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BLOW-UP OF POSITIVE-INITIAL-ENERGY SOLUTIONS FOR
NONLINEARLY DAMPED SEMILINEAR WAVE EQUATIONS

MOHAMED AMINE KERKER

ABSTRACT. We consider a class of semilinear wave equations with both strongly
and nonlinear weakly damped terms,

wurt — Au — wAug + ,u,|ut\m_2ut = |u\p_2u,

associated with initial and Dirichlet boundary conditions. Under certain con-
ditions, we show that any solution with arbitrarily high positive initial energy
blows up in finite time if m < p. Furthermore, we obtain a lower bound for
the blow-up time.

1. INTRODUCTION

In this contribution, we study the blow-up of solutions of the following initial
boundary value problem of a semilinear wave equation:

g — Au — wAuy + plug|™ 2wy = |ulP"2u, x€Q, t >0,
u(z,t) =0, xed, t>0, (1.1)
u(z,0) = up(x), w(x,0) =ui(x), x € Q.
Here, Q2 is a bounded domain of R™ with a smooth boundary 92. Additionally, we
assume that
ug € HY(), wu € L*(Q), (1.2)

and w, u, m and p are positive constants, with
2
2<p< 5, forn >3,

(1.3)
2 < p< oo, for n = 2.

The linear strong damping term —wAu; appears in models describing Kelvin—
Voigt materials that exhibit both elastic and viscous properties, while the nonlinear
frictional damping term p|us|™~2?u; usually models external friction forces such as
air resistance acting on the vibrating structures.
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In the absence of strong damping (w = 0), the equation in (1.1)) reduces to the
nonlinearly damped wave equation

gy — Au+ plug|™ 2wy = |ulP . (1.4)

Eq. was first studied by Levine [§] in the case of linear weak damping (m = 2).
By using the concavity method, he showed that solutions with negative initial en-
ergy blow up in finite time. Later, for the case m > 2, by using a different method,
Georgiev and Todorova [4] established a global existence result for Eq. ifm>p
and finite time blow-up if p > m and the initial energy is sufficiently negative.

In the presence of the strong damping term, i.e. w > 0, Gazzola and Squassina [3]
studied for m = 2. They gave a necessary and sufficient condition for blow-
up if E(0) < d, where d is the depth of the potential well. Recently, Yang and
Xu [I6] gave a sufficient condition for blow-up if E(0) > d. In the case of w > 0
and m > 2, Yu [I7] gave a necessary and sufficient condition for blow-up when
E(0) < d. Boukhatem and Benabderrahmane [2] extended the previous work to
a semilinear hyperbolic equation for a uniformly elliptic operator with nonlinear
damping and source terms. For results of the same nature, we refer the reader
to [T, 6] (5L [O) 12] 14 [15] 18] and the references therein.

In related work, Messaoudi [I1] considered

t
Uy — Au +/ g(t — T)Au(T) dr + |ue| ™ 2us = |ulP~u. (1.5)
0

He proved, for m < p, that solutions with F(0) < d blow up in finite time. Later, by
using a modified concavity method, Kafini and Messaoudi [7] established a blow-up
result for when the damping term is linear. When m > 2, by introducing a
new technique, Song [I3] obtained a finite time blow-up result for solutions of
with arbitrarily high initial energy.

In this paper, motivated by the above-cited works, we give sufficient conditions
for the finite time blow-up of solutions of in both cases: FE(0) < 0 and
E(0) > 0. Furthermore, we give a lower bound for the blow-up time.

2. PRELIMINARIES

We denote by |||, the LP(Q) norm (2 < p < 00), and by (-,-) the L? inner
product. The notation (-,-) is used in this paper to denote the duality paring
between H~1(Q)) and H{(2). We introduce the energy functional

B(®) = 3 IVull + 3wl - 5l
By simple calculation we have
E'(t) = —plluelly — wl[Vue |3 <0,
which implies that
E(t) < E(0) Vt>0,
and
—B'(t) > pllullyy,  —E'(t) > w|[Vuell3. (2.1)

Rev. Un. Mat. Argentina, Vol. 63, No. 2 (2022)



BLOW-UP OF POSITIVE-INITTIAL-ENERGY SOLUTIONS ... 295

Definition 2.1. By solution of problem (L.1)) over [0,T] we mean a function
u e C([0,T], Hy(2)) N C([0,T], L*()) N C*([0,T], H~ (),
with u; € L™ ([0, 7], Hg(£2)), such that u(0) = ug, u¢(0) = u; and

(uge(t),m) + | Vu(t)Vndz + w/ Vue(t)Vnda
o Q

[ @ g do = [ P do
Q Q
for all n € H}(Q) and a.e. t € [0,T].

