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BILINEAR DIFFERENTIAL OPERATORS AND
0sp(1/2)-RELATIVE COHOMOLOGY ON R!/!

ABDERRAOUF GHALLABI AND MEHER ABDAOUI

ABSTRACT. We consider the 1|1-dimensional real superspace R endowed
with its standard contact structure defined by the 1-form «. The conformal Lie
superalgebra k(1) acts on R as the Lie superalgebra of contact vector fields;
it contains the Mobius superalgebra osp(1|2). We classify osp(1]2)-invariant
superskew-symmetric binary differential operators from (1) AKC(1) to Dy ;0
vanishing on osp(1|2), where Dy .., is the superspace of bilinear differential
operators between the superspaces of weighted densities. This result allows us
to compute the second differential osp(1]|2)-relative cohomology of K(1) with
coefficients in Dy .,

1. INTRODUCTION

The space of weighted densities with weight A (or A-densities) on R, denoted by
Fa={f(d)* | f € C®R)}, A€R,

is the space of sections of the line bundle (T*R)®A for positive integer A\. The Lie
algebra Vect(R) of vector fields Xp = F-& on R, where F € C*>°(R), acts by the
Lie derivative. Alternatively, this action can be written as
Xp - (fda?) = Lx, (f)(dz)*,  with Ly, (f) = Ff' + \F'f,

where f’ and F’ are, respectively, % and %. For (\,u,v) € R3, each bilinear
differential operator A from C*(R) ® C*(R) to C*°(R) gives thus rise to a mor-
phism from Fy ® F, to F, defined by fdz*® gda* — A(f®g)dx”. The Lie algebra
Vect(R) acts on the space Dy .., of these differential operators by

Xp-A=1IL%, 0A— Ao LM,
where Lg?};“) is the Lie derivative on F) ® F,, defined by the Leibniz rule
LYW (fog) = LX, (f)@g+ fo Lk (9.

If we restrict ourselves to the Lie subalgebra of Vect(R) generated by {%,x%,
xQ%}, isomorphic to s[(2), we get a family of infinite-dimensional s[(2)-modules,
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still denoted by Dy ,.,,. Bouarroudj [6] computed H2,4 (Vect(R), s[(2); Dy ,.), where
HY. denotes the differential cohomology; that is, only cochains given by differential
operators are considered. These spaces appear naturally in the problem of describ-
ing the s[(2)-trivial deformations of the Vect(R)-module S,_x = @Prg Fu-r—k,
the space of symbols of differential operators (for example, see [T}, [12]).

In this paper we study the simplest super analog of the problem solved in [6],
namely, we consider the superspace R equipped with the contact structure de-
termined by a 1-form «, and the Lie superalgebra /C(1) of contact vector fields on
R, We introduce the K(1)-module Fy of A-densities on R'* and the K(1)-module
of bilinear differential operators, Dy ., = Homgig(Fx @ Fp, Fv), which are super
analogues of the spaces F) and Dy .., respectively. The Lie superalgebra osp(1]2),
a super analogue of s[(2), can be realized as a subalgebra of K(1). We classify all
0sp(1]|2)-invariant bilinear differential operators from (1) to Dy ;.. We use the
result to compute H3, (K(1), 0sp(1]2); Da ). We show that nonzero cohomology
HZ.5 (K(1), 05p(1]2); D .. ) only appears for resonant values of weights that satisfy
vV—pu—AE %N + 3. These spaces allow us to classify the nontrivial projectively
invariant extensions of the Lie superalgebra /C(1) by the module D ...

2. DEFINITIONS AND NOTATIONS

Recall that the superalgebra C'*° (R”l) of smooth function on the superspace
R consists of elements of the form

F(x,0) = fo(x) + f1(2)9),
where fo, f1 € C*(R), and where «x is the even variable and § is the odd variable
(6% = 0). Let |F| be the parity of a homogeneous function F. Let

Vect(R'Y) = { [0, + F10y | F; € C(R'M)},

where 9y = % and 9, = a%' Let /(1) be the Lie superalgebra of contact vector
fields on R/

K(1)={X¢€ Vect(R) | there exists F € C°(R') such that £x () = Fa},
where £x is the Lie derivative along the vector field X and
o =dz + 60df.
Any contact vector field on R'" can be expressed as

Xp = Fo, — L (~)" (P,

where F € C®(R'") and 7 = 8y — 00,. The contact bracket is defined by
[(Xr, Xc| = X(r )

1 _ _
{F,G} = FG' = F'G = 5(-=1)"15(F) - 7(G).
The orthosymplectic Lie superalgebra osp(1]2) can be realized as a subalgebra of

K(1):
05p(1|2) = Span(le sz Xx2» Xa:@a X@)
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The space of even elements is isomorphic to s[(2), while the space of odd elements
is two-dimensional:

(0sp(1]1))7 = Span(Xzg, Xp).
We define the space of A-densities as

$n={F(z,0)a* | F(z,0) € C*([R'M)}.

