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BLOW-UP OF POSITIVE-INITIAL-ENERGY SOLUTIONS FOR
NONLINEARLY DAMPED SEMILINEAR WAVE EQUATIONS

MOHAMED AMINE KERKER

Abstract. We consider a class of semilinear wave equations with both strongly
and nonlinear weakly damped terms,

utt − ∆u − ω∆ut + µ|ut|m−2ut = |u|p−2u,

associated with initial and Dirichlet boundary conditions. Under certain con-
ditions, we show that any solution with arbitrarily high positive initial energy
blows up in finite time if m < p. Furthermore, we obtain a lower bound for
the blow-up time.

1. Introduction

In this contribution, we study the blow-up of solutions of the following initial
boundary value problem of a semilinear wave equation:

utt − ∆u − ω∆ut + µ|ut|m−2ut = |u|p−2u, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

(1.1)

Here, Ω is a bounded domain of Rn with a smooth boundary ∂Ω. Additionally, we
assume that

u0 ∈ H1
0 (Ω), u1 ∈ L2(Ω), (1.2)

and ω, µ, m and p are positive constants, with{
2 < p ≤ 2n

n−2 , for n ≥ 3,

2 < p < ∞, for n = 2.
(1.3)

The linear strong damping term −ω∆ut appears in models describing Kelvin–
Voigt materials that exhibit both elastic and viscous properties, while the nonlinear
frictional damping term µ|ut|m−2ut usually models external friction forces such as
air resistance acting on the vibrating structures.
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In the absence of strong damping (ω = 0), the equation in (1.1) reduces to the
nonlinearly damped wave equation

utt − ∆u + µ|ut|m−2ut = |u|p−2u. (1.4)
Eq. (1.4) was first studied by Levine [8] in the case of linear weak damping (m = 2).
By using the concavity method, he showed that solutions with negative initial en-
ergy blow up in finite time. Later, for the case m > 2, by using a different method,
Georgiev and Todorova [4] established a global existence result for Eq. (1.4) if m ≥ p
and finite time blow-up if p > m and the initial energy is sufficiently negative.

In the presence of the strong damping term, i.e. ω > 0, Gazzola and Squassina [3]
studied (1.4) for m = 2. They gave a necessary and sufficient condition for blow-
up if E(0) < d, where d is the depth of the potential well. Recently, Yang and
Xu [16] gave a sufficient condition for blow-up if E(0) > d. In the case of ω > 0
and m > 2, Yu [17] gave a necessary and sufficient condition for blow-up when
E(0) < d. Boukhatem and Benabderrahmane [2] extended the previous work to
a semilinear hyperbolic equation for a uniformly elliptic operator with nonlinear
damping and source terms. For results of the same nature, we refer the reader
to [1, 6, 5, 9, 12, 14, 15, 18] and the references therein.

In related work, Messaoudi [11] considered

utt − ∆u +
∫ t

0
g(t − τ)∆u(τ) dτ + |ut|m−2ut = |u|p−2u. (1.5)

He proved, for m < p, that solutions with E(0) < d blow up in finite time. Later, by
using a modified concavity method, Kafini and Messaoudi [7] established a blow-up
result for (1.5) when the damping term is linear. When m > 2, by introducing a
new technique, Song [13] obtained a finite time blow-up result for solutions of (1.5)
with arbitrarily high initial energy.

In this paper, motivated by the above-cited works, we give sufficient conditions
for the finite time blow-up of solutions of (1.1) in both cases: E(0) < 0 and
E(0) > 0. Furthermore, we give a lower bound for the blow-up time.

2. Preliminaries

We denote by ∥·∥p the Lp(Ω) norm (2 ≤ p < ∞), and by (·, ·) the L2 inner
product. The notation ⟨·, ·⟩ is used in this paper to denote the duality paring
between H−1(Ω) and H1

0 (Ω). We introduce the energy functional

E(t) := 1
2∥∇u∥2

2 + 1
2∥ut∥2

2 − 1
p

∥u∥p
p.

