, because the generators
described in (ii) can be replaced by the elements C' — C’, where C' and C’ are
elementary cycles starting at the same vertex of Qrx).

Let A be a gentle algebra. Then the bound quiver of B = T'(A) satisfies the
following properties:

(T1) Any permutation of a maximal cycle is a maximal cycle.

(T2) Any path u of kQp nonzero in B is contained in a maximal cycle of kQp,
which is unique up to permutations if u is nontrivial.

(T5) There are at most two different cycles from j to j of Qg maximal nonzero
in B for any vertex j of (Qp)o. If there are two such cycles, they are equal
in B.

(Ty) If ag---ay : j — j is a nonzero cycle of kQp which is not maximal, then
anay = 0in B and the dimension of the endomorphism ring of the projective
associated to the vertex j is four.

We prove that these properties characterize trivial extensions of gentle algebras.
Moreover, we show how to find all gentle algebras A such that T'(A) ~ B, as stated
in the following result.

Theorem. Let B = kQp/Ip be a finite-dimensional algebra satisfying (T1), (1),
(T5) and (Ty).

(i) Let Q be the quiver obtained from Qp by eliminating exactly one arrow of
each cycle of Qg mazimal in B, and let I = kQ NIg. Then A = kQ/I is
a gentle algebra and T(A) = B.

(ii) If A is a gentle algebra such that T(A) = B, then A = kQ/I, with Q and I
as in (i).

Finally, we prove that trivial extensions of indecomposable gentle algebras co-
incide with Brauer graph algebras with multiplicity one in all vertices in the asso-
ciated Brauer graph, result proven by S. Schroll in [4] with a different approach.
To prove this result we show that an indecomposable algebra B is a Brauer graph
algebra with multiplicity one in all vertices in the associated Brauer graph if and
only if its cycles satisfy the properties (1), (T%), (T3) and (74) which characterize
trivial extensions of gentle algebras.
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2. PRELIMINARIES

Throughout this paper k& will denote an algebraically closed field. The algebras
considered are finite-dimensional k-algebras which we will also assume to be basic
and indecomposable. Thus, for an algebra A, we have that A ~ kQx/Ix, where
Q4 is a finite connected quiver and the ideal I is admissible. Given an element x
of kQa, we will denote by T the corresponding element of kQa /1.

If Q is a quiver, we will denote by @ the set of vertices, and by @, the set of
arrows between vertices. For each arrow «, s(a) and e(«) will denote the start and
end vertices of «, respectively. For each i € @Qq, S; will be the simple A-module
associated to ¢, and P; and I; will denote the projective cover and injective envelope
of S;, respectively. Thus, if e; is the trivial path of kQ A corresponding to the vertex ¢
of Qp, then P, = Ae;.

We recall now the description of the ordinary quiver for T'(A) given in [3]. Let
A be an algebra with ordinary quiver @, and let p1,...,p; be elements in kQx
such that M = {p1,...,pt} is a k-basis for the socle socye A of A considered as a
module over the enveloping algebra A€, where each p; is a linear combination of
paths with the same origin s(p;) and the same endpoint e(p;). Then the ordinary
quiver of T'(A) is given by

(i) (Qray)o = (Qa)o
(i) (Qray)1 = (Qa)r U {Bp,---,Bp, }, where 3, is an arrow from e(p;) to
s(p;) for each i =1,...,t.

The notion of elementary cycle, given in [3], is essential in the description of the
relations for A. We recall the definition now. Let p;11,...,p, be paths of Q7
such that B = {p1,...,D¢, Dex1, - - -, Dr} is a k-basis of A, and let B* = {p1*,...,p."}
denote the dual basis. Following [3], we say that an oriented cycle C' of kQpx)
is elementary if it is of the form C' = «a; - - a18p0um - - - 11, Where o, ..., €
(@a)1, p € M and p* (@, - ar) # 0.

It follows from the definition that cyclic permutations oj---010p, - 041 of
elementary cycles o,, - - - 01 are elementary cycles. When we refer to a permutation
of a cycle we will always mean a cyclic permutation of it.

We will say that a path v in kQp is mazimal in A if 0 £ 7 in A, and @y = 0,
Fa = 0 for any arrow a of Qp.

We will also need the notion of supplement given in [3]. Let ¢ be a path in
an elementary cycle C. If ¢ = C we say that the supplement of ¢ in C is the
trivial path ey,). Otherwise the supplement of ¢ in C'is the path consisting of the
remaining arrows of C. More precisely, if C' = pg - - - up is an elementary cycle, with
Py pts € (Qa)1, and ¢ = fij4p -+ - pj is a subpath of C, then the supplement
of gin Cis flj—1 -+ fhifhs*** fjtrt1-

We consider, as in [3], the morphism of k-algebras ® : kQpn)y — T'(A) defined
by

O(e;) = (€;,0) fori=1,...,n,
®(a) = (@,0), ®(Bp) = (0,p%) for every o € (Qa)1, p € M.
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Then @ is surjective and so we can identify T'(A) with kQp )/ Ker ®. Thus, the
class T of an element 2 € kQp(s) is nonzero in T'(A) if and only if ®(x) # 0. Any
path in kQp(,) containing at least two arrows 3, is zero in T'(A). Moreover, a path
in kQa which is not zero in A is always contained in an elementary cycle (see [3|
Remark 3.3]) and is therefore not maximal in 7'(A). Thus maximal paths in T'(A)
contain exactly one arrow (.

Associated with ® are the compositions 1 = 1P : kQpa) — A and g3 = T ® :
kQrny — D(A), where 71,7 are the projections induced by the decomposition
T(A)=A® D(A).

Notice that an elementary cycle C' = «; - - - 1 Bpun, - - - 041 : € — € is nonzero in
T(A). In fact, ®(C) = (0, p2(C)), and using the structure of D(A) as a A-bimodule

we obtain
©2(C)(e) = pa(ay - 1 Bpm - - aj11)(€)

3. TRIVIAL EXTENSIONS OF MONOMIAL ALGEBRAS

From now on we will assume that A is a monomial algebra. That is, A ~ kQp /I,
where I is an admissible ideal generated by paths. In this case, the set of classes
of maximal paths is a basis for socyeA. We will always assume that py,...,p; in
the chosen basis M = {p1,...,P;} of socye A are maximal paths. The extension B
of M to a basis of A considered above is then the set of classes of paths in kQ
that are nonzero in A. Notice that this set is a basis for A because A is a monomial
algebra.

In this section we will find generators for the ideal of relations of the trivial
extension of a monomial algebra. We do it by adapting the approach followed
in [3] to our case.

In order to describe the relations for T(A) we have to find generators for Ker ®.
The next proposition gives a description of the elementary cycles of T'(A).

Proposition 3.1. Let A = kQx /I be a monomial algebra and C' an oriented cycle
of kQr(ay- Then the following conditions are equivalent:

(i) C is an elementary cycle.
(ii) C is a cyclic permutation of the cycle pBy, for some p € M.
(iii) C is mazimal in T(A).