Theorem 2.2 ([I7]). Assume that conditions (1.2)) and (1.3) hold. Then the prob-
lem (1.1) admits a unique local solution defined on [0,T]. Moreover, if
Tax :=sup {7 > 0:u = u(t) exists on [0,T]} < oo,
then
(r-2)
5

lim [Ju(t)|lq =00 forall ¢ > 1 such that ¢ > z

t—Tmax
3. BLOW-UP WITH NEGATIVE INITIAL ENERGY

In this section we show that the solution of (1.1)) blows up in finite time if m < p
and E(0) < 0. To prove the main result in this section, we define H(t) := —E(t)
and we use the following lemma. For the proof, see [10].

Lemma 3.1. Suppose (1.3|) holds. Then we have
lully < C[IH®)] + [luell3 + ull]
for any u € H () and 2 < s < p.

Theorem 3.2. Suppose (1.2)) and (1.3) hold. Assume further that p >m > 2 and
E(0) < 0. Then the solution of the problem (1.1)) blows up in finite time.

Proof. To obtain a contradiction, we suppose that the solution of (1.1)) is global;
then, for every fixed T' > 0, there exists a constant K > 0 such that

max {||Vull3, [Juell3, [lullp} < K Vte[0,T]. 3.1)
We have H'(t) = —FE'(t) > 0, which together with E(0) < 0 shows that

0< H(0) < H®) < S ull; (32)

furthermore,
plluellyy < H'(2). (3.3)
We now define an auxiliary function
w
L(t) := H7(t) + & (ug, u) + 5§||Vu||§7

for € small (to be chosen later) and

C[p—2 p—m 1
0<a< S S
a_mm{ 5 p(m—l)} 3
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By taking the derivative of L(t) we obtain
L'(t) = (1 — a)H' (t)H™%(t) + {ug, u) + ]|ue]|2 + ew(Vaug, V). (3.4)
Using 7 the equation takes the form
L'(t) = (1 —a)H' () H™(t) — £ Vull3 + ellull3 (3.5)
+ellullh = eplfu ™ ur, ). '
To estimate the last term in the right-hand side of , we use Young’s inequality

-1
mTam/ﬂ*m)nutm V6>0.  (3.6)

m—2 < 67777, m
(e ™ ue, w) < ——lullm +

By taking
1—m

§=[kH ()] ™ ,
for a large constant k to be chosen later, (3.6 becomes

_ 1 _ 1-m m—1 _
(e ™ P, u) < — [RHZ* @] Jullly + ———kH . (3.7)
Combining (3.5)) and (3.7)), and using (3.3)), yields
m—1

L'(t)> |1 —a—ck

H'(t)H(t) — e Vull3 + ellull?
m : (3.8)

8:“’ —Q 1-— m
o+ ellucl3 = 2 [H 0] ul

By using 7 we obtain

H =D (@) [lulle < p= D a2
and hence by the inequality

[l < Cllullp,

we get

H D (@) |full < Cpm D |y petm=Dm, (3.9)
Thus, by and Lemma for s = pa(m — 1) + m < p, we obtain

H "D (@) ullyy < Cpm D [H () + [luel3 + [[ull?] -

Therefore, in view of the last inequality, becomes

m—1 €

L= [1-a—ck H'(OH*(t) + < (p - 2) |Vl

2 (3.10)
(p+2)lluell3 + e {pH () = MN"™™ [H(E) + [luell3 + [[ulp]}

L€
2

where
A=cp et L

m
Writing p = (p+2)/2 + (p — 2)/2 in (3.10) yields
L'(t) =y H' () H™(t) + 72 H (t) + yslluell3 + vallullf + 5[ Vull3, (3.11)
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where

—1 2
M=1-a-ck——, Yo=c¢ (p+ —Akl—m),
m 2

6 —2
vs=e (P2 ) = (B k)
4 2p
g
%:Z(p_2)>0'