As a vector space, §» is isomorphic to COO(R”l), but the Lie derivative of the
density Ga* along the vector field X in K(1) is now

Ly, (Ga*) = L%, (G)a*,  with £, = Xp + AF', A€R. (2.1)

A differential operator on R!!! is an operator on C°(R') of the form

M
A=Y "arc(2,0)0505, £=0,1, MeN.

k=0 €

Of course any differential operator defines a linear mapping Fa* +— A(F)a* from
Sx to §, for any A, p € R, thus the space of differential operators becomes a
K(1)-module denoted by @) ,, for the natural action

Xp-A=gh oA—(-1)AFl408} .

Similarly, we consider a family of /C(1)-modules on the space ®j ,., of bilinear
differential operators A : §x ® §, — §, with the K(1)-action

Xp-A=2% oA~ (~1)AIFl40 )
where Sg?F” ) is the Lie derivative on $x ® § defined by the Leibniz rule
eQI(H @ G) = 84, (H) 2 G+ (~1)/FIHH @ g4 (q),

Since 72 = —0, and 9y = 7 — 07%, any differential operator A € © A,u can be
expressed in the form
¢

A(Fa?) =) a; 7' (F)ot, (2.2)
=0

where the coefficients a; € C°°(R'') and ¢ € N.

3. THE 0sp(1]2)-RELATIVE COHOMOLOGY OF K (1) ACTING ON Dy .

Let us first recall some fundamental concepts from cohomology theory (see, e.g.,
[8, @, [10]).
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3.1. Lie superalgebra cohomology. Let g = gzPgj be a Lie superalgebra acting
on a superspace V = V5 @ V5 and let h be a subalgebra of g. (If  is omitted, it is
assumed to be {0}.) The space of h-relative n-cochains of g with values in V is

C"(g,h; V) := Homy(A"(g/h); V).

The coboundary operator 8, : C™(g,b; V) — C"*F1(g,h; V) is an even map satisfying
O 0 0n—1 = 0 (see, for instance, [10]): for ¢ € C™(g,h; V),

n

(620)(90s-- -2 gn) = Z(_]_)i(_1)|9i|(|¢|+|90‘+"'+|gi—1Dgiqs(goj ey Gn)

=0
+ § z+; )|9i|(|90|+'“+\9i—1\)(_1)\9;‘|(|go|+"'+5+'“+|9j—1|)
0<7,<j<n

X ¢([glvg]]7g07vg7aja7gn)

The kernel of 4,,, denoted by Z"(g, h; V), is the space of h-relative n-cocycles; among
them, the elements in the range of §,,_; are called h-relative n-coboundaries. We
denote by B™(g,h; V) the space of n-coboundaries.

By definition, the n-th h-relative cohomology space is the quotient space

H"(g,b;V) = Z"(g,b;V)/B"(g,h; V).
We can also define a g-action 7 on C™(g, V') by setting, for any g € g,
(w(g)gﬁ)(gl, e ;gn)
*gd) gla"'agn Z \g\ |91 +lgal+--+gima] gi¢(gla"'7[g7gi]7"'7gn)7
i=1

and a contraction operator ¢(g) from C™ to C"~! by

(L(g)¢)(gl7 s agn—l) = (71)|g||¢‘¢(gagla cee 7gn—1)'

A direct computation gives the classical formula

7(9)¢ = (dn-10t(g) + t(g) 0 0n)9,

and thus 6, (7(g)¢) = m(g)(0,¢); that is, d, is a g-map. Note that C"(g, h; V) may
be viewed as the subspace of C™(g, V') annihilated by both ¢(h) and 7(h). We will
only need the formula of 4,, (which will be simply denoted by §) in degrees 0, 1
and 2: for v € C%(g, h; V) =V, u(g) := (=1)191*lg - v, where

Vh={veV|h-v=0 forall h €h}.
3.2. osp(1]2)-invariant binary differential operators. The following steps to
compute the cohomology have intensively been used in [2, 4[5l [6] [7, [11]. First, we

classify osp(1]2)-invariant differential operators, then we isolate among them those
that are 2-cocycles. To do that, we need the following lemma.
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Lemma 3.1. Any 2-cocycle vanishing on the subalgebra osp(1]2) of K(1) is asp(1|2)-
tnvariant.

Proof. For X € osp(1/2), the 2-cocycle condition reads:
o([X,Y], 2) = (~)"7e([X, 2], Y) = (~1)Xleit (Y, 2)

for every Y, Z € KC(1). This relation is nothing but the osp(1]2)-invariance property
of the bilinear map c. O

As our 2-cocycles vanish on 0sp(1|2), we will investigate osp(1]2)-invariant super-
skew-symmetric binary differential operators that vanish on osp(1]2). Our first
main result is the following theorem.

Theorem 3.2. The space of superskew-symmetric bilinear differential operators
KQ)AK(1) = Dy u which are 0sp(1|2)-invariant and vanish on osp(1]2) is purely
even if v — u— X is integer and is purely odd if v — u— X is semi-integer; moreover,
this space is:

(i) (p—2)(4p — 9)-dimensional if (v —pu—A) =2p—2 and p > 3;
(ii) (4p* — 13p + 11)-dimensional if (v —pu— \) =2p — 1 and p > 2;
iit) (p— 2)(4p — 7)-dimensional if (v —p— ) =2p— 2 and p > 3;
(iv) (4p? — 11p + 8)-dimensional if (v —pu— X) =2p — 3 and p > 2;
(v) zero-dimensional otherwise.