Proof. (i) — (ii) Let C be an elementary cycle of kQp), C = a; -+ a18py, - -
a1, with aq, ..., a, € (Qa)1, p € M. Since B is generated by all the paths that
are nonzero in A and p*(a, -a7) # 0, it follows that a;, ---a; = p. Thus C is a
permutation of the cycle pf,.

(ii) — (i) Let p € M. Since p*(p) = 1 the cycle p3, is elementary by definition,
and so is any permutation C' of pg3,.

(i) — (iii) Let C = ¢ --- 1 fpan - - - j41 be an elementary cycle, with o, - - -
a; = p € M. We know that C' # 0 in T(A). Suppose C is not maximal. Then
there is an arrow a € Q7 (4 such that aC # 0 or Ca # 0. We assume that aC # 0.
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Thus ®(aq; - a1 8pau, - - - ajy1) # (0,0). Therefore,
(e - 1) @(Bp)®(an - - 1) = (@aj a1, 0)(0,p") (@~ 5471, 0) # (0,0).

That is, (0,ac;-—eqp @, --a;41) # (0,0). Thus in D(A) we have that
oo o pian a1 # 0. So there is a path ¢ of k@ such that
Qo o P @y a;41(¢) # 0. By definition of the structure of D(A) as a
A-bimodule we get @ -1 D O - 0511(q) = D (-1 o - ar) # 0,
which contradicts that p*(p’) = 0 for any path p’ # p of kQx. In a similar way we
prove that Ca # 0 in T'(A) leads to a contradiction. Therefore C' is maximal.

(iii) — (i) Suppose that C'is a cycle of Qp(x) maximal in T(A), C: e —e. As
observed above, C' contains exactly one arrow 3,. Then C = a; - - a1 8p0 - - 11
and ®(C) = (0,92(C)) # 0. So, there is a path v in Qa such that ¢2(C)(F) # 0.
Then ¢2(C)(€) = ¢2(C)(7) # 0, so 2(Cy) # 0. That is, 0 # @2(Cy) = CF
in T(A). Since C is maximal in T'(A) it follows that v is a trivial path, that is,
v =e. Thus ¢2(C)(e) # 0. Since ¢2(C)(€) = p*(ar - 11 €qQ; ---ap) it follows
that p*(a, - a1) # 0. The paths p, a,, - - - @1 belong to the chosen basis B of A,
thus a,, - - - @3 = p, and this proves that the cycle C' is elementary. O

We will briefly say that “a path has a supplement” to mean that it has a sup-
plement in some elementary cycle. If {x;};cs is a family of elements in an algebra,
we will denote by (x;);er the two-sided ideal generated by them.

As a consequence of the preceding proposition we obtain the following result.

Corollary 3.2. Let A = kQa/In be a monomial algebra. Then:

(i) Every arrow By, of Q) is contained in a single elementary cycle, up to
permutations for any p € M.
(i) If a path v € (Bp)pem has supplements p, ' then p=p'.

Proof. (i) The only elementary cycles containing j, are the permutations of C' =
PBp-

(ii) Let v € (8p)pem be a path of kQp(x) with supplements j, 4. Then v = 65,p,
with d, p paths of kQ,, and let C' be the elementary cycle containing 3, which is
unique up to permutations. Then any supplement of 7 is a supplement in C', and
is the path consisting of the remaining arrows in C. So pu = . (|

The next technical lemma will be used in what follows.

Lemma 3.3. Let A = kQa/Ix be a monomial algebra.

(i) Let g and u be paths in kQpny. If v2(q)(@) # 0, then po(q)(w) =1, and u
is a supplement of q.
(ii) If C : e — e is an elementary cycle, then po(C)(e) # 0.
Proof. (i) Suppose that ps(q)(w) # 0. Then g = lﬁpé, with v and 0 paths of kQ.
S0 0. ¢a(a)(@) = 2(13,0)(T) = ((7,0)(0,5)(3,0)) (@) = ((0,75°)(,0)) (@) —
(0,7p*0)(uw) = p*(duy). Thus p*(duy) # 0. Then w is a supplement of ¢ in the
elementary cycle yf3,0u.
This proves (i), and (ii) follows directly from the definition of ys. O
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The next proposition is a first step to describe the ideal of relations of the trivial
extension of a monomial algebra.

Proposition 3.4. Let A = kQa/Ix be a monomial algebra. Let ® be the morphism
defined above. For each j € (Qr(a))o, let Y; be the ideal of kQr(sy generated by

(i) oriented cycles from j to j which are not contained in an elementary cycle,
(ii) all the elements C—C", where C and C' are elementary cycles with origin j.

Then Y; C Ker ® Ne;kQrn)e;-

Proof. Tt suffices to prove that ® vanishes in the generators of Y.

Suppose v is a generator of Y} as considered in (i), that is, a path from j to j
not contained in an elementary cycle. As we observed after the definition of @,
paths of kQx are contained in elementary cycles, so v contains one arrow 3,, with
p € M. Thus ®(v) = (0, p2(v)).

If v has two or more arrows 3, then @s(v) = 0, so v € Ker ® N e;kQp(ae;.
Otherwise, v = 3,0, with v and & paths of kQx, and ¢2(v) = Fp*5. Suppose
w2(v) # 0. Then there is a path u of kQa such that ¢o(v)(w) # 0. That is,
P*(6u7y) # 0 and therefore v3,du is an elementary cycle containing v = v3,6. This
contradicts the hypothesis that v is not contained in an elementary cycle. Therefore
@2(v) = 0. So v € Ker ® N e;jkQr(ae;.

Suppose now that v is a generator of Y; of the type (ii), that is v = C — (',
where C' and C’ are elementary cycles with origin j. Then ®(v) = (0, p2(v)) and
P2(v) = ¢2(C) — p2(C").

Let u € kQp. We will prove that p2(v)(@) = 0.

If u # e;, then u is not a supplement for C, and thus 2(C)(T) = p2(C")(T) =
0, by Lemma (i), 50 @2(v)(W) = 0. On the other hand, p2(C)(€;) = 1 and
©2(C")(€5) = 1, by Lemma [3.3|(ii). Thus ¢ (v)(ej) =1 —1=0.

Thus, p2(v) = 0, that is, v € Ker ® N e;kQpaye;. O

Now we state the main result of this section.

Theorem 3.5. Let A = kQa/Ix be a monomial algebra. Let I' be the ideal in
kQr(a) generated by
(i) the paths not contained in an elementary cycle, and
(ii) the elements p — ', where p, ' are different paths from kQpa)y whith a
common supplement v in elementary cycles C and C’, respectively.

Then I' is admissible and I' = Ker ®. That is, T(A) ~ kQpa)/1".

Before proving this theorem, we will make some useful observations about the
ideal I’ defined in its statement.

Remark 3.6.

(a) Ipn C I, because if ¢ is a path of I, then § = 0 in A and so ¢ is not contained
in an elementary cycle, because elementary cycles are nonzero in T'(A). Thus
Ix C I'NkQp. Conversely, a path in kQx which is not zero in A is contained
in an elementary cycle, as observed above. Thus Iy = I’ NkQx.

