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A GENERALIZATION OF THE ANNIHILATING IDEAL GRAPH
FOR MODULES

SORAYA BARZEGAR, SAEED SAFAEEYAN, AND EHSAN MOMTAHAN

Abstract. We show that an R-module M is noetherian (resp., artinian) if
and only if its annihilating submodule graph, G(M), is a non-empty graph
and it has ascending chain condition (resp., descending chain condition) on
vertices. Moreover, we show that if G(M) is a locally finite graph, then M is a
module of finite length with finitely many maximal submodules. We also de-
rive necessary and sufficient conditions for the annihilating submodule graph
of a reduced module to be bipartite (resp., complete bipartite). Finally, we
present an algorithm for deriving both Γ(Zn) and G(Zn) by Maple, simulta-
neously.

1. Introduction

Throughout this article, all rings are commutative with identity and all modules
are right unitary modules. Let M be an R-module. For each submodule N of M ,
define (N : M) = {r ∈ R | Mr ⊆ N}. The R-module M is called reduced provided
that, for each m ∈ M and a ∈ R, ma2 = 0 implies that ma = 0. The set of all
maximal submodules of M is denoted by Max(M). Let G be an undirected graph.
We say that G is connected if there is a path between any two distinct vertices.
A cycle of length n in G is a path of the form x1 − x2 − x3 · · · − xn − x1, where
xi ̸= xj when i ̸= j. A graph is complete if any two distinct vertices are adjacent.
A complete graph with n vertices is denoted by Kn. A bipartite graph G is a
graph whose vertices can be partitioned into two subsets V1 and V2 such that no
edge has both endpoints in the same subset. A complete bipartite graph G is a
bipartite graph with partitions V1 and V2 such that every possible edge that could
connect vertices in different subsets is a part of the graph. That is, for every two
vertices v1 ∈ V1 and v2 ∈ V2, v1v2 is an edge in G. A complete bipartite graph
with partitions of size |V1| = m and |V2| = n is denoted by Km,n. A K1,n graph
is often called a star graph. A graph is called locally finite whenever the degree of
any vertex is finite. A ray is a simple path (a path with no repeated vertices) that
begins at one vertex and continues from it through infinitely many vertices. Any
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unexplained terminology, and all the basic results on rings, modules and graphs
that are used in what follows can be found in [10], [7], [19], [20] and [27].

Zero-divisor graphs of commutative rings and their related graphs (such as total
graphs, annihilating ideal graphs, . . . ) have been extensively studied by many
authors in recent decades (see [3], [5], [6], [7], [8], [9], [10], [11] and [22]). In [14],
the classic zero-divisor graph has been generalized to modules over commutative
rings. According to [14], two non-zero elements m, n ∈ M are adjacent if and only
if (mR :R M)(nR :R M)M = 0, which is a direct generalization of the classic zero-
divisor graph. In [11] and [24], the authors have associated two different graphs to
an R-module M and, accordingly, the “generalized” graphs of abelian groups have
been studied in [12]. In [24], for a right R-module M , two elements x and y in M
are considered as adjacent if x∗y = 0, where by this the authors mean either x(yR :
M) = 0 or y(xR : M) = 0. Also, Z(M) = {x ∈ M | ∃y ∈ M such that x ∗ y = 0}
and Z(M)∗ = Z(M) \ {0}. The zero-divisor graph of an R-module M , denoted
by Γ(MR), is an undirected graph with Z(M)∗ as vertices, and x, y ∈ Z(M)∗ are
adjacent provided that x ∗ y = 0. The graph AG(R), the annihilating ideal graph
for a commutative ring R, has been introduced and extensively studied in [15], [16]
and [1]. In [23], based on the aforementioned definition of the zero-divisor graph for
modules, we have introduced the annihilating submodule graph for an R-module M ,
denoted by G(M), which is, in turn, a generalization of the annihilating-ideal graph.
In this paper, for an R-module M , further aspects of G(M) are studied, and those
results which have already been proved for the annihilating graph of the ring R
are generalized to the module M . We will observe that the proofs become more
transparent and new results are obtained.

This paper consists of four sections. In Section 2, we study relations between
chain conditions on modules and locally finite graphs. Section 3 is essentially
devoted to completeness. In Section 4, we examine conditions under which G(M)
is bipartite. We begin immediately with the definition of our graph.

Definition 1.1. Let M be an R-module. The set of all submodules of M is denoted
by S(M). For every two submodules N and K of M , we say that N ∗ K = 0
provided that either N(K : M) = 0 or K(N : M) = 0. The submodule N of M
is said to be annihilating if there exists a non-zero submodule K of M such that
N ∗ K = 0. The set of all annihilating submodules of M is denoted by A(M) and
A∗(M) = A(M) \ {0}. The annihilating submodule graph of M , denoted by G(M),
is an undirected graph with vertex set A∗(M) and such that N, K ∈ A∗(M) are
adjacent if N ∗ K = 0.

Remark 1.2. If I is an ideal of a ring R, it is obvious that (I : R) = I, and
this implies that G(R) is precisely the annihilating-ideal graph of the commutative
ring R, introduced in [15]. Inasmuch as [23, Lemma 2.5] has an essential role in
this paper, we state it here for the sake of completeness.
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Lemma 1.3 ([23, Lemma 2.5]). Let M be an R-module and let N, K ∈ A∗(M).
Then the following hold:

(1) If N ∗ K = 0, then, for every non-zero submodule N ′ of N and every
non-zero submodule K ′ of K, N ′ ∗ K ′ = 0.

(2) If N ∩ K = 0, then N(K : M) = K(N : M) = {0}.

In Figures 1 and 2 we illustrate both the zero-divisor graph and the annihilating
submodule graph (Γ(M) and G(M), respectively) for some cyclic abelian groups,
simultaneously. This will help readers to compare them with each other. In the
following, for each positive integer n and m ∈ Zn, the cyclic subgroup of Zn which
is generated by m is denoted by [m].

Figure 1

Figure 2
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2. Finite conditions and locally finite graphs

In this section we proceed with the study of the relations between module theo-
retic properties of an R-module M and graph theoretic properties of G(M). Conse-
quently, some main theorems in [1] and [15] are immediate outcomes of the results
of this section with much simpler proofs. To prove the next proposition, we need
the following lemma, which has been proved in [23].