By simple calculation we have
E′(t) = −µ∥ut∥m

m − ω∥∇ut∥2
2 ≤ 0,

which implies that
E(t) ≤ E(0) ∀t ≥ 0,

and
−E′(t) ≥ µ∥ut∥m

m, −E′(t) ≥ ω∥∇ut∥2
2. (2.1)
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Definition 2.1. By solution of problem (1.1) over [0, T ] we mean a function
u ∈ C

(
[0, T ], H1

0 (Ω)
)

∩ C1(
[0, T ], L2(Ω)

)
∩ C2(

[0, T ], H−1(Ω)
)
,

with ut ∈ Lm
(
[0, T ], H1

0 (Ω)
)
, such that u(0) = u0, ut(0) = u1 and

⟨utt(t), η⟩ +
∫

Ω
∇u(t)∇η dx + ω

∫
Ω

∇ut(t)∇η dx

+ µ

∫
Ω

|u(t)|m−2ut(t)η dx =
∫

Ω
|u|p−2uη dx

for all η ∈ H1
0 (Ω) and a.e. t ∈ [0, T ].

Theorem 2.2 ([17]). Assume that conditions (1.2) and (1.3) hold. Then the prob-
lem (1.1) admits a unique local solution defined on [0, T ]. Moreover, if

Tmax := sup {T > 0 : u = u(t) exists on [0, T ]} < ∞,

then
lim

t→Tmax
∥u(t)∥q = ∞ for all q ≥ 1 such that q >

n(p − 2)
2 .

3. Blow-up with negative initial energy

In this section we show that the solution of (1.1) blows up in finite time if m < p
and E(0) < 0. To prove the main result in this section, we define H(t) := −E(t)
and we use the following lemma. For the proof, see [10].

Lemma 3.1. Suppose (1.3) holds. Then we have
∥u∥s

p ≤ C
[
|H(t)| + ∥ut∥2

2 + ∥u∥p
p

]
for any u ∈ H1

0 (Ω) and 2 ≤ s ≤ p.

Theorem 3.2. Suppose (1.2) and (1.3) hold. Assume further that p > m ≥ 2 and
E(0) < 0. Then the solution of the problem (1.1) blows up in finite time.

Proof. To obtain a contradiction, we suppose that the solution of (1.1) is global;
then, for every fixed T > 0, there exists a constant K > 0 such that

max
{

∥∇u∥2
2, ∥ut∥2

2, ∥u∥p
p

}
≤ K ∀t ∈ [0, T ] . (3.1)

We have H ′(t) = −E′(t) ≥ 0, which together with E(0) < 0 shows that

0 < H(0) ≤ H(t) ≤ 1
p

∥u∥p
p; (3.2)

furthermore,
µ∥ut∥m

m ≤ H ′(t). (3.3)
We now define an auxiliary function

L(t) := H1−α(t) + ε (ut, u) + ε
ω

2 ∥∇u∥2
2,

for ε small (to be chosen later) and

0 < α ≤ min
{

p − 2
2p

,
p − m

p(m − 1)

}
<

1
2 .
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By taking the derivative of L(t) we obtain

L′(t) = (1 − α)H ′(t)H−α(t) + ε⟨utt, u⟩ + ε∥ut∥2
2 + εω(∇ut, ∇u). (3.4)

Using (1.1), the equation (3.4) takes the form

L′(t) = (1 − α)H ′(t)H−α(t) − ε∥∇u∥2
2 + ε∥ut∥2

2

+ ε∥u∥p
p − εµ(|ut|m−2ut, u).

(3.5)

To estimate the last term in the right-hand side of (3.5), we use Young’s inequality

(|ut|m−2ut, u) ≤ δm

m
∥u∥m

m + m − 1
m

δm/(1−m)∥ut∥m
m ∀δ > 0. (3.6)

By taking
δ =

[
kH−α(t)

] 1−m
m ,

for a large constant k to be chosen later, (3.6) becomes

(|ut|m−2ut, u) ≤ 1
m

[
kH−α(t)

]1−m ∥u∥m
m + m − 1

m
kH−α∥ut∥m

m. (3.7)

Combining (3.5) and (3.7), and using (3.3), yields

L′(t) ≥
[
1 − α − εk

m − 1
m

]
H ′(t)H−α(t) − ε∥∇u∥2

2 + ε∥u∥p
p

+ ε∥ut∥2
2 − εµ

m

[
kH−α(t)

]1−m ∥u∥m
m.

(3.8)

By using (3.2), we obtain

Hα(m−1)(t)∥u∥m
m ≤ p−α(m−1)∥u∥pα(m−1)

p ∥u∥m
m,

and hence by the inequality
∥u∥m ≤ C∥u∥p,

we get
Hα(m−1)(t)∥u∥m

m ≤ Cp−α(m−1)∥u∥pα(m−1)+m
p . (3.9)

Thus, by (3.9) and Lemma 3.1, for s = pα(m − 1) + m ≤ p, we obtain

Hα(m−1)(t)∥u∥m
m ≤ Cp−α(m−1) [

H(t) + ∥ut∥2
2 + ∥u∥p

p

]
.