Rev. Un. Mat. Argentina, Vol. 67, No. 1 (2024)



TRIVIAL EXTENSIONS OF MONOMIAL ALGEBRAS 179

(b) If p—p' is a generator of I’ of type (ii) in Theorem then p, 1" € (Bp)pem.
In fact, since they are different paths with a common supplement ~ it follows
from Corollary (ii) that v € kQp. Thus any supplement of v has an
arrow [p,.

(c) Suppose g in kQp(x) isnot in I’. Then ¢ has a supplement in some elementary
cycle. In fact, ¢ is contained in an elementary cycle C, by the definition of I’.
Thus ¢ has a supplement in C.

Now we will prove Theorem

Proof. We must prove that I’ = Ker ®, where ® is the morphism defined above.
We will prove first that I’ C Ker ®. For this, we prove that the generators given
in I’ belong to Ker ®.

Case 1. The generator is a path ¢ in I’ not contained in an elementary cycle.
Then:

e If ¢ € kQ,, then g € kQy NI’ = I, by Remark [3.6(a). Then g = 0 and
thus ®(q) = (0,0).

o If ¢ € (Bp)pem, then ¢ = 73,0, with p € M, where v and § are paths of
kQa. Thus ®(q) = (0, ¢2(q))-

Suppose that p2(q) # 0. Then there is a path u of kQa such that ps(q)(@) # 0.
Thus p*(duy) # 0. So u is a supplement of g in the elementary cycle v3,0u. This is
a contradiction because we are assuming that ¢ is not contained in an elementary
cycle. Thus ¢2(q) = 0 and then g € Ker ®.

Case 2. Suppose v is a generator of I’ of the form v = u — i/, where u, p’ are
different paths of kQp(a) from 7 to j with a common supplement « in elementary
cycles C' and C’, respectively. Then C' = yp and C’ = v/, and we have that
v € kQ4, because i, 1t € (Bp)pem by Remark(b). Since v € (Bp)pem we know
that ®(v) = (0, p2(v)). We will prove that ¢a(v) = 0.

The product yv = yu—vyu' = C—C’ is in the ideal Y; defined in Proposition
We proved in the same proposition that Y; C Ker ®, so yv € Ker ® and therefore
@2(yv) = 0. Then 0 = 2(7v)(&) = @2(v)(€i7) = ¥2(v) (7). Thus pa(v)(¥) = 0.

Suppose that there is a path g € kQa such that p2(v)(q) # 0. Then p2(v)(q) =
2 — ') (@) = p2(p)(@) — p2(1')(@) # 0. So either pa(u)(q) or p2(p')(q) is not
Zero.

Without loss of generality we may assume that ¢2(u)(g) # 0. Then ¢ is a
supplement of p by Lemma and therefore ¢ = ~, because paths in (8,)pem
have a unique supplement, by Corollary [B.2|(ii). So ¢2(v)(¥) = ¢2(v)(q) # 0, which
contradicts that ¢o(v)(F) = 0. This proves that po(v) = 0, as desired.

The preceding case-by-case analysis proves that I’ C Ker ®.

Let 7 : kQp(a) — kQr(a)/I’ be the canonical epimorphism and denote 7(y) = .

Since I’ C Ker @, the epimorphism ® : kQr(x) — kQr(a)/Ker ® = T(A) in-
duces an epimorphism ® : kQr(a)/I' — kQr(a)/ Ker ® = T(A) such that ® o m =
®. To prove the equality I’ = Ker ® it is enough to prove that dimy kQpa)/I' =
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The inclusion of A in T'(A) factors through kQp(ay/I" because Iy C I'. So,
the morphism ¢ : A — kQp(a)/I" induced by the inclusion of kQx en kQp(y) is a
monomorphism.

Thus we have the following commutative diagram:

EQAC kQr(a)

i 7
A=kQp/[\—L kQT(iA)/I,
"

T(A) = kQT(A)/ Ker @

with ® o m = ®.

We know that kQrn)y = kQa + (Bp)pem. Therefore e;kQrpye; = ejkQae; +
e;(Bp)pemes for each i,j € (Qr(ay)o. We consider in kQp()/I’ the subspaces
P;; = m(ejkQae;) and F;j = 7(e;(Bp)pemei). Then P;; = v(ejAe;) =~ ejAe;. So
Zi,j dimy, P;; = dimg A. We will show that dimy(P;;) > dimg (Fj;).

We start by proving that Fj; # 0 if and only if P;; # 0. In fact, if Fj; # 0,
there is a path ¢ of e;(3,)peae; which is not in I’. So ¢ has a supplement y by
Remark (c) Then ~ is a path of kQa, because ¢ is in (8,)pem, and v does not
belong to I’. Then 0 # 7 € P;; and so P;; # 0. Conversely, if P;; # 0 there is a
path g in kQA such that ¢ does not belong to I’. Then ¢ has a supplement v, again
by Remark (c), and 7 is a path of e;(8p)perme; which does not belong to I'.
Then 0 # v € Fj; and so Fj; # 0.

Therefore we assume that both, F;; and IP;; are nonzero and we choose paths
Py € (Bp)pem such that {7, ..., s} is a basis of Fj;. Then p, ¢ I’ if
te{l,...,f} So, us has a supplement in an elementary cycle Cy = p;~y; for all
t € {1,...,f} by Remark (c) The paths ~v1,...,7; belong to kQx. We will
prove that that 41,...,7 are linearly independent in kQrpa)/I’. Assume, on the
contrary, that ¥1,...,7s are linearly dependent in kQp(sy/I’. Then 71, ..., 75 are
linearly dependent in A, because ¢ is a monomorphism. Since 7; is not zero in
A for t € {1,..., f}, we have that 71,...,7s are not pairwise different, because
A is monomial, and therefore classes in A of pairwise different nonzero paths are
linearly independent. Therefore two of the paths 7i,...,vs are equal, let’s say
Y1 = 2. Then C; = p1v; and Cy = poy1, so the elementary cycles Cy and Cy
contain the common path 71, and this proves that ps — p1 is an element of I’.
Then 12 = 11, which contradicts the fact that i1, 12 are elements of a basis of IFj;.
This contradiction shows that 71,. .., 7y are linearly independent in kQpy/I’. So
dimk(Pij) Z dimk(Fji).

Therefore

dimk kQT(A)/I/ S Z(dlmk ]P)ij + dimk F”) S Z(dlmk ]P)ij + dimk le)
i,j ,J

=2 diIIl;~C A= diIIl;~C T(A)
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Thus dimg kQra)/1" < dimy T'(A), and this proves that the surjective morphism
D : kQray/I" — T(A) is an isomorphism, which ends the proof of the theorem. [

Example 3.7. Let A = kQx /I, where

Qna:

with relation  (ay)? = 0.

The maximal paths are p; = aza; and ps = azas, which induce in Q7 (s) elemen-
tary cycles C1 = B, @21 and its permutations Cy = a1 8y, a2, C3 = agay fp,, and
Cy = Bp,a3aq and its permutations Cs = a1 8,,a3, Cs = asza1fp,. Then T'(A) is
given by

QT(r):
R with relations

o (041)2, 043/6;017 0‘26172’

% 013041/8171a 04205151;2,

P

o C o 1 a0, 04202, 5p1c3v
Y O[lC4, CV3C5, 5@2067
Bpa
[ ]

ﬁpl Q2 — 6;02 Qas.