Lemma 2.1 ([23, Proposition 2.6]). Let M be an R-module. Then the following
are equivalent:

(1) G(M) is an empty graph.
(2) ann(M) is a prime ideal of R and A∗(M) ̸= S(M) \ {0}.

The next proposition is a generalization of [15, Theorem 1.1].

Proposition 2.2. Let R be a ring and M an R-module such that G(M) is a non-
empty graph. Then G(M) has ascending (descending) chain condition over vertices
if and only if M is a noetherian (an artinian) R-module.

Proof. The “only if” part is obvious. Conversely, by Lemma 2.1, G(M) is a non-
empty graph if and only if either ann(M) is not a prime ideal of R or A∗(M) =
S(M) \ {0}. If A∗(M) = S(M) \ {0}, the proof is complete. Assume that ann(M)
is not a prime ideal of R. There exist a, b ∈ R such that ab ∈ ann(M) but neither
a ∈ ann(M) nor b ∈ ann(M). Therefore there exist m, n ∈ M such that both
ma ̸= 0 and nb ̸= 0. It is clear that Ma and Mb are non-zero submodules of M such
that Ma(Mb : M) = 0. Then Ma ∈ A∗(M). By hypothesis, Ma is a noetherian
(an artinian) submodule of M . On the other hand, the map f : M −→ Ma
with f(m) = ma (∀m ∈ M) is an R-epimorphism because R is a commutative
ring. Then M

ker f
∼= Ma, and hence it is a noetherian (an artinian) R-module. If

ker f = 0, then M is a noetherian (an artinian) R-module. Assume that ker f ̸= 0.
It is obvious that ker f = {x ∈ M | xa = 0}. Moreover, ker f ∈ A∗(M) because

maR(ker f : M) = m(ker f : M)a ⊆ (ker f)a = 0.

Therefore both ker f and M
ker f are noetherian (artinian). Hence M is a noetherian

(an artinian) R-module. □

We now state a lemma which plays an important role in what follows. It is
well known that in an artinian (commutative) ring, every maximal ideal is the
annihilator of an element. The next lemma is also a generalization of this result.

Lemma 2.3. Let M be an R-module of finite length. Then every maximal sub-
module of M is a vertex of G(M).

Proof. Assume that N is a maximal submodule of M . Set P = (N : M). Then
P = ann

(
M
N

)
is a maximal ideal of R. Since M is artinian, there exists a positive

integer n such that MP n = MP n+i for each i ≥ 1. Let k be the smallest integer
number with this property. First, we show that k > 0. For, on the contrary, assume
that k = 0. Therefore M = MP , and hence by the Nakayama lemma, since M is
finitely generated, there exists s ∈ R such that 1 − s ∈ P and Ms = 0. Therefore
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s ∈ ann(M) ⊆ (N : M) = P , and hence 1 ∈ P , a contradiction. Since M is a
noetherian R-module, it follows that MP k is finitely generated as an R-module.
Again by the Nakayama lemma, MP k = MP k+1 implies that there exists s ∈ R
such that 1 − s ∈ P and MP ks = 0. Set T = MP k−1s. If T = 0, then, for each
y ∈ MP k−1, we have

y = y(1 − s) ∈ MP k−1P = MP k.

Therefore MP k−1 ⊆ MP k, and hence MP k−1 = MP k, which contradicts the
minimality of k. Accordingly, T ̸= 0, and hence

T (N : M) = TP = MP k−1sP = MP ks = 0.

Hence N ∈ A∗(M). □

In the following proposition, based on the properties of G(M), we give a nec-
essary and sufficient condition under which the zero-divisor graph of a finite R-
module M is a complete graph.

Proposition 2.4. Let M be a finite R-module. The following statements are
equivalent:

(1) For some proper simple submodule N of M , A∗(M) = {N}.
(2) The graph Γ(M) is a complete graph such that, for each x, y ∈ Z∗(M),

(xR : M) = (yR : M) and x(yR : M) = y(xR : M) = (0).

Proof. (1 ⇒ 2). By Lemma 2.3, every maximal submodule of M , and hence every
proper submodule of M , is a vertex of G(M). Therefore, M has the unique non-
trivial submodule N . For each x ∈ Z∗(M), there exists z ∈ Z∗(M) such that
x∗y = (0). Therefore xR ∈ A∗(M), and hence xR = N . Inasmuch as N ∗N = (0),
then, for each x, y ∈ Z∗(M), (xR : M) = (yR : M) and x(yR : M) = y(xR : M) =
(0).

(2 ⇒ 1). Put N = Z(M). It is clear that N is a submodule. For each K ∈
A∗(M), there exists the non-zero submodule L of M such that K ∗ L = (0).
Therefore, for each non-zero element Mk ∈ K and z ∈ L, k ∗ z = (0), and hence
K ⊆ N . By Lemma 2.3, every proper submodule of M is a vertex of G(M).
Hence N is both a maximal and a simple submodule of M . This implies that
A∗(M) = {N}, as desired. □

Corollary 2.5. Let M be a finite abelian group. The following assertions are
equivalent:

(1) G(M) is a graph with one vertex.
(2) Γ(M) is a finite complete graph.
(3) There exists a prime number p such that M ∼= Zp2 .

In respect to the above Corollary, the following examples are considered.
Fact. Let R be an artinian ring. Then RR is a module of finite length and
| Max(R)| < ∞. Assume that G(R) is a locally finite graph. By Lemma 2.3, for
each M ∈ Max(R), there exists a non-zero ideal J of R such that MJ = 0. Since
for every ideal I ⊆ M , we have IJ = 0 and deg J is finite, the number of sub-ideals
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Figure 3

of M is finite. This implies that the number of ideals of R is finite. It provides a
simpler proof for [15, Theorem 1.4 (3 → 1)]. The next result concerns the situation
in which the degree of any vertex N ∈ A∗(M) is finite.

Proposition 2.6. Let M be an R-module and G(M) a locally finite graph. Then
the following two statements hold:

(1) M is a module of finite length.
(2) The number of maximal submodules of M is finite.

