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SHARP BOUNDS FOR FRACTIONAL TYPE OPERATORS
WITH L**-HORMANDER CONDITIONS

GONZALO H. IBANEZ-FIRNKORN, MARIA SILVINA RIVEROS, AND RAUL E. VIDAL

ABSTRACT. We provide the sharp bound for a fractional type operator given
by a kernel satisfying the L®*-Hoérmander condition and certain fractional
size condition, 0 < a < n and 1 < s < co. In order to prove this result we use
a new appropriate sparse domination. Examples of these operators include the
fractional rough operators. For the case s = oo we recover the sharp bound
of the fractional integral, I, proved by Lacey et al. [J. Functional Anal. 259
(2010), no. 5, 1073-1097].

1. INTRODUCTION AND MAIN RESULTS

Let 0 < a < n. The fractional integral operator I, on R™ is defined by

Iaf(x) = /]R M dy.

w |z —ynme
This operator is bounded from LP(dz) into L?(dx) provided that 1 < p < % and
% = % — 2 (see [29] for this result).

In the study of weighted estimates for the fractional integral operator, the class
of weights considered is the A, , introduced by Muckenhoupt and Wheeden [23].
Recall that w is a weight if it is a non-negative locally integrable function. Given
1 < p < g < oo, the weight w is in the class A, 4 if

— L q i —p’>q/p/
= (1 L) Gt o) <o

Ifwe qu, then w? € A4y, with [w 4/ = [w]a,,, and w? e Aty /g
with [w™P ]1+p 17 = W]y / ‘i where A, denotes the classical Muckenhoupt class of
weights. Observe that w € A, , is equivalent to wp € Ap. The class Ay = Up>14,,
and the statement w € A o is equivalent to w™ e Al.

There have been several works devoted to the study of quantitative weighted esti-

mates; in other words, papers where the authors study how these estimates depend
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on the weight constant [w]a, or [w]a, . The estimate for the Hardy-Littlewood
maximal function was studied by Buckley [4] and for the maximal fractional opera-
tor by Pradolini and Salinas [27]. Buckley’s result attracted renewed attention as a
result of the work of Astala, Iwaniec and Saksman [2] on the theory of quasiregular
mappings. They proved sharp regularity results for solutions to the Beltrami equa-
tion, assuming that the operator norm of the Beurling—Ahlfors transform grows
linearly in terms of the A, constant for p > 2. This linear growth was proved by
Petermichl and Volberg [26]. This result opened up the possibility of considering
some other operators. Petermichl [24] [25] proved the corresponding results for the
Hilbert transform and the Riesz transforms. The Ay theorem, namely the linear
dependence on the Ay constant for Calderén—Zygmund integral operators, proved
by Hytonen [12], can be considered the most representative in this line. In the
case of the fractional integral operator, the sharp dependence of the A, , constants
was obtained by Lacey, Moen, Pérez and Torres [I6]. The precise statement is the
following.

Theorem 1.1 ([I6]). Let0<a<n, 1 <p< 2 and % =-—% Ifwe A, then

1
P

(1—2)max 1,%/
o Flzagon < enalols 2™ 5 o,

and the estimate is sharp in the sense that the inequality does not hold if we replace
the exponent of the Ap 4 constant by a smaller one.

p,q

The Calder6n—Zygmund integral operators can be generalized by taking other
regularity conditions of the kernel, for example the L" -Hérmander condition. This
integral operators are controlled in the LP-norm sense by the maximal operator M,.,
defined by L"-average. For more details see, for example, [21} 22]. The operator I,
can be generalized in an analogous way by adding an assumption of boundedness,
as in [15], or adding some fractional size condition, as in [3].

Now we give the definitions of the fractional size and Hérmander conditions.
First we introduce some notation. We set

1 . 1/s
|f||s,B(|B|/B|f|) ,

where B is a ball. Observe that in these averages the balls B can be replaced by
cubes @. The notation |z| ~ ¢t means t < |z| < 2¢, and we write

HfHS,Ir\Nt = HfX|m\~t||S,B(O,2t)-
Let 0 <@ <nand 1< s < oo. The function g is said to satisfy the fractional
size condition S, s if there exists a constant C' > 0 such that

||g||s,\w|~t < ot

We say that g € S, o if g satisfies the previous condition with || - || e |~¢ in place
of || [s,j¢|~e- For s =1, we write Sq,s = Sa. Observe that if g € S, then there
exists a constant ¢ > 0 such that

/ lg(z)] dx < ct®.
|z|~t
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The function h satisfies the L**-Hormander condition (h € H, ;) if there exist
¢s > 1 and Cs > 0 such that, for all x and R > ¢|z],

o

5" @ B h(- ~ 2) — hO)lyzmn < Cu

m=1
We say that h € H, o if h satisfies the previous condition with || - ||pe |gj~om g D
place of || - ||s,|z|~2mr- For a =0, we write Ho , = H,, the classical L°-Hérmander

condition.