Proof. First, it is easy to see that, for the adjoint action, the Lie superalgebra k(1)
is isomorphic to §_1. So, any such a differential operator can be considered as a
4-ary differential operator ¢ : §_1 ® §-1 ® §x ® §, — F». Thus, by , we can
see that the operator ¢ has the form

o(Xr,Xa, 0,9) = > etk 0, |F|, |Gl g, [vl)

e=(e1,62,£3,84)
0<kq,kg, kg, kg<M

TP (D (GO (08 (80,
where g; = 0,1, M € N and (with F(*)) denoting the k;-th derivative of F' by x)

pE®)) ife; =1
ﬁsi (F(kt)) _ 77( ) 1Ie 9
Fk) otherwise.

Second, observe that, since the operator ¢ vanishes on osp(1|2) (that is, it
vanishes when just one argument is from osp(1[2)), we have ckik2ks:ke = ( for
€1+ k < 2or g3 +ky < 2. The invariance property of ¢ with respect to
Xp € o0sp(1]2) reads:

N (X, Xy ¢, 9) — (D) e([Xpr, Xp), X, 6, 0)
— (=) HIHED (X o [ X, X], d,00) = 0. (3.1)
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By direct computation using (3.1) together with (2.1)) and the graded Leibniz

formula
7oF = Z() DIFIG=gt (P,

),

0 otherwise,

with

D= N,

> if 7 is even or j is odd,

we easily check that the invariant property of ¢ with respect to the vector field X,
yields

ﬁclgl,kz,ksylm -0 and ﬁ(clgl’kz’k3’k4) —0.
Therefore, the coefficients c¥1-#2:¥3:k4 are functions of |F| and |G|. We also get
4 4
lell +23 ki=20 —p— ) +4, where |le]| = > e,
i=1 i=1

So, the parameters A, p, and v must satisfy 2(v — p — ) + 4 = n, where n € N.
The corresponding operator can be expressed as

o(Xp, X, d,0) = Y R R(|F| |G, g, [v]) AR Rk (F,G 6,40),

e,k1,k2,ks
(3.2)
where €1 + k1 > 3, o + ko > 3, and

Alecl ,k‘g,kg,n(F, G, b, ’l/)) 7 (F(kl )ﬁEQ (G(kQ))ﬁag (¢(k3)>ﬁ54 (,(/)(%(n—l\e\l)—kl—kz—kg)).

We easily check that the operator ¢ is homogeneous: c¢ is even or odd according to
whether n is even or odd. Moreover, the superskew-symmetric condition

C(XF7 XG7 ¢7 d)) = _(_1)‘FHG|C(XGa XF7 ¢7 d))
leads to the following relation:

ekt Bt (| B |G g, [y]) = — (- IFiteriGleneadi b (|G ) |6, [4])-
(3.3)
Second, we consider the invariance property with respect to X, 2 and X,.9. Accord-
ing to the parity of n, we distinguish two cases.

The case where n is even.
In this case, the invariance property of ¢ with respect to X,¢ reads:

SN (X p, Ko, 6,9) = ol [Xao, Xr), Xy 6,9) = (1) Fle(Xp, [Xap, Xal, 6,4) = 0.
Collectlng the terms in zAkr-k2ksn(F G ¢ 1)), we get
ckrkzkan (|| G (gl [¢]) = (1) kvkknm ([P + 1, |G, [, [¢])
= (—1)FrednkeRen (B |Gl 4 1, (6], [¢]) (3.4)
= (—p)retesdpukkan (RG] (6] + 1, [9)).
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According to formulae (3.3)) and (3.4), we deduce that clg’ld%’bks’" = cgf’fﬂll”lkS’" =
0. The invariance property of ¢ with respect to X,z reads:

SA))\(::Q;VC(XFa XG7 ¢a w) - C([Xx2a XF]a XG? (ba ¢) - C(XFa [Xaf:2 B XG]a (z)a ¢) = 0.
Collecting the terms in § AF1:-k2:k3:m(F Q) we get with the help of (3.3]) the following
conditions:

n k1,k2,k3,n k1,k2,k3,n |F| k1,k2,k3,n
b Ak17k2,k3—2u+1co,0,1,1 — (k1 — 2)(31,0,1,0 — (=) (k2 - 2)00,1,1,0

-2
+ (—)IFIHC (g — 2) it tn — 0y g kg 4 ks < T " and ky > ko > 3;

n k1,k2,k3,n k1+1,k2,k3,n F k1,k2,ks3,n
® A% kaks+1C10t0  + (k14 1ol + (=) (ks — 2)ci Ty

—4
— (—)IFHHIC oy g yebighafatn — 0 by kg 4 ks < T and k> 2,ks > 3;

n k1,k2,ks,n k1+1,k2,k3,n | F| k1,k2+1,k3,n
b Akl,kQ,kg—Q;L-&-ch,l,l,l + (k1 + 1)00,1,1,0 — (=) (k2 + 1)01,0,1,0