Proof. (1). This is proved through several steps.
(Step 1). We show that M is an artinian R-module. By Proposition 2.2, it

is sufficient to show that M satisfies the descending chain condition on A∗(M).
Assume that

M1 ⊇ M2 ⊇ · · ·
is a descending chain of elements of A∗(M). There exists a non-zero submodule N
of M such that N ∗ M1 = 0. By Lemma 1.3 (1), for every i ≥ 1, Mi ∗ N = 0. Since
deg N is finite, the number of Ni’s is finite, as desired.

(Step 2). We show that the number of simple submodules of M is finite. Since
M is artinian, it contains a simple submodule such as S. Assume that S is the set
of all simple submodules of M . For each T ∈ S, either S = T or S ∩ T = 0. Then
by Lemma 1.3 (2), |S| − 1 ≤ deg S < ∞. Then the number of simple submodules
of M is finite. Suppose

S = {S1, S2, . . . , Sn}.

(Step 3). We show that M is a noetherian R-module. Assume that
M1 ⊆ M2 ⊆ M3 ⊆ · · ·

is an ascending chain of elements of A∗(M). Set A = {Mi | i = 1, 2, . . . }. For each
positive integer i, there exists a non-zero submodule Ni such that Ni ∗ Mi = 0.
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Since M is artinian, it follows that Ni contains a simple submodule. Then by
Lemma 1.3 (1), for each i ≥ 1, Mi is adjacent to a simple submodule of M . For
each 1 ≤ j ≤ n, put Mj = {Mi ∈ A | Mi ∗ Sj = 0}. By hypothesis, deg Sj is finite
for each j, and hence |Mj | is finite. Put M = ∪n

j=1Mj . Since for every i ≥ 1,
Mi ∈ M, we conclude that A ⊆ M, and hence |A| is finite, as desired.

(2). Since M is a module of finite length, by Lemma 2.3, Max(M) ⊆ A∗(M). By
a similar argument as that of item (1), for each N ∈ Max(M) there exists 1 ≤ t ≤ n
such that St ∗ N = 0. For each 1 ≤ t ≤ n, set Bt = {K ∈ Max(M) | K ∗ St = 0}.
Since for each t, deg St is finite, we see that |Bt| is finite. On the other hand,
Max(M) ⊆ ∪n

t=1Bt, and hence | Max(M)| is finite. □

In [1, Theorem 19], the authors proved that if R is a noetherian reduced ring
such that every proper ideal of R is an annihilating ideal, then R is a semisimple
ring. Actually, this theorem is a direct consequence of the following result, which
shows that the “noetherian” condition in [1, Theorem 19] is superfluous.
Proposition 2.7. Let R be a ring and M a finitely generated reduced R-module
such that M ̸∈ A∗(M). If Max(M) ⊆ A∗(M), then M is a semisimple R-module.
Proof. Since M is finitely generated, M has a maximal submodule. Assume that N
is a maximal submodule of M . By hypothesis, there exists a non-zero submodule
K of M such that N ∗ K = 0. Put T = N ∩ K. If T ̸= 0, then by Lemma 1.3 (1),
T (T : M) = 0. Hence M(T : M)2 = 0. Since M is reduced, we conclude that
M(T : M) = 0, and hence A∗(M) = S(M) \ {0}, a contradiction. Therefore
T = 0, and hence N ⊕ K = M . Since every proper submodule of M is contained
in a maximal submodule and maximal submodules of M are direct summands, it
follows that M is a semisimple R-module. □

Corollary 2.8. Let R be a ring and M an R-module. The following two statements
hold:

(1) If R is a reduced ring such that Max(R) ⊆ A∗(R), then R is a semisimple
ring.

(2) If M is reduced and of finite length with M ̸∈ A∗(M), then M is a semisim-
ple R-module.

Proof. (1). The verification is immediate.
(2). By Lemma 2.3, Max(M) ⊆ A∗(M). Hence by Proposition 2.7, M is a

semisimple R-module. □

Remark 2.9. Let R be a noetherian ring such that Max(R) ⊆ A∗(R). We can
show that R is a semi-local ring. This is a generalization of [15, Proposition 1.7]
with a simpler proof. Since R is a noetherian ring, the ideal {0} has a minimal
primary decomposition, such as {0} = ∩n

i=1Qi where the Qi’s are Pi-primary. By
hypothesis, for each maximal ideal M of R there exists a non-zero ideal I of R such
that IM = 0 ⊆ ∩n

i=1Qi. Since I ̸= 0, there exists 1 ≤ j ≤ n such that I ̸⊆ Qj .
Then M ⊆ Pj , and hence M = Pj . This implies that

Max(R) ⊆ {P1, P2, . . . , Pn}.
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The following result is a natural generalization of [15, Theorem 1.4].

Theorem 2.10. Let M be an R-module. The following assertions are equivalent:
(1) The number of submodules of M is finite.
(2) The graph G(M) is a finite graph (i.e., |A∗(M)| < ∞).
(3) G(M) is a locally finite graph.

Proof. (1 ⇒ 2) and (1 ⇒ 3) are obvious.
(2 ⇒ 1). Assume that G(M) is finite. By Proposition 2.6, M is a module of

finite length. We proceed by induction on the length of M . If length(M) = 1, then
every maximal submodule of M is a simple submodule too. Let N be a maximal
simple submodule of M . For each proper submodule K of M , either N ∩ K = 0
or N ∩ K = N . Therefore, by Lemma 1.3 (2), either N ∗ K = 0 or N = K. Then
by Lemma 2.3, A∗(M) = S(M) \ {0}. Assume that, for every R-module N with
length(N) < n and |G(N)| < ∞, we have |S(N)| < ∞. Suppose that M is an
R-module with length(M) = n and |G(M)| < ∞. By Lemma 2.3, the number of
maximal submodules of M is finite. Assume that Max(M) = {M1, M2, . . . , Mt} is
the set of all maximal submodules of M . By Lemma 1.3 (1), for each 1 ≤ i ≤ t,
every submodule of Mi belongs to A∗(M), and hence |G(Mi)| is finite. On the
other hand, since length(Mi) = n − 1, by hypothesis, the number of submodules
of Mi is finite for each 1 ≤ i ≤ t. Since M is finitely generated, every proper
submodule of M is contained in a maximal submodule. Therefore

|S(M)| ≤
t∑

i=1
|S(Mi)| + 1,

which is finite.
(3 ⇒ 1). By Proposition 2.6, M is a module of finite length and | Max(M)| <