We choose now k large enough such that the coefficients ~;, for 2 < ¢ < 4, are
positive. Once k is fixed, we choose € small enough such that

v >0 and L(0)> 0.
Hence, the inequality becomes
L'(t) > A[H () + [[uel3 + |[ull®] (3.12)
for some constant A > 0. Consequently, we have
L(t) > L(0) > 0 for all ¢ > 0.
Next, by using Holder’s and Young’s inequalities, we obtain

—a 1/(1l—« 1/(1l—«
(e, ) [0 < gy Oy O
s/(l—c r/(l—a
< € [Jlurlly )+ ully ]

for 1/s +1/r =1. We take s = 2(1 — «), which gives

s 9 and r 2 <
— n = .
1-a) l-a) (1-2a) 7
Therefore, by using Lemma, we obtain
(g, w) VO < CTH(E) + ull + ulp] - (3.13)
From (3.1)) and (3.2)), we have
t)
T/ < [1/0-a) < p1/a-a) B 314
Va0 < < . (314

So, by using Jensen’s inequality, we get
LY < O [HE) + (e, w)] /07 + |[Tul 0]
and by combining it with (3.13)) and (3.14)), we deduce

L)Y =) < BH() + [luell3 + [u]z] - (3.15)
From the inequalities and , we finally obtain the differential inequality
L'(t) > DL(t)"/ (=) (3.16)

for some D > 0. A simple integration of over (0,t) immediately yields
L(t) > |L™o/1=2)(0) — 10:Dat e , (3.17)
which shows that the functional L(t) blows up in finite time. O
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Remark 3.3. From we obtain the following upper bound of the blow-up
time:
-«
aD

1-1
Trnax < [L(0)]* /.
4. BLOW-UP WITH POSITIVE INITIAL ENERGY

In this section, we consider the blow-up of solutions of the problem (|1.1)) when
E(0) > 0. To prove the main theorem of this paper, we employ the following
lemma.

Lemma 4.1. If2 <m < p then

1 1— —
ol < Sl iy, where s =2
Proof. By the convexity of the function v*/x for v > 0 and = > 0. (|

Theorem 4.2. Suppose (1.2) and (1.3) hold. Assume further that p > m > 2. If
the solution of (1.1) satisfies

(ut(0),u(0)) > ME(0) >0 (4.1)
for some M > 0 to be specified later in the proof, then u(t) blows up in finite time.

Proof. Assume, towards a contradiction, that w(t) is a global solution of (1.1).
Setting F(t) := 1||u(t)||3, it follows from (L.I)) that
F(t) = Jlue @13 + [lu®)l} = Va3 = w(Vue, Vu) = pollue ™ Pug,u). (4.2)

By using Hoélder’s and Young’s inequalities, we estimate the last two terms in the
right-hand side of the previous equation as follows:

1
(Vug, Vu) < n||Vull3 + %Hthlﬁ, n >0,
1 -1
(e ™ g, w) < —8™ [l 4+ T =) a7, 6 > 0.
m m
So, by Lemma [4.1] we get

om s 1-s
2l < Sl +

8" |ull-
Hence, (4.2) becomes

p

FY (1) > a2 — (1 -+ won)|Vut) |3 + [1 - ““p‘)é] ()2

US o, w m—1__ _m_ m
= 50" @3 - %\\Vut(t)\@—u75 T (e (8157
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Adding and subtracting p(1 —¢)E(t) for € € (0, 1) in the right-hand side of the last
inequality, and using (2.1]) and the Poincaré inequality, we obtain

(08 et

w m — 1 __m m
> P+ 20 + 1 5 o)

> [lur ()13 = (1 +wn)[Vu(t)]13

i ”“p‘% IOl — 56 fu(e) 13

> [1+ §<1 - 5)} ||ut(_t)||§ + [gu &) - (1+ wn)} IVu(®)ll3 -
s o= D utol - 5 futol - 1 - ()

> (1420 2] Il + {oce)B ~ 2057} o)
+ o= 2 Dgn ugoly - s - )0

where
a(e) = 21 =)= (1+wn)
and B is the best constant of the Poincaré inequality
IVull3 > Bllull3.