—4
— (~D)IFHG (g 4 1) ke bt =0, kg kg ks < o~ and ki > ks > 2

n k1,k2,k3,n k1,k2,ks,n |F| k1,ka+1,k3,n
O AL ko ks—2u41C0 000 — (k1 =2)ei oo + (=) (k2 + Degls oo

n —

2
+ (—D)FHICH N + ka)ef 20" = 0, Ky + kg + ks < and ki > 3, ks > 2;
k1,k2,k k1,ka,k k1,k2,k
O AR koksC0l0.00  — (k1 —2)ci o> — (=) ¥l (kg — 2)colion "

2
and kq > ko > 3;

n n—
— (—1)lFHC X + k3)‘3§,ldf€12,’1k3’ =0, ki +kat+ks<

n k1,k2,k3,n k1+1,k2,k3,n F k1,ka+1,k3,n
O A% kaks+1C1a00 (k14 1) — (=)Fl(ky + et

n—4

— ()FHICH N + k3) e 2" = 0, ki + ko + ks < and ky > ky > 2,

(3.5)
where A = (=1)FIFIGIHISN(Z — k) — ky — k). For each n and any A, we can
see, with the help of Maple, that the system is linearly independent. Now
according to formula , we can see that all the coefficients c’gl’kz’kS’” can be
expressed in terms of

le,ldfc12,bk3’n» ki1 > 2 and ky > 3;
Cllc,ld,k(i’lks’”v k1 > 2 and ko > 3;
R RO Iy et
it k> ke > 3

k1,ka,ks,n .
€1,1,0,0 y k1> ko > 2

Rt kg > ky > 2.
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So, we deduce that the dimension of the space of solutions is equal to
#(the coefficients c¥ 27" given by (3.6)) — # (equations given by (3.5)) .

We will need the following lemma.

Lemma 3.3.

(1) For n = 4p, the number of the coefficients cki-*2:Fs:n given by (3.6) s
is L (4n® — 93n2 + 758n — 335) and the number of equations given by is
4—18(4713 —109n2 +1090n — 3472). Moreover, for generic A and p, the space
of 0sp(1|2)-invariant operators is spanned by (see below).

(2) For n = 4p + 2, the number of the coefficients ck1-F2:k3m given by (3.6) is
-

112 (n® — 24n2 + 194n — 528) and the number of equations given by ( is

112 (n® — 27n% + 245n — 750). Moreover, for generic A and ju, the space of
osp(1]2)-invariant operators is spanned by (3.8]) (see below).

Proof. First, we can see, by a direct computation, that the number of the coeffi-
cients ckl””’kf” given by (3.6) and the number of equations given by (3.5)) are as
in Lemma [3:3] for n = 4p and 4p + 2.

Second, for ki + ko + k3 < § — 1 with k1 > kg > 3 and for generic A, p, it

follows from the first (resp., fifth) equation in ) that the coefficients clglo’kf 2.

(resp., clgldk()?’k?” with ki +ke+ks < 2—1) are determlned in terms of ckl’kz’k?”

k1,k2,k3, k1,ka,k3,n kl»k27§—’f1 ka2,n
€0.0,00 (resp oo and ¢y oo ) Moreover, for ki +ko+k3z < 5—1

with ki1 > 3, kg > 2 and for generic A, u, it follows from the fourth equation in
(3.-5) that the coeflicients c]ffdfﬁ’lkg’ can be expressed in terms of coldk(f biikl ham ,

c’ffdﬁl,bks’" and c]f,ll’%bka’". Furthermore, for ky + kg + k3 < § — 2 with k; > ky > 2
and for generic A, u, it follows from the third (resp., sixth) equation in (3.5) that the
coefficients c’fll’kf’ pfam (resp., clfll’k(f en ) are determined in terms of ek and

kl,kg,kg,-',—l n ki,ko, 5 —ki—k2,n ko ki,ks,n ki,k2,5 —ki—ka—1n
€1,1,0,0 (vesp., Coooo » ooy and e o ). Finally,

for k1 + ko +kz <2 —2with k; > 2, kzg > 3, it follows from the second equation
in (3.5) that the coeﬁi(nents clf’ldﬁz’bkg’ can be expressed in terms of

and

k17k27§—k1 ka2,n k17k2,§—k1—k2 1,n d ki,k2, 5 —k1—ka—1,n
€0,0,0,0 > €1,0,1,0 , and €199

Thus, we deduce, for generic A and p, that the space of osp(1|2)-invariant operators
has the following structure:
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(n — 8)(n — 9)-dimensional and spanned by

1
4

(i) For n =4p, it is

4,32p—7,n

€0,0,0,0

»4,2p—9,n

,0,0,0
6,4,2p—10,n

760

10

»3,2p—8,n
,0,0,0

10

(=}

(=)

)

,5,2p—11,n
,0,0,0

6
,0,0,0 » Co

,3,2p—9,n
,0,0,0

6
Co

)

4,4,2p—9,n

» €1,1,0,0

13,2p—8,n
,1,0,0

O

(3.7)

(n? — 17n + 74)-dimensional and spanned by

1
4

(ii) For n =4p + 2, it is

,0,0,0

4,3,2p—6,n

€o

4,42p—8,n
,0,0

) €11

n1
<
Yo
=
Q<
(3 )
O
s 8
- <
No Mo
e Te
Qe a<
NSO NO
IR
n7
<
“e
7
~—
&
O
g
<
o %o
e e
1) p_|.7
— A~
O Q

The case where n is odd.