∞. Moreover, by Lemma 2.3, Max(M) ⊆ A∗(M). Suppose that Max(M) =
{M1, M2, . . . , Mn}. For each 1 ≤ i ≤ n, there exists a non-zero submodule Ni of
M such that Mi ∗ Ni = 0. By Lemma 1.3 (1), for each 1 ≤ i ≤ n, every submodule
of Mi is adjacent to Ni, in G(M). Since deg Ni is finite, |S(Mi)| is finite for each i.
On the other hand, since M is noetherian, any proper submodule of M is contained
in a maximal submodule. Hence

|S(M)| ≤
n∑

i=1
|S(Mi)| + 1,

as desired. □

Remark 2.11. In the above theorem, for (3 ⇒ 2), we may give a graph-theoretical
proof. We need some well-known results in graph theory. It is well known that a
locally finite graph has infinite diameter if and only if it contains a ray. On the
other hand, Konig’s lemma states that an infinite graph which is connected and
locally finite has a ray. Now inasmuch as G(M) is connected and always has finite
diameter ([23, Proposition 2.7]), if G(M) is locally finite, by Konig’s lemma, it
has a ray whenever it is infinite. Now by the above fact it must have an infinite
diameter, which is a contradiction.
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Let n be a positive integer. The graph G = ⟨V, E⟩ is called n-regular provided
that, for each x ∈ V , deg x = n. If M is an R-module such that, for some positive
integer number n, the graph G(M) is an n-regular graph, then by Lemma 2.3,
Proposition 2.6 and Theorem 2.10, M is a module of finite length, the number
of submodules of M is finite and S(M) \ {{0}, M} ⊆ A∗(M). Now we want to
investigate, when is G(M) an n-regular graph? The next theorem is a generalization
of [1, Theorem 8].

Theorem 2.12. Let n be a positive integer, R a ring and M an R-module such that
G(M) is an n-regular graph. Then G(M) is a complete graph with |A∗(M)| = n+1.

Proof. If M ∈ A∗(M), there exists a non-zero submodule K of M such that K ∗
M = 0. Since K(M : M) ̸= 0, it follows that M(K : M) = 0 or equivalently
(K : M) ⊆ ann(M). Hence for every non-zero submodule N of M , we have
N(K : M) = 0. Thus K is adjacent to any non-zero submodule of M . Since G(M)
is an n-regular graph, for each N ∈ S∗(M), deg N = deg K. Therefore any two
non-equal non-zero submodules of M are adjacent in G(M). Accordingly, G(M) is
a complete graph. Now assume that A∗(M) = S(M)\{{0}, M}. Let S be a simple
submodule of M and let A = {S1, S2, . . . , Sn} be the subset of submodules of M
which are adjacent to S in G(M). If S is the only simple submodule of M , then
by Proposition 2.6, Lemma 2.3 and Lemma 1.3 (1), any member of A∗(M) \ {S}
is adjacent to S. Therefore G(M) is a complete graph. Now suppose that the
number of simple submodules of M is greater than or equal to 1. If T is a simple
submodule of M such that S ̸= T , then S ∩ T = 0, and hence by Lemma 1.3 (2), S
and T are adjacent in G(M). This implies that T ∈ A. Without loss of generality
assume that, for some 1 ≤ t ≤ n, the set {S, S1, S2, . . . , St} is the set of all simple
submodules of M . First, we show that, for each N ∈ A∗(M) \ {S, S1, S2, . . . , Sn},
N is adjacent to S1, S2, . . . , Sn. Two cases may occur.

(Case 1). Assume that A∗(M) \ {S, S1, S2, . . . , Sn} = {N}. Since deg S =
deg N = n and S is not adjacent to N , N must be adjacent to Si for all 1 ≤ i ≤ n.

(Case 2). Assume that |A∗(M) \ {S, S1, S2, . . . , Sn}| ≥ 2. On the contrary,
suppose that {N1, N2} ⊆ A∗(M) \ {S, S1, S2, . . . , Sn} such that N1 ∗ N2 = 0. If
S ∩ N1 = 0, then by Lemma 1.3 (2), S and N1 are adjacent, a contradiction. Let
S ∩ N1 ̸= 0. Since S is a simple submodule of M , S is a submodule of N1. By
Lemma 1.3 (1), N2 is adjacent to S in G(M), again a contradiction.

Now we show that A∗(M) = {S, S1, S2, . . . , Sn}. On the contrary, assume that
N ∈ A∗(M) \ {S, S1, S2, . . . , Sn}. We know that Soc(M) = (⊕t

i=1Si) ⊕ S is a
submodule of M . Again two cases may occur.

(Case 1). If Soc(M) = M , then M is a semisimple R-module, and hence N is a
proper semisimple submodule of M . Since S and N are not adjacent, S ∩ N ̸= 0,
and hence S is a proper submodule of N . Therefore there exists 1 ≤ j ≤ t such
that S ⊕ Sj is a submodule of N . For each t + 1 ≤ r ≤ n, we know Sr is adjacent
to N , and then by Lemma 1.3 (1), Sr is adjacent to any non-zero submodule of N ;
in particular, Sr is adjacent to Sj for each t + 1 ≤ r ≤ n. On the other hand, every
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B ∈ {N, S, S1, S2, . . . , Sj−1, Sj+1, . . . , St} is adjacent to Sj . Thus
deg Sj ≥ |{N, S, S1, S2, . . . , Sj−1, Sj+1, . . . , St}| + |{St+1, . . . , Sn}|

= (t + 1) + (n − t) = n + 1,

a contradiction.
(Case 2). Assume that Soc(M) is a proper submodule of M . It is obvious that

Soc(M) ̸= Si for each 1 ≤ i ≤ t and Soc(M) ̸= S. If, for some t + 1 ≤ r ≤ n,
Soc(M) = Sr, then N is adjacent to Soc(M), and hence by Lemma 1.3 (1), N is
adjacent to any non-zero submodule of Soc(M); in particular, N is adjacent to S,
a contradiction. Hence

Soc(M) ∈ A∗(M) \ {S, S1, S2, . . . , Sn}.