In this paper we consider the following fractional operator. Let 0 < a < n,
1 <r < oo, and let 7’ be the conjugated exponent of r. Let K, be a measurable
function defined away from 0, such that K, € Sy, N Hy . For any f € L (dx),
we consider the operator

T.f(z) = / Kalz —y)f () dy. (1.1)

Observe that we do not assume that the operator is bounded.
If Ko(x) = ||, then T,, = I, (the fractional integral operator) and K, €
Sa,00 N Hy oo

Remark 1.2. Let 1 <r < p < n/a and % = %—%. If f € L (dz) and w” € Az 4,

then T, f € L9(w?). This remark is a particular case of Lemma 5.1 in [I4].

Remark 1.3. This type of operators also appears in several works, for example [3]
g, [11].

Remark 1.4. It can be considered that T, is not of convolution type. In this case,
we need the corresponding Hormander and size condition in both variables. In this
paper, we only consider the convolution type operator, and the general case follows
in an analogous way, with the obvious changes.

An interesting example of a kernel is the following. Let us consider L = —A+V
the Schrodinger operator on R™, n > 3, where V satisfies a reverse Holder condition
RH,, with § < g <n, and let K be the kernel associated to the Riesz transform
L~Y2Y. Tt can be proved that K € Sp,» N H,s for some 1 < r' < 00, see details
in [5 10, 20]. We define K, (z,y) = | — y|*K (x, y); then by [3} Proposition 4.1],
K, € Saﬂal N H(x,v"/-

For 0 < a<n,1<r<ooand f € L. _(dz), the maximal operator M, , is
defined by

M, f(x) = sup [B*/™|| fl.5,
B3x

where the supremum is taken over all the balls B containing x.

A more general case of this type of operator has been studied by Kurtz [15].
The author defines the following class of kernel, K(r,«). Let 0 < a < n and
- <r <oo. Wesay h € K(r,a) if the following conditions are met:

(1) There is a non-decreasing function S on (0,1) such that

(6t = 2) = D enlle <5 ({5 ) BEF, Lol < 5
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(2) The convolution operator T, Tf = h * f, is bounded from L™ into L9,

where L = 1 — &,
q n

(3) Finally,

o0

ZS(Qij) < 0

Theorem 1.5 ([15]). Let 0 < a<n and 1 <r < n/a. Let K, € K(r',a) and
suppose Ty, is bounded from L"(dz) into L(dx) for % =1_ 9 Then there exists

a constant C' > 0 such that, for f € L] (dx),

M¥(Tof)(x) < CMa, f(2),
where M* is the classical sharp mazimal function.
Theorem 1.6 ([I5]). Let 0 < o < n and 1 < r < n/a. Let K, € K(r',a) and
suppose Ty, is bounded from L*(dz) into Li(dx) for all (s,q) with % =1-
n/(n—a)<s<r. Ifr<p<n/a, 7 :%—% and w" € Az a, then there exists
a constant Cy, > 0, independent of f but depending on w, such that

ITafllLaqwe) < Cwll fllewr)- (1.2)
Remark 1.7. It is easy to see that if K, € K(+',«), then K, € H, ,» and the
operator T, f = K, * f is bounded from L"(dz) into L4(dx) for % =1l_2a

More recently, in [3] the authors proved a version of Theorem without as-

suming that the operator is bounded.

Theorem 1.8 ([3]). Let 0 < a <n and 1 <r < co. Let T, be defined as in (1.1

and let Ko € So, N Hy . Then there exists C > 0 such that, for f € L,
M¥(Tof)(w) < CMa,f(2),

where M* is the classical sharp mazimal function.

Remark 1.9. This result is stated i ina different way in [3]. The authors consider

the operator Mg(Taf) M(|T, f|° )5, where 0 < § < 1. For the case 0 < a < n,

we observe that the proof holds with no changes for § = 1, so we can write M !
instead of Mg.

From this result and the good-)\ technique, we get the following proposition.

Proposition 1.10. Let 0 < a <n and 1 <r < n/a. Let T be defined as in (1.1))
and let Ko € So,» N Hy . Then there exists a constant Cy, > 0, depending on w,
such that, for f € L°(dx)

sup N (o € R 5 [(Taf)(@)] > A} < Cu [T
A>0

The idea of the proof is the same as the one given in [28, Theorem 3.6], so we
omit it.