Therefore, taking n = € and

5 |: e :| 1/m
u(l —s) ’
setting

1

o= e ()

T e m pe

and substituting in (4.3)), we arrive at

10 —@B0) = 1+ 20 2] Jul}

+ |08 - e Il - pi1 - 900

Hence, we choose € small enough such that

ps
a(e)B — ms > 0.
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By using the Schwarz inequality, we have

21+ 2(1 - s)} i {a(s)B - mpf . e] " (g, )

< 1450 -] lu®IB + |a@)8 - 5] Il

Consequently, we obtain

&P (0) = () E®) > BE) ) — p(1 — ED) i
= B(e) [F'(t) — () E()],
where
< 1/2
B(e) = 2 [1 v 2(1 - 5)}1/2 {a(e)B - 2(1p_ 5
_p(l—¢)
=756
Since
5 ps 28>0 ase — 0T,
*e) _2(1*5)6_> —1%}—%<0 ase — 17,

there exists €, € (0,1) such that
Blex) =0 and f(e) >0 Ve € (0,e.).

Hence, we have
+oo ase— 0T,

m(€) —2(e) — {
Therefore, there exists gg € (0,¢,) such that 71 (g9) = y2(€0) > 0. So, by setting
L(t) = F'(t) — n(e0) E(t),
M = yi(eo),
and by using (4.1]), we obtain

L(0) = (u(0),u(0)) — v1(e0) E£(0)
> (u(0), w(0)) — ME(0) > 0.

Moreover, with this choice of g, (4.4) becomes

(t) = Bleo) L(1),

—00 as€E —eE,.

£L
which gives
L(t) > L(0)ePEt vt > .
Since u(t) is global and E(0) > 0, by Theorem we have that E(t) > 0 for all
t > 0. Hence, we arrive at the inequality

F'(t) > L(0)ePC)t vt >0,
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By integrating this inequality over (0,t), we get
L(0)
B(eo)
On the other hand, by using Holder’s inequality and , we have

lu(t)|2 = 2F (1) > 2F(0) + 2 {eﬁ(so)t - 1} vt > 0. (4.5)

t
lu(®)ll2 < [[u(0)]2 + / otz (7) 2 dr
t
< ()]l + C / e () o 7
t
< Ju(O)]lz + Ct 5= / (1) dr

<o)l + e [ oy
[E(o) - E(t)} L/m

1

m—1
m

< [lu(0)]l2 + Ct

E(0 1/m N
<@l + 0 |20
which clearly contradicts (4.5)). O

5. LOWER BOUND FOR THE BLOW-UP TIME

In this section, we give a lower bound for the blow-up time Ti,.x. To this end,
we define

1 1
G(t) = 5IVull3 + w3

Theorem 5.1. Assume that (1.2) and (1.3) hold, and let u be the solution of (L.1)),
which blows up at a finite Trax. Then

+oo -1
Tmax Z / {Al + AQOﬁ/Z} dO’,
G(0)

where 3, A1 and Ag are positive constants to be determined later in the proof.
Proof. By differentiating G(t) and using (1.1]), we obtain
G,(t) = (Vut, VU) + <Utt, Ut>

= (Vaug, V) + (Au, up) + w(Aug, ur) — pllulm + ([ulP 2w, ur)

= —w|[Vullz = plludlliy + (JulP~?u, ur) -
Thus,

G'(t) < —wl[Val3 + ([ulP ™ ) - (5.1)
Using Holder’s inequality, Young’s inequality and the Sobolev inequality
[ollg < BgllVolly Vg € [1,2%], Yo € Hy(9),
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we get

(=% el < Juelpflully~

< uelly + Callully

N N 5 (5.2)
< By Vel + Cof[Vaully
< Ay |[Vulf3 + A2(G (1)),
where 1 < a < 2 is some positive constant, S = a(p —1)/(a — 1) and
Cy=(a— 1)04""/(“’1), Cy = 01357
Ay = (2 — a)2 /@) po/2-a) qo/ o) 4, — (28/2.
Combining (5.2)) and (5.1]) gives
G'(t) < Ay + Ax(G(1))P/2, (5.3)
Finally, integrating inequality (5.3)) over (0, Tiax) we get
Tmax -1
B> [ {4 MG} G ar
0
and so
+o0 -1
Tmax Z / {Al + AQU'B/2} do. O
G(0)
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