Therefore, in view of the last inequality, (3.8) becomes

L′(t) ≥
[
1 − α − εk

m − 1
m

]
H ′(t)H−α(t) + ε

2(p − 2)∥∇u∥2
2

+ ε

2(p + 2)∥ut∥2
2 + ε

{
pH(t) − λk1−m

[
H(t) + ∥ut∥2

2 + ∥u∥p
p

]}
,

(3.10)

where
λ = Cp−α(m−1) µ

m
.

Writing p = (p + 2)/2 + (p − 2)/2 in (3.10) yields

L′(t) ≥ γ1H ′(t)H−α(t) + γ2H(t) + γ3∥ut∥2
2 + γ4∥u∥p

p + γ5∥∇u∥2
2, (3.11)
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where
γ1 = 1 − α − εk

m − 1
m

, γ2 = ε

(
p + 2

2 − λk1−m

)
,

γ3 = ε

(
p + 6

4 − λk1−m

)
, γ4 = ε

(
p − 2

2p
− λk1−m

)
,

γ5 = ε

4(p − 2) > 0.

We choose now k large enough such that the coefficients γi, for 2 ≤ i ≤ 4, are
positive. Once k is fixed, we choose ε small enough such that

γ1 > 0 and L(0) > 0.

Hence, the inequality (3.11) becomes
L′(t) ≥ A

[
H(t) + ∥ut∥2

2 + ∥u∥p
p

]
(3.12)

for some constant A > 0. Consequently, we have
L(t) ≥ L(0) > 0 for all t ≥ 0.

Next, by using Hölder’s and Young’s inequalities, we obtain

|(ut, u)|1/(1−α) ≤ ∥ut∥1/(1−α)
2 ∥u∥1/(1−α)

2

≤ C
[
∥ut∥s/(1−α)

2 + ∥u∥r/(1−α)
2

]
for 1/s + 1/r = 1. We take s = 2(1 − α), which gives

s

(1 − α) = 2 and r

(1 − α) = 2
(1 − 2α) ≤ p.

Therefore, by using Lemma 3.1, we obtain
|(ut, u)|1/(1−α) ≤ C

[
H(t) + ∥ut∥2

2 + ∥u∥p
p

]
. (3.13)

From (3.1) and (3.2), we have

∥∇u∥2/(1−α) ≤ K1/(1−α) ≤ K1/(1−α) H(t)
H(0) . (3.14)

So, by using Jensen’s inequality, we get

L(t)1/(1−α) ≤ C
[
H(t) + |(ut, u)|1/(1−α) + ∥∇u∥2/(1−α)

]
,

and by combining it with (3.13) and (3.14), we deduce

L(t)1/(1−α)) ≤ B
[
H(t) + ∥ut∥2

2 + ∥u∥p
p

]
. (3.15)

From the inequalities (3.12) and (3.15), we finally obtain the differential inequality

L′(t) ≥ DL(t)1/(1−α) (3.16)
for some D > 0. A simple integration of (3.16) over (0, t) immediately yields

L(t) ≥
[
L−α/(1−α)(0) − αD

1 − α
t

]1−1/α

, (3.17)

which shows that the functional L(t) blows up in finite time. □
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Remark 3.3. From (3.17) we obtain the following upper bound of the blow-up
time:

Tmax ≤ 1 − α

αD
[L(0)]1−1/α

.

4. Blow-up with positive initial energy

In this section, we consider the blow-up of solutions of the problem (1.1) when
E(0) > 0. To prove the main theorem of this paper, we employ the following
lemma.

Lemma 4.1. If 2 < m < p then

1
m

∥u∥m
m ≤ s

2∥u∥2
2 + 1 − s

p
∥u∥p

p, where s = p − m

p − 2 .

Proof. By the convexity of the function ux/x for u ≥ 0 and x > 0. □

Theorem 4.2. Suppose (1.2) and (1.3) hold. Assume further that p > m ≥ 2. If
the solution of (1.1) satisfies

(ut(0), u(0)) > ME(0) > 0 (4.1)

for some M > 0 to be specified later in the proof, then u(t) blows up in finite time.