Example 3.8. Let A = kQx /I, where

Qna:
with relations
(e 5] a9 a3 3
0T ey ey e, %t Vil fori=1,2.
71 Y2 V3

The maximal paths are p1 = azy2a; and ps = 3271, which induce in Qp,)
elementary cycles Cy = B, azy201 and its permutations, Co = a1 8, @372, C3 =
Yoo Bp, a3, Cy = azyaa1Bp, and Cs = fBp,730071 and its permutations, Cs =
1 Bpy V302, C7 = 718,73, and Cs = Y3271 Bp, -
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Then T'(A) is given by

Qr(a):
o /i\ . with relations
- = )
- Qi1 Yig1 i for i = 1,2,
(e5] Clv Y2 CZa a3 037 ﬂpl 047
Bor | | Bos az| |7 7 Cs, as Cg, 3 C7, Bp, Cs,
alﬁpga ﬁp2a37 Bpl Y3, 71 6})1’
73 C1 —Cs, C3—Cr, Oy — Cg, Cy — Cy.
i
ag

Example 3.9. Let A = kQx /I, where

/ \ with relations a9 aq, a7 az.

L1
’\_/
(6%}

Qa:

The maximal paths are py = a1 and p2 = asaz, which induce in Q7(4) the
elementary cycles C1 = f,, a1 and its permutation, Co = o ,,, C3 = Bp,a302
and its permutations, Cy = aafp, a3 and Cs = azaafp,.

Then T'(A) is given by

QT(A)i
with relations
/ \ Qg (1, (1 3, ﬁpzﬁpu ﬂp1ﬁp2
By a1C1, Bp, C2, a2C3, By,Cs, azCy,
'1\_/ Cy—C5, Cy — (5.

4. THE GENTLE CASE

In this section we study the trivial extension T'(A) in the particular case when A
is a gentle algebra. We will prove that the given description of the relations of the
trivial extension of a monomial algebra can be formulated in a simple way when the
monomial algebra is gentle. Also, we will see that it is possible to determine when
an algebra B = kQp/Ip, given by its quiver and relations, is the trivial extension
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of a gentle algebra. Moreover, we characterize such algebras B using properties of
their cycles and show how to find all the gentle algebras A such that T'(A) = B.

We recall from [I] that an algebra A is called gentle if it is Morita equivalent to
kQ/I, where:

(G1) I is generated by paths of length two.

(G2) Each vertex of @ is the beginning and the target of at most two arrows.

(G3) For each arrow « of ) there exists at most one arrow § such that af € I,
and there exists at most one arrow ~ such that ya € I.

(G4) For each arrow « of @ there exists at most one arrow J such that ad ¢ I
and there exists at most one arrow € such that ea ¢ I.

It follows from the definition of a gentle algebra that every arrow is contained in
a unique maximal path, at most two maximal paths begin at the same given vertex,
and at most two maximal paths end at a given vertex. Thus, different maximal
paths can not have common arrows.

In the next proposition we prove properties of the maximal cycles of the trivial
extension of a gentle algebra, which will be very useful in what follows.

Proposition 4.1. Let A = kQa/Ip be a gentle algebra. Then the trivial extension
T(A) satisfies the following properties:

(i) Any nontrivial path of kQp )y which is nonzero in T(A) is contained in a
mazximal cycle, unique up to permutations.

(ii) If C1 and Co are two mazimal cycles from j to j, then either Cy is a
permutation of Ca, or C1 and Cy do not overlap (i.e., they do not have
common arrows) and C,=Cs in T(A).

(iii) In kQpny there are at most two different cycles from j to j which are
mazimal in T(A) for all j in {1,...,n}.

Proof. (i) Gentle algebras are monomial, so we know from Theorem that every
nontrivial path v of kQp(x) which is nonzero in T'(A) is contained in an elementary
cycle C. On the other hand, we know from Proposition [3.1] that elementary cycles
coincide with maximal cycles in T'(A), and are permutations of cycles of the form
DhPp,, With p, € M. Then the uniqueness up to permutations of the maximal cy-
cle C' containing v is clear when 7 contains an arrow [3,. Otherwise such uniqueness
follows from the fact that every nontrivial path of k@, is contained in a unique
maximal path, because A is a gentle algebra.

(ii) If C; and C5 are two maximal cycles from j to j, then they have the common
supplement e;. So the path C; — Cy € I’ because it satisfies condition (ii) in
Proposition Thus C; = Cy in T(A). The fact that C; and Cy do not overlap
is a direct consequence of (i).

(iii) Suppose that there are three cycles Cy, Cy, C3 from j to j in kQp(4) maxi-
mal in T'(A). Then each C; has exactly one arrow 3,,, with p; € M, and the length
of C; is at least 2. So we write Cy = 01 ¢1 y1, Co = 62 q2 72 and C3 = d3 q3 7y3, where
i, 0; are arrows of Qp(a) and g; is a path of kQp(,) for i € {1,2,3}.
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By (ii) we have that the cycles Cy, Co, C5 have no common arrow. Moreover,
Y1, Y2, v3 are not all arrows of @, because A is gentle. If none of them is an
arrow of Q4 then 071, 62, d3 lie in @A, and this can not happen because A is gentle.
Assume two of the arrows 7;, say 71 and s, are arrows of Q. Then v3 = 3,
and therefore 03 is an arrow of Q. Thus one of the paths 7; d3, v2 d3 determines a
nonzero class in A, because A is a gentle algebra. Then such a path is contained in
a maximal cycle C’. The maximal cycles C' and C5 have the common arrow 3, so
C’" = (3, because maximal cycles do not overlap. This is a contradiction because
1,2 are not arrows of C3. This proves that only one arrow -; is an arrow of Q4.
In the same way one proves that only one arrow §; is an arrow of Q5. We may
assume that the arrow 7; in Q4 is y1. Then vo = B, and v3 = Bp,. So d, d3 are
arrows of (Qa, and this contradiction shows that there are at most two maximal
cycles from j to j. O

The above result shows that the description of the ideal of relations for T'(A)
given in Theorem [3.5]can be simplified in the gentle case, as we state in the following
theorem.

Theorem 4.2. Let A = kQa /I be a gentle algebra. Let I' be the ideal in kQpx)
generated by

(i) the paths not contained in elementary cycles, and
(ii) the elements C — C’, where C and C' are elementary cycles starting at the
same vertex of Qr(a)-

Then I' is admissible and I' = Ker ®. That is, T(A) ~ kQqa) /1"
We illustrate the previous theorem with an example.

Example 4.3. Let A be given the quiver

a1

VRN

o o

NS

a2

with the relation a; @y = 0. Then the unique maximal path is p; = asay. So
Q7(a) is the quiver

al

01/\023 Br1
N~ S

as

The elementary cycles are C = apo1 35, and its permutations, Cy = 35, a2a; and
C3 = a1 8p, a2. The relations are

_ 2 _ _
) G = Oa p1 Oa Bpl a2 alﬁpl - Oa

a1fBpazar =0, asaifp o =0, ayaif, = Bp aa.
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Our next goal is to give a characterization of the trivial extension of a gentle
algebra through the description of its cycles. We will see that maximal cycles play
a fundamental role. This will require some preliminary lemmas.