In this case, the invariance property of ¢ with respect to X, reads:
X (X, Xas 6, 8) — e([Xon, Xr], Xa, 6, 8) = (=) e(Xp, X0, X, 6,00) = 0.
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Collecting the terms in z@Akvk2ksn(F G ¢ 1)), we get

iRk (R |G (@), [9]) = (1)mtesteacnbaben(( Bl 41, |G, @], [¢])
(—1)7Fesckvh b (IR |G + 1, (@], [4) (3.9)
(=17 kb (| F) |G, @] + 1, [¢)).

According to formulae (3.3) and (3.9)), we deduce that clg}dﬁl’bka’" = cgfdﬁ’lks’" =
0. The invariance property of ¢ with respect to X,2 reads:

SA/;():;VC(XF7 Xa, ¢, ¢) - C([Xw2, XF]7 Xa, o, w) - C(XF7 [XI27XG]7 b, 1/)) =0.
Collecting the terms in § AF1-F2:-k3:m(F G, we get with the help of (3.3)) the following

conditions:

n k1,k2,ks,n k1,k2,ks,n |F| k1,k2,ks,n
d Ak17k2,k3+%00,0,1,0 — (k1 — 2)01,0,1,1 = (=1)" (ko — 2)00,1,1,1

-3
+ (=D g+ D)l = 0, kA ke + ks < 5= and by >y > 3:

n k1,k2,ks,n k1,k2,ks,n |F| k1,k2+1,k3,n
d Akl,k2¢k3—2;¢+%co,1,1,l + (k1 — 2)01,1,1,0 = (=" (k2 + 1)00,0,1,0

-3
4 (=) PO (g 4 1)efrkabathn — o gy ko kg < 22 and ky > 3, ks > 2;

n k1,k2,ks,n k1+1,ka,ks,n |F| k1,ka+1,k3,n
* Akl,kg,kg-i-%cl,l,l,o = (k1 + 1)l + (=1)" (k2 + 1)ey’s 11

_5
D0 and ky > kg > 2

_ (_1)|F\+\G\(k3 + 1)0?}£%271k3+1’" =0, ky + kot kg <

n k1,k2,k3,n k1,k2,k3,n |F| k1,ka,k3,n
M Akl,k2,k3—2;¢+%co,0,0,l + (k1 = 2)ci50 0" + (=)W (ke = 2)eg'y 5

—1
+ (=D)FIHICH RN 4 k) e glz0™™ = 0, ki + ko + ks < n and ky > ko > 3;

n k1,k2,ks,n k1+1,ka,k3,n |F| k1,k2+1,k3,n
° Akl,kz,k3—2u+gc1,1,o,1 — (k1 + 1)l o0 + (=" (k2 + )er5 60

-3
+ (~D)IFHG @) 4 ky)efkedom =0, ki 4k + ks < & o and ki > ks > 2

n k1,k2,ks3,n k1,k2,k3,n |F| ki1,k2+1,k3,n
M Akl,kQ,ngr%Co,Lo,o + (k1 = 2)eyy g " = (=)W (ke + L)eglsio

3 and kl Z 3,]172 Z 2,
(3.10)

where A} .= (—=1)IFHIGIHON (2 — k) — ky — k3). For each n and any \, we can

see, with the help of Maple, that the system (3.10]) is linearly independent. Now

n n—
— ()FIHICH@N + k3)eg 2™ = 0, ki + ko + ks <
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according to formulae (3.3]), we can see that all the coefficients cf1-#2:k3: can be
expressed in terms of

c?}d?o%b“’ﬂ k1 > 2 and ky > 3;

le}df612,ik37n7 k1> 2 and ky > 3;

Clg,ldfelzfok&ﬂ k1 > ko > 35

ki,ka2 k (3.11)
K 9 7n .

Coor s k1 >ke >3

k1 ko, ks,n )
C1,11,127()3 , k1> ke > 2

k1,k2,ks,n
C11,01 > ki > ky > 2.

So, we deduce that the dimension of the space of solutions is equal to

#(the coefficients c’;l’kz’kg’" given by (3.11))) — #(equations given by (3.10))).

We will need the following lemma.

Lemma 3.4.

(1) Forn =4p + 1, the number of the coefficients cF1-F2*s:m given by (3.11)) is
5 (n® — 24n® + 194n — 531) and the number of equations given by (3.10) is

ﬁ(n3 — 27n? + 245n — 747). Moreover, for generic A and u, the space of

0sp(1]2)-invariant operators is spanned by (see below).
(2) Forn = 4p + 3, the number of the coefficients ckr-F2*s:m given by (3.11)) is
5 (n® — 24n? + 194n — 525) and the number of equations given by (3.10) is
ﬁ(n‘3 — 27n? + 245n — 747). Moreover, for generic A and u, the space of

0sp(1]2)-invariant operators is spanned by (3.13)) (see below).