Therefore, for every t + 1 ≤ l ≤ n, Sl is adjacent to Soc(M), and again by
Lemma 1.3 (1), Sl is adjacent to Si for each 1 ≤ i ≤ t. Then, for each 1 ≤ i ≤ t,

deg Si ≥ |{Soc(M), S, S1, S2, . . . , Si−1, Si+1, . . . , St}| + |{St+1, . . . , Sn}|
= (t + 1) + (n − t) = n + 1,

which is a contradiction. Therefore A∗(M) = {S, S1, S2, . . . , Sn}, and hence G(M)
is a complete graph. □

Corollary 2.13. Let M be an R-module. Then G(M) cannot be a cycle.

Proof. On the contrary, suppose that G(M) is a cycle. By Theorem 2.12, |A∗(M)| =
3. Let A∗(M) = {S1, S2, S3}. If M ∈ A∗(M), then M = Si for some 1 ≤ i ≤ 3.
Without loss of generality, suppose M = S1. By Proposition 2.6 and Lemma 2.3
every proper submodule of M is a vertex of G(M). Without loss of generality,
assume that S2 is a maximal submodule of M . Because S2 ̸= 0, M(S2 : M) = 0.
Since (S2 : M) is a maximal ideal of R, for every non-zero element m ∈ M ,
(S2 : M) = ann(m). Therefore M is a semisimple R-module. Since S2 and S3 are
the only proper submodules of M , they are simple and M = S2 ⊕ S3. By hypoth-
esis, M(S2 : M) = M(S3 : M) = 0. This implies that S2 ∼= S3. Let f : S2 −→ S3
be an isomorphism. Put

S = {s + f(s) | s ∈ S2}.

It is obvious that S is a non-zero submodule of M which contains neither S2 nor
S3, a contradiction. Hence M ̸∈ A∗(M). Three cases may occur.

(Case 1). If, for each distinct i, j ∈ {1, 2, 3}, Si ̸⊆ Sj , then the Si’s are simple
submodules of M . Therefore Si(Sj : M) = 0, and hence M(Sj : M) = 0. This is a
contradiction.

(Case 2). If, for some i ̸= j, Si and Sj are maximal submodules of M , by
hypothesis, either Si(Sj : M) = 0 or Sj(Si : M) = 0. Then either Si or Sj are
semisimple but not simple because St = Si ∩ Sj for t ∈ {1, 2, 3} \ {i, j}. This is a
contradiction.

(Case 3). Assume that, only for one i ∈ {1, 2, 3}, Si is a maximal submodule
of M . Without loss of generality, assume that i = 3. Then S1 and S2 are simple
submodules of M which are contained in S3. Since M(S1 : M) ̸= 0, there exists
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a ∈ (S1 : M) such that Ma ̸= 0. Define the map g : M −→ S1 with g(m) = ma. It
is clear that g is an R-epimorphism. Since M

ker g
∼= S1 and S1 is a simple module,

ker g is a maximal submodule of M , and hence ker g = S3. This implies that
M
S3

∼= S1. With a similar argument we can show that M
S3

∼= S2. Therefore S1 ∼= S2.
Let f ∈ HomR(S1, S2) be an isomorphism. Put S = {s + f(s) | s ∈ S1}. It is clear
that S is a non-zero submodule of M which contains neither S1 nor S2. This is a
contradiction. □

3. Completeness and related topics

The main goal of the present section is the study of those modules whose anni-
hilating submodule graphs contain a vertex which is adjacent to all other vertices.
This study will naturally lead to investigating complete and star graphs. To prove
our results, we will need the following lemma, which is a generalization of an im-
portant fact in ring theory. A well-known lemma due to Richard Brauer states that
every minimal ideal of a ring is either nilpotent or a direct summand. The next
lemma is a generalization of Brauer’s lemma to modules over commutative rings.

Lemma 3.1. Let M be an R-module and S a simple submodule of M . Then either
S ∗ S = 0 or S is a direct summand of M .

Proof. Suppose that S ∗ S ̸= 0. Then S(S : M) ̸= 0, and hence there exists a
non-zero element a ∈ S such that a(S : M) ̸= 0. Since S is simple, we conclude
that a(S : M) = S. Therefore there exists b ∈ (S : M) such that ab = a. Put

N = {x ∈ S | xb = 0}.

Since R is a commutative ring, N is a submodule of M which is contained in S.
Since a ∈ S \ N , it follows that N = 0. Define ϕ : M −→ S, with ϕ(m) = mb, for
each m ∈ M . Since ϕ(a) = a ̸= 0, ϕ is an epimorphism, and hence M

ker ϕ
∼= S, where

ker ϕ = {m ∈ M | mb = 0} = annM (b).

Since S is a simple R-module, we conclude that annM (b) is a maximal submodule
of M . On the other hand, S ∩annM (b) = N = 0. Therefore M = S ⊕annM (b). □

It is obvious that finite commutative domains are fields. A simple generalization
of this fact is that artinian domains are fields. This can also be generalized as: every
domain with a minimal ideal is a field. The next result is a generalization of these
observations to modules.

Proposition 3.2. Let R be a ring and M an R-module such that G(M) = ∅.
(1) If R is an artinian ring, then M is a simple R-module.
(2) If M contains a simple submodule, then M is a simple R-module.

Proof. (1). By [23, Proposition 2.5], ann(M) is a prime ideal of R. Since R
is an artinian ring, we conclude that ann(M) is a maximal ideal. Thus M is a
semisimple R-module. There exists a family {Si}i∈I of simple submodules M such
that M = ⊕i∈ISi. If i and j are two distinct elements of I, then Si and Sj are two
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distinct elements of A∗(M) which are adjacent in G(M). This is a contradiction.
Therefore |I| = 1, and hence M is a simple R-module.

(2). Assume that S is a simple submodule of M . We show that S = M . On
the contrary, assume that S ̸= M . By Lemma 3.1, either S ∗ S = 0 or S is a direct
summand of M . This implies that S ∈ A∗(M), which is a contradiction. □

Notation. Let M be an R-module. For each m ∈ M , put

N(m) = {n ∈ M | m ∗ n = 0}.

Theorem 3.3. Let M be an R-module. There exists a submodule N ∈ A∗(M)
which is adjacent to any other vertices of G(M) if and only if one of the following
conditions holds:

(1) There exist a simple submodule S and a submodule K of M such that
M = S ⊕ K, S ∩ A = {0} for each A ∈ A∗(M) \ {S}, and Γ(K) = ∅.