Lemma 4.4. If A = kQx/Ix is an algebra such that I5 is generated by paths
of length two and C' = «ay -+ a1 1s a cycle with origin j and nonzero in A, then
aq ag = 0.

Proof. We have that @ -~ a3 # 0 because C is not zero. Suppose aj oz # 0.
Then a3 C = aja, - ag # 0 since I, is generated by paths of length two. For
the same reason a; C* #£ ( for all k greater than one. This contradicts that A is
of finite dimension. Thus a7 a; = 0. O

Observe that the previous lemma holds for gentle algebras.

Lemma 4.5. Let A = kQp/Ix be a gentle algebra. Then
(i) There is at most one cycle of kQx with origin j and nonzero in A for any
verter j of Qn.
(ii) There are at most two elementary cycles of kQp(ny with origin j in the
same permutation class.

Proof. (i) Assume that there are two nonzero cycles C1, Cy of kQ with origin j
and nonzero in A. Let C7 = ;.- «ay, Cy = Bs--- B, with aq, ..., a4, B1,..., s
arrows of Q5. Since A is gentle and C7, Cy are nonzero in A we have that oy # 51
and a,. # Bs. By Lemmawe know that aqa,. = 0 and 31 3s = 0. Then, B1a, # 0
and @ifs # 0 because A is gentle. Therefore (C1Cy)" # 0 for all ¢ greater than
zero, because A is generated by paths of length two. This contradicts that A is a
finite-dimensional algebra.

Thus (i) holds, and (ii) is a direct consequence of Proposition O

Lemma 4.6. Let A = kQn/Ip be a gentle algebra. If dimy Endpeay(P;) > 2 for
some indecomposable projective T(A)-module P;, then there is a cycle of kQa with
origin j and nonzero in A.

Proof. We know from Proposition (ii) that elementary cycles with the same
origin are equal in T'(A). Thus the hypothesis dimy Endp(s)(P;) > 2 implies that
there is a cycle v from j to j which is not elementary and is nonzero in T(A). Then
there is an elementary cycle C' with origin j containing -, so C' = §-, with ¢ not
trivial. Then d is a cycle with origin j and is nonzero in T'(A) because elementary
cycles do not vanish in T'(A). On the other hand, a permutation of C' has the form
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p By with p € M, by Proposition 3.1] The arrow f3,, is either in d or in 7. In the
first case the cycle «y is in kQp, and otherwise the cycle § is in kQ,. This ends the
proof of the lemma because both cycles are nonzero in T'(A). O

The previous lemmas are helpful to determine dimy Endp sy (P;) when A is a
gentle algebra with a cycle in j nonzero in A, as we show in the next proposition.

Proposition 4.7. Let A = kQx/Ix be a gentle algebra with a cycle v with origin j
nonzero in A. Then there is a cycle 6 with origin j in kQp(xy nonzero in T(A),

0 # v, such that €5, 7, g, % = va form a basis of Endp) P;j.

Proof. Suppose 7 is a cycle with origin j of kQ nonzeroin A, v = a; - -+ a1, where
a; are arrows of Qp for all ¢ € {1,..., s}. We know that there is an elementary
cycle C of kQr(x) with origin j containing v which is unique up to permutations, by
Proposition (1) Let 0 =€, --- €1 be the supplement of v in C, where €1, ..., €,
are arrows of Qpa). Then § is a cycle with origin j and is nonzero in T'(A), § # 7,
and C'is a permutation of §v. From the fact, proven in Lemma [£.5] that there is at
most one cycle of @, starting at j, we can conclude that either C' = 6y or C = ~4.
We may assume C = 7.

We have that a; @y = 0 from Lemma Moreover, €; €, = 0 because the path
€1 €, is not contained in any elementary cycle. Moreover, the paths € o, and & €,
are nonzero in kQp(x) because any permutation of a maximal cycle is a maximal
cycle.

We claim that the only cycles with origin j and nonzero in T'(A) are v, 6, C =~ §
and C' = 6v. In fact, we know that C = a, --- ai€, --- €; and a;a; = 0.
Then €. # a5 and €; # a1. Suppose that there is another cycle of kQ7(y) with
origin j and nonzero in T'(A). Such a cycle is contained in an elementary cycle
C" = p; -+ p1 starting at j. Then either C” is a permutation of C, or C' and C”
do not have common arrows, by Proposition (ii). We also know that C” has
a permutation of the form p’ 8, with p’ € M. On the other hand, we know that
the permutation class of C' contains at most two cycles, by Lemma [4.5|(ii), so C
and C” have no common arrow. We consider two cases:

Case 1. ry is maximal in A. Then § = ,. Since C” is an elementary cycle,
it contains only one arrow S, so p1 # By or p; # [y. Suppose p1 # [p. Then
p1as # 0 because A is gentle. This contradicts the maximality of v. Analogously,
if p; # B,y we have a contradiction.

Case 2. v is not maximal in A. So €; # 3, or €. # Bp. Suppose €1 # [p. Then
p1 = Pp because A is gentle. So p; # B,y and aqp; # 0 again because A is gentle.
Therefore aqp; is contained in a maximal cycle C” and so «; is contained in two
different cycles, which is a contradiction.

Therefore the only cycles with origin j and nonzero in T'(A) are v, §, C = ¢
and its permutation dv. So Endrp 4 P; is generated by ej, 3, §, v0 = 0. O
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Summarizing the previous results we can state important properties of the cycles
of the trivial extension of a gentle algebra, which we list in the following proposition.

Proposition 4.8. Let A be a gentle algebra. Then the bound quiver of B = T'(A)
satisfies the following properties:
(Th) Any permutation of a mazimal cycle is a mazimal cycle.
(T) Any path u of kQp which is nonzero in B is contained in a mazimal cycle
of kQ g, which is unique up to permutations if u is nontrivial.
(T5) There are at most two different cycles with origin j in kQp which are
mazximal and nonzero in B for any vertex j of (Qp)o. If there are two such
cycles, they are equal in B.
(Ty) If as ... : §j — j is a cycle of kQp which is nonzero and not mazimal
in B, then ajas =0 in B and dimy, Endg (P;) = 4.

Proof. Property (1) holds because maximal cycles coincide with elementary cycles,
by Proposition Properties (T3) and (T3) follow directly from Proposition
and property (Ty) is a consequence of Proposition O

Notice that (77) holds for any monomial algebra as proven in Proposition
However, (T3), (T3) and (Ty) do not hold in general for monomial algebras. In fact,

in Example the arrow «a; belongs to the elementary cycles Cq and Cy, so (T»)
does not hold in this case.

On the other hand, let A be the hereditary algebra

L)

o o3
as

o4
Then T'(A) has quiver

L)

=
k]
>QH />Q
o\~ o\~
[V [V

.1 5;72 .3

3

G

Bpg. L2

where the elementary cycles are Cy = 3, a1, Co = Bp, 02, C3 = Bp,a3 and their
permutations. Then the vertex 1 is the origin of C;, Cs and Cs, so (T3) does not
hold.