Proof. First, we can see, by a direct computation, that the number of the coeffi-
cients ck1:-k2:k3:m oiven by and the number of equations given by are as
in Lemma[3.4] for n = 4p+1 and 4p+ 3. Moreover, in a similar way as in the proof
of Lemma we deduce, for generic A and pu, that the space of osp(1]2)-invariant
operators has the following structure:
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(n — 8)(n — 9)-dimensional and spanned by

1
1

(i) Forn=4p+1, it is

)

,5,2p—11,n
,0,1,0

© o

)

4,42p—9,n
1,1,1,0

, C

7
p—8,n
,0

(3.12)

(n? — 17n + 74)-dimensional and spanned by

1
4

(ii) For n =4p + 3, it is

5,4,2p—8,n

» €0,0,1,0
4
0

2

1
2p—T,n
1,0

2p

1,0

)
)
5
i
)
)

3
0
3
0
3
0

)
)
s
s
)
)

4
0
5

€o
6
0

2p—3,3,1,n
1,0,0,0

2p—3,4,0,n
1,0,0,0

, C

C

2p—2,3,0,n
1,0,0,0

C

(3.13)

Now, using Lemma [3.3] and Lemma [3.4] we easily check that Theorem [3.2] is

O

proved.
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3.3. The osp(1]|2)-relative cohomology of K(1). In this subsection, we will com-
pute the second differential osp(1|2)-relative cohomology spaces H3,5(K(1), 0sp(1]2);
D). Our second main result is the following:

Theorem 3.5. For v —pu— X < 2, the space H3i5(K(1), 05p(1(2); Dx ;) has the
following structure:

(i) If v — u— A =3, then

H?iiﬁ(lc(l)a 05p(1]2); D ) ~ .
0 otherwise.

{R if (7 1) € {(0,0),(0,-3),(~3,0)},

(i) Ifv —p— A= 1, then
-3
" Z.f(w)e{ 0,0, (3,0, }
1

0 otherwise.

R z'f(hu)é{ (0’_2)’(0’_%);’ }

0 otherwise.

Hiigr (KC(1), 05p(1]2); D ) =
(iii) If v —p— A =4, then

H(Zilff(’(:(l)a 05p(1|2), 9)\,/,1,;1/) =~

(iv) Ifv—p—X=3, then
R if (A p) € {(~2,0),(~3,0)},

0 otherwise.

anff(’C(l), 05p(1]2); Dy ) = {

Remark 3.6. H},;(K(1),05p(1]2); D) ,.) has been computed in [3].

The proof of Theorem [3.5] will be the subject of subsection [3.5] In fact, we first
need the description of 0sp(1|2)-invariant trilinear operators, from §_1 @ § ® §,
10 Tatputk—1-

3.4. osp(1]2)-invariant trilinear differential operators.

Proposition 3.7 ([3]). The space of trilinear differential operators T : K(1)®@F\®

Su = Fatputk—1 which are osp(1]2)-invariant and vanish on osp(1|2) is purely even

if v—p— X is integer and is purely odd if v — u— X is semi-integer; moreover, it is:
(i) 2(v — p — A — 1)-dimensional if 2(v — p — A) € N+ 3, generated by

E2loo k210 EB20 2,550
€100 5>€00 €00 -3 C1,00 >
k—3 k-5 k-7 k-7
k2300 k3510 EZTap 2,527 0
7,0, 701, 772 AzTo . y .
il > ail sail sG] if v —pu— A\ is semi-integer;
and
Cg—l,o,o Cg—z,o,l 03—3,0,2 02,0,5—3
1,0 61,0 €10 s G100
k k k k
k100 k£-210 £k 320 2,530 o
2 Uy P sy Pl 34 o) )
ctoa1 s Cio1 s CTo1  seees Cloa if v — p— X is integer.

(ii) zero-dimensional otherwise.
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In order to prove Theorem [3.5] we will study properties of the coboundaries.

Lemma 3.8. Let B : K(1) — Dy . be an operator vanishing on osp(1]2). If
§(B) belongs to B2(K(1), 05p(1|2); D uw), then B is an 0sp(1|2)-invariant trilinear
differential operator.

Proof. For all X, Y € K(1), pa* € F», and Ya* € §,,, we have
S(B)(X,Y, ¢,9) := (=) XIPILR  B(Y, ¢, ) — (~1) VI IXIHED 31 B(X, ¢, 4)
- B([Xv Y]@ﬂ/’)
Since §(B)(X,Y, ¢,¢) = B(X,¢,1) =0 for all X € osp(1]2), we deduce that
(~)IXIPLeR" B(Y, ¢,4) — B([X, Y], 6,9) = 0.

Thus, the operator B is osp(1]2)-invariant; therefore it coincides with osp(1]2)-
invariant trilinear differential operators. O

Now, clearly, the coboundary §(T") has the form
S(T)(Xp, Xa, b)) = Y BEFRn(|F||G], [¢], [p]) AR F2F™(F, G, ¢,4),

e,k1,kaks, ks

where ¢; =0, 1.