(2) There exists a non-zero element m ∈ M such that Z(M) = N(m).

Proof. Suppose N ∈ A∗(M) is adjacent to any other vertices of G(M) and, for each
m ∈ M , Z(M) ̸= N(m). Assume that 0 ̸= n ∈ N . Since, for each m ∈ Z∗(M)\{n},
we have mR ∈ A∗(M), it follows that N ∗ mR = 0, and hence by Lemma 1.3 (1),
nR ∗ mR = 0. This implies that m ∈ N(n), and hence Z(M) \ {n} ⊆ N(n).
Then by hypothesis, n ∗ n ̸= 0. If xR is a proper submodule of nR, then xR is
adjacent to any other vertices of G(M). On the other hand, Lemma 1.3 (1) and
xR∗nR = 0 imply that xR∗xR = 0, and hence x∗x = 0. Therefore Z(M) = N(x),
a contradiction. This shows that x = 0. Then S = nR is a simple submodule of
M such that S ∗ S ̸= 0. Moreover, if A ∈ A∗(M) \ {S} and S ∩ A ̸= {0}, then
S ⊆ A, and hence S ∗ A = 0 implies that S ∗ S = 0, which is a contradiction. By
Lemma 3.1, there exists a submodule K of M such that M = S ⊕K. Now we show
that Γ(K) = ∅. On the contrary, assume that there exists an element k ∈ Z∗(K).
Then there exists a non-zero element y ∈ K such that either k(yR : K) = 0 or
y(kR : K) = 0. Without loss of generality, assume that k(yR : K) = 0. Then

(S ⊕kR)(yR : M) = S(yR : M)⊕(kR)(yR : M) ⊆ (S ∩yR)+(kR)(yR : K) = {0},

and therefore S ⊕ kR ∈ A∗(M). By hypothesis, S ∗ (S ⊕ kR) = 0. Two cases may
hold:

(Case 1). Let S(S ⊕ kR : M). Since (S : M) ⊆ (S ⊕ kR : M), we conclude that
S(S : M) ⊆ S(S ⊕ kR : M) = 0. Hence S ∗ S = 0, a contradiction.

(Case 2). Let (S ⊕ kR)(S : M) = 0. Then

0 = (S ⊕ kR)(S : M) = S(S : M) ⊕ kR(S : M) = S(S : M).

Then S ∗ S = 0, a contradiction. This implies that S ⊕ kR is a vertex of G(M)
which is not adjacent to S. This is a contradiction. If y(kR : M) = 0, then by
a similar argument we can show that S ⊕ yR is a vertex of G(M) which is not
adjacent to S. Therefore Γ(K) = ∅. □

Rev. Un. Mat. Argentina, Vol. 65, No. 1 (2023)



GENERALIZATION OF THE ANNIHILATING IDEAL GRAPH FOR MODULES 59

Corollary 3.4. Let M be an R-module. There exists a submodule N ∈ A∗(M)
which is adjacent to any other vertices of G(M) if and only if either M = S ⊕ K,
where S is a simple submodule of M , S ∩ A = {0} for each A ∈ A∗(M) \ {S} and
K is a submodule of M such that G(K) = ∅ or A(M) = N(A) for some non-zero
submodule A of M .

Lemma 3.5. Let R be an artinian local ring and M a finitely generated R-module.
Then S(M)\{0, M} ⊆ A∗(M) and there exists a submodule of M which is adjacent
to any other vertices of G(M).

Proof. Let P be the unique maximal ideal of R. Since R is a noetherian ring,
by [20, Corollary 3.58], Ass(M) ̸= ∅. Therefore Ass(M) = {P} because prime
ideals of R are maximal ideals. By [20, Lemma 3.56], P = ann(m) for some non-
zero element m ∈ M . On the other hand, for each maximal submodule N of M ,
(N : M) is a maximal ideal of R, and hence P = (N : M). Therefore, for each
maximal submodule N of M , we have mR(N : M) = mRP = 0. Since M is
a finitely generated R-module, every proper submodule of M is contained in a
maximal submodule. Therefore by Lemma 1.3 (1), mR is adjacent to any proper
submodule of M . □

Lemma 3.6. Let M be an R-module such that M = S1 ⊕ S2, where S1 and S2
are two non-isomorphic simple submodules of M . Then S(M) = {{0}, S1, S2, M}.
Moreover, G(M) is an edge between S1 and S2.

Proof. Assume that S is a non-trivial submodule of M . By [7, Lemma 9.2], either
M = S ⊕ S1 or M = S ⊕ S2. Hence S is a simple submodule of M such that
either S ∼= S1 or S ∼= S2. Assume that S ∼= S1. We show that S = S1. If S ̸= S1,
then S ⊕ S1 = M . Hence S ∼= M/S1 ∼= S2, which implies that S1 ∼= S2. This is a
contradiction. □

Theorem 3.7. Let R be an artinian ring and M a finitely generated faithful R-
module such that M ̸∈ A∗(M). The following are equivalent:

(1) There exists an annihilating submodule which is adjacent to any other ver-
tices of G(M).

(2) One of the following conditions hold: a- M = S1 ⊕ S2, where S1 and S2
are two simple submodules of M . b- R is a local ring.

Proof. (2 ⇒ 1). Assume that M = S1 ⊕ S2, where S1 and S2 are two simple
submodules of M . If S1 ∼= S2, then by [23, Corollary 2.11)], G(M) is a complete
graph. If S1 ̸∼= S2, then by Lemma 3.6, G(M) is an edge.

If R is a local ring, then by Lemma 3.5, the proof is complete.
(1 ⇒ 2). By Theorem 3.3, either there exist a simple submodule S and a

submodule K of M such that M = S ⊕ K, S ∩ A = {0} for each A ∈ A∗(M) \ {S},
and Γ(K) = ∅ or there exists a non-zero element m ∈ M such that Z(M) = N(m).
If M = S ⊕ K, where Γ(K) = ∅, then by Lemma 3.2, K is a simple R-module,
as desired. Now, assume that Z(M) = N(m) for some m ∈ M . Since R is an
artinian ring, M is a module of finite length, and hence any non-zero submodule
of M contains a simple submodule. Therefore without loss of generality, assume
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that S = mR is a simple submodule of M . We show that R is a local ring through
several steps.