Finally, if A is given by the quiver C e with relation a? = 0, then T'(A)
does not satisfy (Ty).
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Remark 4.9. Let B = kQp/Ip be an algebra satisfying (71), (T2), (T5) and (Ty).
Then (7%) implies that B is not semisimple, and any arrow of @ p is contained in
a nonzero cycle.

Let j be a vertex of @p. Then:

(a) If there is only one cycle C in kQp with origin j and nonzero in B then
C' is maximal by (7T3), and there is a unique arrow starting at j.

(b) If there are exactly two different cycles C; and Cy with origin j nonzero
in B then these are maximal in B from (7}), since otherwise we would have
dimy Endg(P) = 4. This situation is illustrated in the following diagram:

O

Cy

X

where C; = Cy, and dimy, Endgp(P;) = 2.

(c¢) If there are more than two different cycles with origin j and nonzero
in B, then we know from (73) that one of them is not maximal. So
dimy Endg(P;) = 4 from (T4), and kQp contains four cycles with ori-
gin j. Two of them are maximal and are in the same permutation class.
The situation is locally as follows:

Y= Q141 €

/\

where v and § nonmaximal cycles. The cycles of kQp maximal in B are
C1 =746, Cy =07, and they are equal in B.

0= axqaen

In any case, at most two arrows start at 7 and at most two arrows end at j.

Remark 4.10.

(a) An algebra B = kQp/Ip that satisfies properties (T1), (T2), (T3) and (T})
is uniquely determined by its quiver @ and by the cycles of kQ p maximal
in B. That is, if the algebras A, B satisfy (T1), (1), (T3) and (T4), then
they are isomorphic if and only if they have the same quiver and the same
maximal cycles.
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(b) Assume B is an algebra satisfying (71) and (T%). Let Cy,...,C; be a com-
plete set of representatives of the equivalence classes under permutations
of nonzero cycles of @5 maximal in B, and let «; be an arrow in C; for
i =1,...,t. Then «; is not an arrow of C; for i # j, because (T3) holds.
Thus we can always consider a quiver obtained from @p by eliminating ex-
actly one arrow of each cycle of Q5 maximal in B.

For an algebra B satisfying properties (T1), (T2), (T3) and (T}), it is possible to
construct a gentle algebra whose trivial extension is isomorphic to B. The following
theorem shows this fact and describes all such gentle algebras.

Theorem 4.11. Let B = kQp/Ip be a finite-dimensional algebra satisfying (T1),
(Ty), (T3) and (Ty).

(i) Let Q be the quiver obtained from Qp by eliminating exactly one arrow of
each cycle of Qp mazimal in B, and let I = kQ NIg. Then A = kQ/I is
a gentle algebra and T(A) = B.

(ii) If A is a gentle algebra such that T(A) = B, then A = kQ/I, with Q and I
as in (i).

Proof. (i) Let @ be the quiver obtained from Qg by eliminating exactly one arrow
of each cycle of Qp maximal in B. We will prove all the conditions that must be
satisfied so that A = kQ/I is gentle.

(G1) I is generated by paths of length two. Indeed:

Assume that there is a relation kyq; + kaga + ... + kg, = 0, where 0 # k; € k
for all i € {1,...,r} and all the ¢; are different paths of kQA nonzero in A. We
choose such a sum with 7 minimum. If one of the ¢;’s, say g1, is not maximal
in A, then it can be extended to a maximal nonzero path ¢'q1q and we replace the
original relation by k19’q1q9 + k2q’qeq + . .. + kr-q’qrqg = 0. So we may assume that
all the ¢;’s are maximal paths in A. From the construction of () we know that
there is an arrow € € Qg such that gje is a maximal cycle of B, and € ¢ ). Then
kiqi€ + kogoe + ... + kyrqre = 0 in B with the first summand nonzero. Then there
is another summand which is nonzero. Let’s say gz€ # 0. Next we prove that the
path go€ is maximal in B. Since property (T%) holds, this path can be completed
to a maximal cycle C. On the other hand, by (77) we know that permutations
of maximal cycles are maximal cycles, so we may assume that C' = ggo€, where
g is a path in kQp. Since € is not an arrow of ), we have that ggo is in kQ.
Since g g2 is nonzero and ¢ is maximal in A, it follows that the path g is trivial,
so C' = g€ is a maximal cycle of B. Thus ¢;€, g2¢ are maximal cycles of B and
they contain e. Since (7T3) holds, there is, up to permutations, a unique cycle
containing €, so g€ = go¢. Thus ¢ = @2, and this is a contradiction because all
the ¢;’s are different paths of kQ. This proves that I is generated by paths.

Suppose now that «; ---aoaq is an element of I with » > 2, where each «;
is an arrow of @, and .- g, a1 -y ¢ I. Then .- s and a,_1---
are nonzero paths in A whith a common arrow «s. From (T3) we know that as
is contained in a cycle of kQp, maximal in B, and such a cycle is unique up
to permutations. Thus «a,_1---a; and «, ---as are both contained in the same
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maximal cycle C. We observe first that a; # ag,---a,. In fact, if we assume,
on the contrary, that oy = ag, with 2 < k < r, we get that ajai_1---as is a
cycle contained in C, and it is not maximal because any maximal cycle contains
one arrow which is not an arrow of @, and all a;’s are in (). Since (T4) holds
we have that @za; = 0, contradicting our assumption that a,_1---aj # 0. Thus
o # ag,--- a1, and therefore C = .- - agfs - -+ 1, where 1, ..., s are arrows
of Qp, and one of them is ;. Then we have 8y = a1, with 1 < k < s, and
a1Bk_1-Bra, - ag = C1 is a cycle contained in C, which is not maximal unless
s = k. Thus, if s # k, then (T4) implies that aza; = 0, contradicting again that
ar_1-a; #0. So s =k and C; = C is a maximal cycle. Since (T1) holds we
obtain that the permutation Bx_1 - f1au -+ - asaq of Cy is also a maximal cycle,
contradicting that «, ---agaq € I. This contradiction proves that I is generated
by paths of length two.

(G2) Each vertex of @ is the beginning and the target of at most two arrows.
Indeed:

The vertices of @ satisfy this property from Remark[4.9] Then the subquiver Q
of Qg inherits this property.

(G3) For each arrow « of @ there exists at most one arrow § such that af € I,
and there exists at most one arrow « such that ya € I, and (G4) For each arrow
a of () there exists at most one arrow § such that ad ¢ I and there exists at most
one arrow € such that ea ¢ I is satisfied because any arrow « of @ is an arrow
of @p and so it is a consequence of Remark [£.9]

Further, by the construction of A we have that the quiver of the trivial extension
T(A) of A is precisely the quiver Qg of the algebra B and, moreover, the cycles of
kQp maximal in B coincide with the cycles of kQp(5) maximal in T'(A). On the
other hand, we know from Proposition [4.8| that T'(A) satisfies the properties (1),
(T»), (Ts) and (Ty). Thus T(A) = B by Remark [4.10]

(ii) The quiver Q4 is obtained from Qpa) by deleting the arrow 3, in each
elementary cycle pf,. Then (ii) holds because the maximal cycles of B coincide
with the elementary cycles of T'(A) = B. O

The previous theorem and Proposition [£.§] yield the following characterization
of trivial extensions of gentle algebras.