Proof. Assume, towards a contradiction, that u(t) is a global solution of (1.1).
Setting F (t) := 1

2 ∥u(t)∥2
2, it follows from (1.1) that

F ′′(t) = ∥ut(t)∥2
2 + ∥u(t)∥p

p − ∥∇u(t)∥2
2 − ω(∇ut, ∇u) − µ(|ut|m−2ut, u). (4.2)

By using Hölder’s and Young’s inequalities, we estimate the last two terms in the
right-hand side of the previous equation as follows:

(∇ut, ∇u) ≤ η∥∇u∥2
2 + 1

4η
∥∇ut∥2

2, η > 0,

(|ut|m−2ut, u) ≤ 1
m

δm∥u∥m
m + m − 1

m
δm/(1−m)∥ut∥m

m, δ > 0.

So, by Lemma 4.1, we get

δm

m
∥u∥m

m ≤ s

2δm∥u∥2
2 + 1 − s

p
δm∥u∥p

p.

Hence, (4.2) becomes

F ′′(t) ≥ ∥ut(t)∥2
2 − (1 + ωη)∥∇u(t)∥2

2 +
[
1 − µ(1 − s)

p
δm

]
∥u(t)∥p

p

− µs

2 δm∥u(t)∥2
2 − ω

4η
∥∇ut(t)∥2

2 − µ
m − 1

m
δ− m

m−1 ∥ut(t)∥m
m.
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Adding and subtracting p(1 − ε)E(t) for ε ∈ (0, 1) in the right-hand side of the last
inequality, and using (2.1) and the Poincaré inequality, we obtain

d

dt

{
dF (t)

dt
−

[
1
4η

+ m − 1
m

δ− m
m−1

]
E(t)

}
≥ F ′′(t) + ω

4η
∥∇ut(t)∥2

2 + µ
m − 1

m
δ− m

m−1 ∥ut(t)∥m
m

≥ ∥ut(t)∥2
2 − (1 + ωη)∥∇u(t)∥2

2

+
[
1 − µ(1 − s)

p
δm

]
∥u(t)∥p

p − µ

2 δm∥u(t)∥2
2

≥
[
1 + p

2(1 − ε)
]

∥ut(t)∥2
2 +

[p

2(1 − ε) − (1 + ωη)
]

∥∇u(t)∥2
2

+
[
ε − µ(1 − s)

p
δm

]
∥u(t)∥p

p − µs

2 δm∥u(t)∥2
2 − p(1 − ε)E(t)

≥
[
1 + p

2(1 − ε)
]

∥ut(t)∥2
2 +

{
α(ε)B − µs

2 δm
}

∥u(t)∥2
2

+
[
ε − µ(1 − s)

p
δm

]
∥u(t)∥p

p − p(1 − ε)E(t),

(4.3)

where
α(ε) = p

2(1 − ε) − (1 + ωη)

and B is the best constant of the Poincaré inequality

∥∇u∥2
2 ≥ B∥u∥2

2.

Therefore, taking η = ε and

δ =
[

pε

µ(1 − s)

]1/m

,

setting

γ1(ε) = 1
4ε

+ m − 1
m

(
1 − s

pε

)− 1
m−1

and substituting in (4.3), we arrive at

d

dt
[F ′(t) − γ1(ε)E(t)] ≥

[
1 + p

2(1 − ε)
]

∥ut(t)∥2
2

+
[
α(ε)B − ps

2(1 − s)ε

]
∥u(t)∥2

2 − p(1 − ε)E(t).

Hence, we choose ε small enough such that

α(ε)B − ps

2(1 − s)ε > 0.
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By using the Schwarz inequality, we have

2
[
1 + p

2(1 − ε)
]1/2

[
α(ε)B − ps

2(1 − s)ε

]1/2
(ut, u)

≤
[
1 + p

2(1 − ε)
]

∥ut(t)∥2
2 +

[
α(ε)B − ps

2(1 − s)ε

]
∥u(t)∥2

2.

Consequently, we obtain
d

dt
[F ′(t) − γ1(ε)E(t)] ≥ β(ε)(ut, u) − p(1 − ε)E(t)

= β(ε) [F ′(t) − γ2(ε)E(t)] ,
(4.4)

where

β(ε) = 2
[
1 + p

2(1 − ε)
]1/2

[
α(ε)B − ps

2(1 − s)ε

]1/2
,

γ2(ε) = p(1 − ε)
β(ε) .

Since

α(ε)B − ps

2(1 − s)ε →


2B

p−2 > 0 as ε → 0+,

− B
1+ω − ps

2(1−s) < 0 as ε → 1−,

there exists ε∗ ∈ (0, 1) such that
β(ε∗) = 0 and β(ε) > 0 ∀ε ∈ (0, ε∗).