(Step 1). We show that, for each maximal submodule N of M , S(N : M) = 0.
Since M is a module of finite length, by Lemma 2.3, N ∈ A∗(M), and hence
S ∗ N = 0. Therefore M(S : M)(N : M) = 0. Since M is faithful, we conclude
that (S : M)(N : M) = 0. Since R is a noetherian ring and (N : M) is a maximal
ideal, (S : M) is a non-zero finitely generated semisimple ideal of R such that
(N : M) = ann((S : M)). Therefore (S : M) = T1 ⊕ T2 ⊕ · · · ⊕ Tk, where Ti’s
are minimal ideals of R with ann(Ti) = (N : M). Therefore MT1 is a non-zero
submodule of S, and hence MT1 = S. Hence S(N : M) = MT1(N : M) = 0. This
implies that, for each maximal submodule N of M , (N : M) = ann(S).

(Step 2). We show that Max(R) = {(N : M) | N ∈ Max(M)} = {ann(S)}, and
hence R is a local ring. Let I be a maximal ideal of R. If MI = M , then by the
Nakayama lemma, there exists an element x ∈ R such that 1−x ∈ M and Mx = 0.
Since M is faithful, it follows that x = 0, and hence 1 ∈ I. This is a contradiction.
Therefore MI is a proper submodule of M and I = ann(M/MI). Hence M/MI is
a finitely generated semisimple R-module. Thus

M

MI
= T1

MI
⊕ T2

MI
⊕ · · · ⊕ Tk

MI
,

where Ti/MI’s are simple submodules of M/MI with ann(Ti/MI) = I. Put A =
T1 + T2 + · · · + Tk−1. It is clear that M/A ∼= Tn/MI. Therefore A is a maximal
submodule of M and

(A : M) = ann
(

M

A

)
= ann

(
Tn

MI

)
= I,

as desired. □

4. Bipartite graphs

When one looks for conditions under which G(M) is a bipartite graph, one
finds that reduced modules are, as our main result shows, one of the best kind of
modules which give us profound results in this regard. An R-module M is called
atomic provided that any two non-zero cyclic submodules are isomorphic. Two
submodules N and K of an R-module M are orthogonal, written as N⊥K, in
case that they don’t have isomorphic submodules. A module M has finite type
dimension n, denoted by t.dim M = n, if M contains an essential direct sum of n
pairwise orthogonal atomic submodules of M . In the main result of this section,
Theorem 4.2, the reader can observe that when the type dimension of M is 2, G(M)
is bipartite and vice versa. An example is given to show that this result is no longer
true when we replace 2 by other natural numbers. The reader is referred to [17]
and [25] for undefined terms and concepts on type theory of modules. Regarding
reduced modules, Lemma 1.3 finds a more thorough form. In what follows, we will
frequently use this lemma:
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Lemma 4.1. Let M be a reduced R-module such that M ̸∈ A∗(M), and let N and
K be two submodules. The following are equivalent:

(1) N⊥K.
(2) N ∩ K = {0}.
(3) N(K : M) = K(N : M) = {0}.

Proof. (1 ⇒ 2 ⇒ 3). It is clear that, if N⊥K, then N ∩ K = {0}, and hence by
Lemma 1.3 (2), N(K : M) = K(N : M) = {0}.

(3 ⇒ 1). On the contrary, assume that N ∗ K = 0 and N ′ and K ′ are non-zero
isomorphic submodules of N and K, respectively. There exists an isomorphism
f : N ′ −→ K ′. Without loss of generality, suppose that K(N : M) = 0. By
Lemma 1.3 (1), K ′(N ′ : M) = 0. Thus

0 = K ′(N ′ : M) = f(N ′)(N ′ : M) = f(N ′(N ′ : M)).
Since f is a monomorphism, N ′(N ′ : M) = 0 and hence M(N ′ : M)2 = 0.
Therefore M(N ′ : M) = 0 because M is a reduced R-module. This implies that
M ∈ A∗(M), which is a contradiction. □

In the following we characterize reduced modules for which their annihilating
graphs are bipartite.

Theorem 4.2. Let M be a reduced R-module such that M ̸∈ A∗(M). The following
statements are equivalent:

(1) G(M) is a bipartite graph.
(2) G(M) is a complete bipartite graph.
(3) There exist prime submodules N and K of M such that N ∩ K = 0 and

(N : M) ∩ (K : M) = ann(M).
Furthermore, if M is a semi-artinian module, the above conditions are equivalent
to

(4) t.dim M = 2.

Proof. (1 ⇒ 2). There exist the non-empty subsets V1 and V2 of A∗(M) such
that V1 ∩ V2 = ∅, A∗(M) = V1 ∪ V2 and no element of Vi is adjacent to another
element of Vi for i = 1, 2. On the contrary, assume that A ∈ V1 and B ∈ V2 such
that A(B : M) ̸= 0. There exist C ∈ V2 and D ∈ V1 such that A(C : M) = 0
and B(D : M) = 0. Therefore A(B : M)(C : M) = 0. Since A(B : M) is
a non-zero submodule of B, by Lemma 1.3 (1), A(B : M)(D : M) = 0. Since
D ∈ V1, we conclude that A(B : M) ∈ V2. If A(B : M) ̸= C, then two elements
of V2 are adjacent, which is a contradiction. Therefore A(B : M) = C, and hence
C(C : M) = 0. This implies that M(C : M)2 = 0, and hence M(C : M) = 0 (M
is a reduced module). Thus M ∈ A∗(M), a contradiction.

(2 ⇒ 3). There exist the non-empty subsets V1 and V2 of A∗(M) such that
V1 ∩ V2 = ∅, A∗(M) = V1 ∪ V2 and no element of Vi is adjacent to another element
of Vi for i = 1, 2. Set

N =
∑

A∈V1

A and K =
∑

B∈V2

B.
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We show that N and K are two prime submodules of M . For, assume that rx ∈ N
for some r ∈ R and x ∈ M . We show that either x ∈ N or r ∈ (N : M). There exist
submodules A1, A2, . . . , An contained in V1 such that rx ∈ A1 + A2 + · · · + An. Set
A = A1 +A2 + · · ·+An. For each B ∈ V2 and 1 ≤ i ≤ n, Ai(B : M) = 0, and hence
A(B : M) = 0. This implies that A ∈ V1. So for each B ∈ V2, rx(B : M) = 0. Fix
B ∈ V2. Therefore rx(B : M) = 0 implies that

Br(B : M)(xR : M) = B(xR : M)r(B : M) ⊆ xRr(B : M) = xr(B : M) = 0.