3.5. Proof of Theorem According to Lemma any 2-cocycle of K(1)
with coefficients in @y ,;, vanishing on osp(1]2) is osp(1|2)-invariant. So, by The-
orem it is identically zero if v — y — A < 3 and expressed as in for
v—pu—MAE %N + 3.

Forv—pu—Xe %N + 3, the proof of Theorem consists in two steps. First,
we investigate operators that belong to Z2(K(1),0sp(1]2); D ). The 2-cocycle
condition imposes conditions on the coefficients ck1-¥2:%3:m: we get a linear system
for ckkzksm  Gecond, taking into account these conditions, we eliminate all co-
efficients underlying coboundaries. Gluing these bits of information together we
deduce that dim H? is equal to the number of independent coefficients cFi:k2:ks.n
remaining in the expression of the 2-cocycle (3.2).

3.5.1. The case where v — it — A = 3. In this case, according to Theorem the
2-cocycle (3.2]) can be expressed as

o(Xr, Xa,6,9) = cir00 V(Xr, Xa, 6,0),

where

Y(Xp, X, ¢,9) = 1(F")7(G") ¢
Therefore, by a direct computation, we can see that the 2-cocycle condition is
always satisfied. Let us study the triviality of this 2-cocycle. According to subsec-

tion we can see that any coboundary 6(B) € B%(K(1), 0sp(1]2); D u) can be
expressed as
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A direct computation confirms that the coefficients of §(T) are expressed in terms
of

2,2,0,10 2,0,1 G 2,1,0 2,0,1 F 3,0,0
B0 = p(p+3)c o1t (—1)l€Ix (()‘ + %)01,1 0T 2N01,1,0) +3(=1)F ey Y.

) ) s dy

So, for (A, ) = (0,0), (0, =3),(—2,0), clearly the coefficients ci%g:lo cannot be
eliminated by adding a coboundary because 5%;%;8”30 is zero. Hence, the cohomology
is one-dimensional.

For (A, p1) ¢ {(0,0),(0,—2),(—5,0)}, the coefficients cff:g:éo can be eliminated
by adding a coboundary since ,Bff:g”éo is nonzero. Hence, the cohomology is zero-

dimensional.

3.5.2. The case where v —pu — X = % In this case, according to Theorem the
space of solutions is spanned by

Therefore, by a direct computation, we can see that the 2-cocycle condition is
always satisfied. Let us study the triviality of this 2-cocycle. According to subsec-
tion we can see that any coboundary 6(B) € B?(K(1), 0sp(1]2); D ) can be
expressed as
§(B) =46(T).
A direct computation confirms that the coefficients of §(T) are expressed in terms
of
2,2,0,11 2,1,0 2,01 3 Fl+|G 3\ .3,1,0 3,0,1
Biiio = KCi11 — 2pcy 1,1 5(*1)‘ el (()‘ + 5)00 1,0 Jr:uco,1,0> )

5Ly

0,1
0,1

Braen' = (DA (4nch 2o + A+ 3)@18) + (-0 (2 + §)ef;

3Ly

DN (43 AT+ (et D)D)

So, in the same way as before, for (A, u) = (—%, 0) (resp., (A, ) = (0,0), (0, —g),

. 2,2,0,11 2,3,0,11 L

(—2,0)), clearly the coefficients ¢;’1")’y" (resp., ¢;’y’g)y ) cannot be eliminated by
: 2,2,0,11 2,3,0,11y .

adding a coboundary because (175" (resp., 815’0} ) is zero. Hence, the coho-

mology is one-dimensional.

5 5 3 : 2,2,0,11 2,3,0,11
For (\, ) ¢ {(71, 0),(0,-3%),(=3,0), (0, 0)}, the coefficients ¢1'7717p" and 175’07
can be eliminated by adding a coboundary since 5ff :?:(1)1 and 8770 ’87’3 are nNonzero.

0,
Hence, the cohomology is zero-dimensional.

3.5.3. The case where v — u — A = 4. In this case, according to Theorem the
space of solutions is spanned by

3,2,0,12 23,012 2211
€1,1,0,0 » €1,0,1,0 » €1,1,0,0 -

Therefore, by a direct computation, we can see that the 2-cocycle condition is
always satisfied. Let us study the triviality of this 2-cocycle. According to subsec-
tion we can see that any coboundary 6(B) € B%(K(1), 0sp(1]2); Dz 4) can be
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expressed as

§(B) =46(T).
A direct computation confirms that the coefficients of §(7") are expressed in terms
of

2,2,0,12 3,0,1 3,1,0 2,0,2
BET00” = 3(=1)FIA ((M +3)cg — A+ 3o 1) +2(=1)I9\@2p + Dethlo

2,2,0,12 2,0,2 2,2,0 3,1,0 3,0,1
b1 1,10 —C%,0,1 %01 %(‘D‘F‘ <(2/\ + 1)30,1,1 + (2p + 1)00,1,1) .