Hence, we have

γ1(ε) − γ2(ε) →

{
+∞ as ε → 0+,

−∞ as ε → ε−
∗ .

Therefore, there exists ε0 ∈ (0, ε∗) such that γ1(ε0) = γ2(ε0) > 0. So, by setting
L(t) = F ′(t) − γ1(ε0)E(t),

M = γ1(ε0),
and by using (4.1), we obtain

L(0) = (ut(0), u(0)) − γ1(ε0)E(0)
> (ut(0), u(0)) − ME(0) > 0.

Moreover, with this choice of ε0, (4.4) becomes
d

dt
L(t) ≥ β(ε0)L(t),

which gives
L(t) ≥ L(0)eβ(ε0)t ∀t ≥ 0.

Since u(t) is global and E(0) > 0, by Theorem 3.2 we have that E(t) > 0 for all
t ≥ 0. Hence, we arrive at the inequality

F ′(t) ≥ L(0)eβ(ε0)t ∀t ≥ 0.
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By integrating this inequality over (0, t), we get

∥u(t)∥2
2 = 2F (t) ≥ 2F (0) + 2 L(0)

β(ε0)

[
eβ(ε0)t − 1

]
∀t ≥ 0. (4.5)

On the other hand, by using Hölder’s inequality and (2.1), we have

∥u(t)∥2 ≤ ∥u(0)∥2 +
∫ t

0
∥uτ (τ)∥2 dτ

≤ ∥u(0)∥2 + C

∫ t

0
∥uτ (τ)∥m dτ

≤ ∥u(0)∥2 + Ct
m−1

m

∫ t

0
∥uτ (τ)∥m

m dτ

≤ ∥u(0)∥2 + Ct
m−1

m

∫ t

0

−1
µ

dE(τ)
dτ

dτ

≤ ∥u(0)∥2 + Ct
m−1

m

[
E(0) − E(t)

µ

]1/m

≤ ∥u(0)∥2 + C

[
E(0)

µ

]1/m

t
m−1

m ,

which clearly contradicts (4.5). □

5. Lower bound for the blow-up time

In this section, we give a lower bound for the blow-up time Tmax. To this end,
we define

G(t) := 1
2∥∇u∥2

2 + 1
2∥ut∥2

2.

Theorem 5.1. Assume that (1.2) and (1.3) hold, and let u be the solution of (1.1),
which blows up at a finite Tmax. Then

Tmax ≥
∫ +∞

G(0)

{
A1 + A2σβ/2

}−1
dσ,

where β, A1 and A2 are positive constants to be determined later in the proof.

Proof. By differentiating G(t) and using (1.1), we obtain

G′(t) = (∇ut, ∇u) + ⟨utt, ut⟩
= (∇ut, ∇u) + (∆u, ut) + ω(∆ut, ut) − µ∥ut∥m

m +
(
|u|p−2u, ut

)
= −ω∥∇ut∥2

2 − µ∥ut∥m
m +

(
|u|p−2u, ut

)
.

Thus,
G′(t) ≤ −ω∥∇ut∥2

2 +
(
|u|p−1, |ut|

)
. (5.1)

Using Hölder’s inequality, Young’s inequality and the Sobolev inequality

∥v∥q ≤ Bq∥∇v∥q ∀q ∈ [1, 2∗], ∀v ∈ H1
0 (Ω),
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we get (
|u|p−1, |ut|

)
≤ ∥ut∥p∥u∥p−1

p

≤ ∥ut∥α
p + C1∥u∥β

p

≤ Bα
p ∥∇ut∥α

p + C2∥∇u∥β
2

≤ A1 + ∥∇ut∥2
2 + A2(G(t))β/2,

(5.2)

where 1 < α < 2 is some positive constant, β = α(p − 1)/(α − 1) and

C1 = (α − 1)α−α/(α−1), C2 = C1Bβ
p ,

A1 = (2 − α)2−2/(2−α)B2α/(2−α)
p αα/(2−α), A2 = C22β/2.

Combining (5.2) and (5.1) gives

G′(t) ≤ A1 + A2(G(t))β/2. (5.3)

Finally, integrating inequality (5.3) over (0, Tmax) we get

Tmax ≥
∫ Tmax

0

{
A1 + A2(G(τ))β/2

}−1
G′(τ) dτ,

and so

Tmax ≥
∫ +∞

G(0)

{
A1 + A2σβ/2

}−1
dσ. □
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