Two cases may occur.
(Case 1). Assume that Br(B : M) = 0. We show that r ∈ (N : M). If

Br(B : M) = 0, then
Mr(B : M)2 = M(B : M)r(B : M) ⊆ Br(B : M) = 0.

Since M is a reduced R-module and Mr(B : M)2 = 0, we have Mr(B : M) = 0.
If Mr = 0, then r ∈ (N : M). If Mr ̸= 0, then Mr is a vertex of G(M) which is
adjacent to B ∈ V2. Therefore Mr ∈ V1, and hence Mr ⊆ N . This implies that
r ∈ (N : m).

(Case 2). Assume that Br(B : M) ̸= 0. We show that x ∈ N . Inasmuch as
Br(B : M)(xR : M) = 0 and Br(B : M) ̸= 0, then xR is a vertex of G(M).
Since A is adjacent to B, by Lemma 1.3 (1), A is adjacent to Br(B : M). Then
Br(B : M) ∈ V2, and hence xR ∈ V1. This implies that x ∈ N . With the same
method we can show that K is a prime submodule.

Now we show that N ∩ K = 0. On the contrary, assume that 0 ̸= y ∈ N ∩ K.
There exist submodules C ∈ V1 and D ∈ V2 such that y ∈ C∩D. By Lemma 1.3 (1),
yR(yR : M) = 0. Thus M(yR : M)2 = 0, and hence M(yR : M) = 0 (M
is a reduced module). This implies that M ∈ A∗(M), a contradiction. Hence
N ∩ K = 0. It is clear that ann(M) ⊆ (N : M) ∩ (K : M). Assume that
s ∈ (N : M) ∩ (K : M). Then Ms ⊆ N ∩ K = 0. So the equality holds.

(3 ⇒ 1). Assume that N and K are two submodules of M which satisfy the
second condition. Let V1 be the set of all non-zero submodules of M which are
contained in N and V2 the set of all non-zero submodules of M which are contained
in K. For each A ∈ V1 and B ∈ V2, we have A∩B ⊆ N ∩K = 0. By Lemma 1.3 (2),
A and B are vertices of G(M) which are adjacent too. Hence V1 ∪ V2 ⊆ A∗(M).
Now assume that A ∈ A∗(M). There exists a non-zero submodule B of M such
that A(B : M) = 0. Since A(B : M) ⊆ N and N is a prime submodule, either
A ⊆ N or (B : M) ⊆ (N : M). With the same argument we can show that either
A ⊆ K or (B : M) ⊆ (K : M). If A ⊆ N or A ⊆ K, then A ∈ V1 ∪ V2, as desired.
Otherwise, (B : M) ⊆ (N : M) ∩ (K : M) = ann(M). Thus M(B : M) = 0, and
hence M ∈ A∗(M), a contradiction. Hence A∗(M) = V1 ∪ V2. If C ∈ V1 ∩ V2, then
C ⊆ N ∩ K = 0, a contradiction. So V1 ∩ V2 = ∅.

If A1 and A2 are two elements of V1 that are adjacent in G(M), then A1(A2 :
M) = 0 ⊆ K. Since K is a prime submodule, either A1 ⊆ K or (A2 : M) ⊆
(K : M). Inasmuch as A1 ̸⊆ K, then (A2 : M) ⊆ (K : M). Since A2 ⊆ N ,
(A2 : M) ⊆ (N : M). Hence (A2 : M) ⊆ (N : M) ∩ (K : M) = ann(M). Therefore
M(A2 : M) = 0. This is a contradiction because M ̸∈ A∗(M). With a similar
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method we can show that no two elements of V2 are adjacent. Hence G(M) is a
complete bipartite graph. Now, suppose that M is a semi-artinian module.

(1 ⇔ 4). By Lemma 4.1 and [25, Theorem 4.6], the verification is immediate. □

Remark 4.3. Let M = Z16 as a Z-module. It is clear that M is not reduced. One
may also observe that the type dimension of M is 1 (it is atomic) but G(M) is a
star graph with 3 vertices.

5. An algorithm for generating the annihilating graph and the
zero-divisor graph of cyclic finite abelian groups, simultaneously

In [18], J. Krone gave an algorithm which illustrates the zero-divisor graphs of
finite commutative rings. This algorithm is recursive in nature and constructs the
graph for a given ring from subgraphs which themselves are zero-divisor graphs of
rings of smaller orders. She put forward algorithms to derive zero-divisor graphs of
rings of integers modulo n, i.e., Zn, and (finite) products of Zn’s, and furthermore,
En (all even integers with the usual addition and multiplication mod n). Here
we present a new algorithm for deriving both zero-divisor graphs and annihilating
graphs of finite abelian groups Zn by Maple, simultaneously. Here too, as the
aforementioned case, our algorithm is recursive.

> with(GraphTheory); with(numtheory);
> CreateGraph := proc (n :: integer)
local A, B, L, H, G, k, i, j, VerNum;
VerNum := 0;
G := Graph();
for i from 1 to n − 1 do

for j from 1 to n − 1 do
if (i.j mod n = 0) and not (evalb(i in Vertices(G))) then

VerNum := VerNum + 1;
G := AddVertex(G, i);

end if ;
end do;

end do;
for i from 1 to n − 1 do

for j from i to n − 1 do
if (i.j mod n = 0) and evalb(i in Vertices(G)) and
evalb(j in Vertices(G)) and not (i = j) then

G := AddEdge(G, {i, j});
end if ;

end do;
end do;
A := DrawGraph(G);
H := Graph();
L := divisors(n);
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for i from 2 to nops(L) − 1 do
H := AddVertex(H, cat(“[”, L[i], “]”));

end do;
for i from 2 to nops(L) − 1 do

for j from 2 to nops(L) − 1 do
if (L[i].L[j] mod n) = 0 and not (i = j) then

H := AddEdge(H, {cat(“[”, L[i], “]”), cat(“[”, L[j], “]”)});
end if ;

end do;
end do;
B := DrawGraph(H);
plots[display](Array([A, B]));
end proc;
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