Theorem 4.12. Let B an indecomposable finite-dimensional k-algebra. Then B
satisfies (T1), (Tz), (T3) and (Ty) if and only if there is a gentle algebra A such
that T(A) & B.

Given an algebra A, the quiver of its trivial extension is obtained from the quiver
of A by adding certain arrows 8,. When A is a monomial algebra, we proved in
Proposition that elementary cycles coincide with maximal nonzero cycles in
T(A). Since A is obtained from T'(A) by deleting the arrows ,, and there is one
arrow [, in each elementary cycle, it follows that A is obtained from T'(A) by
deleting exactly one arrow from each maximal cycle, and considering the induced
relations. This shows that the construction in Theorem [4.11|of a gentle algebra A
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whose trivial extension is isomorphic to B gives us in fact all gentle algebras with
trivial extension isomorphic to B.

5. TRIVIAL EXTENSIONS AND BRAUER GRAPH ALGEBRAS

In this section we relate Brauer graph algebras with the finite-dimensional al-
gebras satisfying the properties (T1), (T»), (T3) and (74) defined in the previous
section.

We start with the necessary definitions, which generalize notions from the repre-
sentation theory of finite groups, following the approach of Benson [2] section 4.18].

A Brauer graph is a finite connected graph (possibly with multiple edges and
loops) where each vertex is assigned a cyclic ordering of the edges which are incident
on it, and an integer greater than zero called the multiplicity of the vertex. We
will always assume that the multiplicity at each vertex is one. If j1, jo, ..., jr, j1 iS
the cyclic ordering of the edges around the vertex wu, then ji,js, ..., j, is called a
sequence of successors of j1 at the vertex u.

If a loop ji is incident on u it occurs twice in any sequence of successors at u,
and these occurrences are labeled ji, 3;6

The sequence of successors of j; at the vertex w is unique if j; is not a loop;
otherwise there are two: one starts at ji, the other at 31.

We recall the definition of the Brauer graph algebra associated to a Brauer
graph, which is a generalization of the classical Brauer tree algebra.

Definition 5.1. Br is the Brauer graph algebra associated to the Brauer graph T’
if there is a one to one correspondence between the edges j of I' and the simple
modules S; over Br, and P; = P,(S;) is described by:

P; /rad(P;) = soc(P;) = 5;
rad(Pj)/soc(P;) = U; & Vj,

where U;, V; are the uniserial modules at the vertices u, v on which the edge j is
incident, defined as follows: Let j = 71, jo, ..., j, be the sequence of successors of j
at the vertex u. Then U; is the uniserial module with composition factors (from the
top) Sj,, Sjss -+, 85, (Uj = 0ifr = 1). If j is not a loop, V; corresponds analogously
to the sequence of successors of j at the vertex v; otherwise, it corresponds to the
sequence of successors at the vertex u starting at ;1.

The quiver Qr associated to the Brauer graph I' is defined as follows. For each
edge ji of I' there is a vertex vj;, of Qr. If the edge ji41 of I' immediately follows
the edge ji in some sequence of successors, there is an arrow uj, — uj, ., of Qr.

We observe that Qr coincides with the quiver associated to the algebra Br.
We describe next the maximal cycles in Br. For each sequence of successors
Ji,J2,.-.,Jr of ji at the vertex w with r > 1, there is a cycle v = u;, — u;, —
.-+ = uj, — uj, which is maximal in Br. If j; is not a loop, we will denote this
cycle by Cj, . If j1 is a loop, we will call Cj, ., &jhu the cycles which correspond
to the two occurrences of j; in the cyclic ordering of the edges around the vertex u.
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Then the cycles described are all the maximal cycles in Br, and every arrow is
contained in one of them.

From the description of the indecomposable projective modules we can describe
the relations for Br, which are of the following three types:

e Relations of type one: Cj, , — Cj, , if the edge j; of I' is incident on two
different vertices u, v € I'; Cj, o, — Ojl ,, if the edge ji of I' is a loop in w.

e Relations of type two: aC}, 4, where uj, — uj,.

e Relations of type three: paths of length two of kQr which are not subpaths of
a cycle Cj, .

In the next theorem we characterize Brauer graph algebras given by their quiver
and relations from the properties of their cycles, using for this the properties (T}),
(T3), (T3) and (Ty) given in Section [4]

Theorem 5.2. Let B = kQ/I be an indecomposable finite-dimensional algebra.
Then B satisfies (T1), (Tz), (T5) and (Ty) if and only if there is a Brauer graph T’
with multiplicity one in all the vertices such that the associated Brauer graph algebra
Br is isomorphic to B.

Proof. Let Br be a Brauer graph algebra with associated Brauer graph I". We will
prove that Br satisfies the properties (71), (T2), (T3) and (Ty). In fact:

(T1) Any permutation of a maximal cycle in Br is a maximal cycle in Br.

This property is a direct consequence of the description of the maximal cycles
of a Brauer graph algebra. In fact, a maximal cycle in Br is of the form Cj, ,, and
every permutation of the cycle C}, ,, is obtained by considering a cyclic permutation
of the sequence of successors ji, jo,...,Jr of j; at the vertex u, which is also a
sequence of successors at the same vertex, and therefore gives rise to another cycle
of kQr maximal in Br.

(T3) Any path u of kQp which is nonzero in B is contained in a maximal cycle
of k@) g, unique up to permutations if u is nontrivial.

Since Brauer graph algebras are indecomposable and not semisimple, the trivial
paths are not maximal. Suppose u = wuj, — u;, — --- — u;, is a nontrivial path
of kQr which is nonzero in Br. From the description of Qr we know that the
edge j;4+1 immediately follows the edge j; in a sequence of successors of j; at some
vertex u of ' fort = 1,...,k—1. Then the path considered is a subpath of the cycle
C}, ,u, which is maximal in Br, and is the only maximal nonzero cycle containing
the path u up to permutations, by construction.

(T5) There are at most two different cycles with origin j in kQp which are
maximal nonzero in Br for any vertex j of (@p)o. If there are two such cycles,
they are equal in Br.
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The fact that this property holds in Br follows from the above description of
the maximal cycles of Br. In fact, if there are two maximal cycles starting at the
same vertex, they are of the form Cj, , and Cj, , if ji is not a loop, or Cj, ,, and
Cﬁ N if j1 is a loop. In the first case C}, , — C}, » is a relation of type one and
in the second Ciyu — C'J.A1 ,, 18 also a relation of type one. Thus the two cycles are

equal in Br. ’

(Ty) f ag...aq : j — j is a nonzero cycle of kQ . which is not maximal in Br,
then ajas = 0 in Br and dimg Endg (P;) = 4.