So, in the same way as before, for (A, u) (—=£,0),(=1,0) (resp., for (A, ) =

(0,—1),(0,-2)), clearly the coefficients c1 8 [1) o2 (resp., c?’%’gz(lf) cannot be elimi-
nated by addmg a coboundary because (7 3 %2 (resp., 61 1 0’12) is zero; moreover,

2,0,12 2,2,0,12 .
the coefficient C1 ‘111 can be eliminated by adding a coboundary since 77771 is

nonzero. Hence, the cohomology is one-dimensional.

1 1 2,2,0,12 2,3,0,12

For (A, u) ¢ {(_an)a (=1,0),(0,—%),(0,—-2)}, the coefficients €111 5 €010 >
2,2,0,12 . : 2,2,0,12° 52,3,0,1

and cl’l’g’o can be eliminated by adding a coboundary since 3177 ?’1 , ﬁl”g’ o »and

2,2,0,12 . . .
B1'10,0  are nonzero. Hence, the cohomology is zero-dimensional.

3.5.4. The case where v —p— A\ = %, In this case, a straightforward computation
shows that the condition of 2-cocycle is equivalent to formulae (3.10) corresponding
to osp(1]2)-invariant operators together with the equation

FI+[Gl 22113 2,2,0,13
A(=n)lFIHIGl +perion” =0

Thus, we have just proved that the coefficients of every 2-cocycle are expressed in

terms of
B20.13 2.20,
€o,1,1,1 » €1,1,0,

On the other hand, according to subsection [3.4] we can see that any coboundary
§(B) € B%(K(1),08p(1|2); D ..) can be expressed as

5(B) = 6(T).

A direct computation confirms that the coefficients of §(T) are expressed in terms
of

3,2,0,13 3,2,0 2,3,0 3,0,2
Biiio = 2(_1)‘F|+‘G|M()‘ + 1)00,0,1 +A+2)(A+ %)61,0 ot (_1)‘F|M(M + %)Co 1,0

syl

D (Ja+ DT+ 200+ DO D)
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3,2,0
- 3(_1)|F‘+|G‘(M - %)60,0,17
3,2,0,13 4,0,0 3,2,0 3,0,2
50,1,1,1 = 401,1,1 + 1( 1)‘F‘C 011 %(‘U‘FMG'C 1,
2,2,0,13 3,2,0 3,0,2 2,1,2
Bitor =9 1)|F‘+‘G‘Co 01~ 3(_1)‘F|)‘Co 1o — 3+ 1)eoh

So, in the same way as before, for (A, u) = (—2,0),(—2,0), clearly the coef-

-3,
: 3,2,0,13 - . 3,2,0,13 .
ficient ¢7"777’y" cannot be eliminated by adding a coboundary because 777" is

. 2,2,1,13  3,2,0,13 2,2,0,13 o
zero; moreover, the coefficients ¢1'7°1°, ¢y’1'1’1 > and ¢;’7’¢)1” can be eliminated by

: : 2,2,1,1 2,0,1 2,2,0,1
adding a coboundary since ,81'1’1’03, g’l’?’lg, and 61’1’8’13 are nonzero. Hence, the

cohomology is one-dimensional.

5 : 3,2,0,13  2,2,1,13  3,2,0,13
For (A, 1) ¢ {(~3.0),(~2,0)}, the coefficients €U0 Ui s Corn > and
2,2,0,13 . : : 3,2,0,13 52,2,1,13 53,2,0,13
€101 can be eliminated by adding a coboundary since 87710, 811107 Bo111 s

and ﬂffglld are nonzero. Hence, the cohomology is zero-dimensional.
This completes the proof of Theorem O

Conjecture 3.9. Forv—pu— X\ > 5, the second differential osp(1|2)-relative coho-
mology of KC(1) with coefficients in Dy, is trivial.
3.6. Extensions of [C(1). The theory of algebra extensions and their interpreta-
tion in terms of cohomology is well known; see, e.g., [9]. The second cohomology
space H?(g, V) classifies the nontrivial extensions of the Lie superalgebra g by the
module V:

00—V —gy —9g—0,
the Lie structure on gy = g @ V being given by

[(91,a), (92,0)] = ([91. 92], 91-b — g2.a + c(g1, 92)),
where c is a 2-cocycle with values in V.

We consider a natural class of “non-central” extensions of K(1), namely exten-
sions by the module ®)_,.,, of bilinear differential operators acting on weighted den-
sities. We will be interested in the projectively invariant extensions which are given
by projectively invariant 2-cocycles c¢. The cocycle ¢ in this case represents a non-
trivial cohomology class of the second cohomology space H3,(KC(1), 05p(1]2); Dx v )-
We mention that the same problem was considered in [13] [I4]. The result is quite
surprising:

Proposition 3.10. In any of these four cases:
e v—p—A=3and (A pu)=(0,0),(0,—
b4 V_,u_)‘ =3 and ()‘7#) = (Oa0)7<_%’0)7(07_4 ( g 0)7
o v—p—A=4and (A p) =(0,-2),(0,—
% and ()‘7/’6) = (_270)’ (_370)7
there exists a unique non-trivial extension of K(1) by D 0.

-3

o V—p— A=
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