Let v : uj, = uj, — -+ = uj,_, — uj, be a cycle of kQr nonzero and
not maximal in Br. From the above description of the maximal cycles of Br
we conclude thAat the edge j; is a loop, there are two sequences of successors

jlaj?? e ajsfl7j1ajs+17 (R 7j’l" and j17js+17 B ;jr;j17j27 (R ajsfh and the maximal
. o . . « [0 .
cycles with origin uj, are Cj, 4, , &jl,uh' Since the path u;, |, =5 uj, = u;, is not

a subpath of any of these two maximal cycles, it follows that ajay is a relation of
type three. Therefore aja; = 0 in Br.

The cycle v : u;, — uj ., — -+ = u;, — u;, with origin w;, is also nonzero
and not maximal in Br, since it is properly contained in Gj\lu Then, the cycles
and vy = Cs

Jrugy
is a relation of type one, we have that Endp. P;, is generated

starting at u; are v, 7' and the maximal cycles v'y = Ciy g,

Since Cj, u;, — = g

Uiy
by €, 7, 7 and Cjy u;, - Thus dimg Endp,. Pj, = 4, so (Ty) holds for Br. This
ends the proof that Brauer graph algebras satisfy the properties (T1), (T2), (T3)
and (Ty).

Now consider B = kQ/I satisfying (T1), (T3), (T5) and (T4). We will construct
a Brauer graph I' such that B ~ Br. The set of maximal cycles of B is not
empty because (T») holds. Consider the equivalence relation defined in this set by
C ~ C' if and only if C is a permutation of C’, if C,C’ are maximal cycles. Let
{C1,...,C} be the set of equivalence classes.

We associate to the quiver @) a Brauer graph I' as follows. The set of vertices
of T' is

{ual,u52,...,u55}

U {uy, : vj € Qo and vj is the origin of a unique maximal cycle}.

The edges a; of ' correspond to vertices v; of @ in the following way: If v; is the
beginning of two different maximal cycles C1, Cs, the endpoints of a; are ug-, ug;.
Notice that when C; = C, we obtain a loop. If v; is the beginning of a unique
maximal cycle C' then the endpoints of a; are ugz, u,,, and so a; is the only edge
with u,, as an endpoint. For each equivalence class C, the edges that are incident
on the vertex ug, correspond to the vertices of the maximal cycle C}, and we define
a cyclic ordering in this set of edges as follows. The edge a;,1 is the immediate
successor of the edge a; if there is an arrow v; — v;41 of @ contained in a maximal
cycle of C. This ordering is well defined since any arrow is contained in a unique
maximal cycle up to permutations, by (73). Finally, we assign the multiplicity one
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to each vertex of I', and I'" is then a Brauer graph. From the Brauer graph I'" we
obtain the Brauer graph algebra Br = Qr/Ir. We know that Br satisfies (71),
(Tz), (T5) and (Ty), since we just proved that Brauer graph algebras do.

We will prove that @ = Qr, and that the cycles of Q maximal in B coincide
with the cycles of @ = Qr maximal in Br.

We prove next that @ = Qr. The Brauer graph I' was constructed in such a
way that the vertices of @) are in bijective correspondence with the edges of T'.
On the other hand, these edges are in bijective correspondence with the vertices
of Qr, as follows from the definition of Brauer graph algebra associated to a Brauer
graph. Then the vertices of ) are in bijective correspondence with those of Qr.
We will denote by u; the vertex of Qr corresponding to the vertex v; of ¢ under
this bijection. Then a; is the edge of I' corresponding to u; in Qr and to v; in Q.

Let v; = v;j11 be an arrow in ). Then this arrow belongs to a unique maximal
cycle C, by (T5), and the edge aj;1 of I is an immediate predecessor of a; in the
cyclic ordering of the edges of I' at the vertex uz. This means that there is an
arrow u; — uj41 in Qr. Conversely, if there is an arrow v; — u;41 in Qr a similar
argument shows that there is an arrow v; — v;4; in Q. Thus @ and Qr have the
same arrows, so we can identify the quivers Q@ and Qr.

Finally, we will prove that the cycles of () maximal in B coincide with the cycles
of Qr maximal in Br. In fact, saying that C; = v;, — v, — --- — vj, is a cycle of
kEQ maximal in B is equivalent to saying that a;,,a;,,...,a; are all the edges of I'
with endpoint ug, with the cyclic ordering a;, < a;, < --- < aj,. This means that
aj,,Qj,, - - -, a5, is a sequence of successors of a;, at the vertex uz-, which amounts
to say that Cj, u_ = uj — uj, = -+ = u;, is a cycle of Qpr maximal in Br.
Then cycles of @ maximal in B coincide with cycles of Qr maximal in T.

We know from Remark that algebras that satisfy the properties (11), (15),
(T5) and (Ty) with the same quiver and the same maximal cycles are isomorphic,
thus Br = B. O

In Theorem [£.12| we proved that properties (1), (1), (T3) and (T4) characterize
trivial extensions of gentle algebras. Combining this result with the previous the-
orem we get the following characterization of trivial extensions of gentle algebras,
which was obtained by S. Schroll using a different approach.

Corollary 5.3 ([4, Theorem 1.2 and Corollary 1.4]). Let B be an indecomposable
finite-dimensional algebra. Then B is a Brauer graph algebra with multiplicity one
in all the vertices of the associated Brauer graph if and only if B is the trivial
extension of a gentle algebra.

We summarize the results of the last two sections in the following theorem.
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Theorem 5.4. Let B = kQp/Ip be a finite-dimensional indecomposable k-algebra.
Then the following conditions are equivalent:

(i) B is isomorphic to the trivial extension of a gentle algebra.
(ii) B satisfies the properties (1), (Tz), (T5) and (Ty).
(iii) B is isomorphic to the Brauer graph algebra Br associated to a Brauer
graph T with multiplicity one in all the vertices.

Let us see an example to illustrate this result.

Example 5.5. Let B = kQp/Ip, where

Qp: Ip = (1 azon, az g az, az ag,
a1 05, 5 (3, 04 (4, (3 05 04 O3,
2 “3 Qg (3 Qi Ol Ol (g (03 i,
— e = Q‘“ Qg (] — Qv (vg (i3,

Il 0000 % 000 %
(5} [07%:
Q3 5 g — Q4 Q3 0(5).

The cycles of kQp maximal in B are C; = aj as and its permutation «saq,
Cy = a5 a4 a3 and its permutations oz as oy and a4 asz as. Then the algebra B
satisfies the properties (11), (T»), (T3) and (7). To describe the Brauer graph I’
associated to Qg we observe that the vertex 1 is the beginning of a unique maximal
cycle. The vertices of ' are uy, us = ug, and usz = ug, - Since @p has three
vertices, I' has three edges: a; with endpoints u; and us, as with endpoints us
and ug, and ag, which is a loop at ug. Thus I is the graph

where we choose the cyclic counterclockwise ordering of the edges around each
vertex and we assign multiplicity one to each vertex.

On the other hand, if we delete in @ g one arrow of each maximal cycle we obtain
a gentle algebra A such that T'(A) ~ B. For example, when we choose the arrows
as and as we obtain A = kQp /I, with

« [0 %
Q/\: 01é02$.33a4 IA:(O[?;)
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