From this result we know that if w" € Az a, then T, is bounded from LP(w?)
into L9(w?), and the dependence of the w constant was known only in the case
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T, = I, Theorem [I.]] The main result in this paper is the dependence of the
constant [w"]4, , in the inequality (1.2)) for a class of operators given by a kernel

T

K, less regular than the one on I,. These kernels satisfy a L _Hoérmander
condition. The result is the following:

Theorem 1.11. Let 0 < a < n and let T,, be defined as in (L.1). Let 1 <r <p <
nj/a, 1/qg=1/p—a/n. Suppose Ko € Sop N He . If w" € Ap a, then

. max{lfﬁ,@{;)/(lf%)}
|1 TafllLaqwn) < enlw']a, I £l Lo wr)-

T

This estimate is sharp in the following sense:

Proposition 1.12. Let 0 < a <n, 1 <r<p<n/a and 1/¢=1/p— a/n. Let
Ko € So NHy poand let Ty, be defined as in (1.1)). If there exists an increasing
function ® : [1,00) — (0,00) such that

1Tl 2y S @ (104, o )
for allw” € Ap a, then

(1) > prox{1- 50 (1-38) |
Remark 1.13. In the case of the fractional integral operator I, r’ = co, we obtain
the same sharp bound as in [16].

Remark 1.14. For the singular integral operator with kernel k € H,» (o = 0),
Li [20] gave the sparse domination. Following the same proof of Proposition m
in Section 5, one can obtain the sharpness in this case.

The paper continues as follows: in the next section we present some particular
operators as applications of these results. In Section 3 we give the sparse domina-
tion for T,,. In Section 4 we obtain the LP(wP)-L?(w?) boundedness of the sparse
operator with the dependence of the [w"]4, , constant. Finally, in Section 5 we

give some examples to prove that the depencieﬁcy of the constant given in Section 4
is optimal.

Throughout this paper, ¢ and C' will denote positive constants, not the same at
each occurrence.

2. APPLICATIONS

In this section, we give more examples of our results.

e Fractional rough operator:
Let Q be a function defined on S™~!. We consider its extension to
R™ \ {0}, which is defined as Q(z) = Q(z/|z|). Thus Q is a homogeneous
function of degree 0. For 1 < s < 0o, the L*-modulus of continuity of ) is
defined as

@s(t) = sup |- +y) = Q()[s,5m1-

lyl<t
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Let 0 < a <n,r’ > =" and Q € L' (S"!) such that fo Wy ()% < 0.
Let
wa:mww>
|x|n [eY
and T, f(z) = Ko * f(x). It is proved in [3] that K, € Hy ,» NSy . Since
r’ > B its conjugate exponent r < n/a. Thus applying the main result,
Theorem we obtain that, for 1 <r <p<n/aand 1/g=1/p—a/n,

max{l—g (p/T) }
1T fllLaqua) < enlw']a, 4 £l 2o wr)

e Other kernels:
Let0<a<1,6>0,1<T<p<1/aand%:%—a. For r’ the
conjugated exponent of r, let us consider

1 1/r’
k(t) = (tlog(e/t)“fﬁ) X(0,1)(%)-
As shown in [14, 22], k € H,» N Sp,,». Now, let
Ko (t) = |t + 4|“k(|t + 4]);

by [3, Proposition 4.1], Ko € Hy, N Sqv. Finally, let T, f = K, * f.
Applying the main result, Theorem [1.11] we obtain, for 1 <r < p < 1/«
and 1/g=1/p — «,

max 1—@,(1’/” (1—ar)
Iy < cnlu T T

For more details of the sharpness, see Subsection 5.2.

3. SPARSE DOMINATION FOR T,

In this section we present a sparse domination result for the operator T,. Let
us recall some well-known results.
A kernel K is said to belong to Hpjp; if

K(2)| < 2K

= 2l

and
|z — /| 1
Kxz—-y)— K —vy Sw(

for |z — y| > 2|z — 2’|. The function w : [0,1] — [0,00) is continuous, increasing,
submultiplicative with w(0) = 0 and satisfies the Dini condition

1
/ w(t)ﬂ < 00.
0 t

HpnmiCHo CH. CH; CHy, 1<s<r<oo.

Observe that
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In the case that T' is a Calderén—-Zygmund operator with K € Hpyy;, the sparse
domination was proved in [I7]; for its commutators, in [I9]; and for the vector-
valued case, in [6]. The sparse domination for K € H, was considered in [20]
and, for K satisfying a Young type Hormander condition, it was considered in [I3].
Finally, for the case of I,,, the sparse domination was studied in [I]. It is possible to
obtain a pointwise sparse domination that covers the general fractional operators
that we are considering.

To state our result of sparse domination, we recall some definitions.

Given a cube @ € R™, we denote by D(Q) the family of all dyadic cubes with
respect to @, that is, the cube obtained subdividing repeatedly ) and each of its
descendants into 2" subcubes of the same side lengths.

Given a dyadic family D we say that a family . C D is an n-sparse family, with
0 <n <1, if, for every @ € ., there exists a measurable set Eg C @ such that
n|Q| < |Eg| and the family {Eg}ge.s are pairwise disjoint.

Theorem 3.1. Let 0 < a < n, 1 < r < oo, and let T, be defined as in (L.1).
Suppose Ko € So v N Hy . For any f € L2 (R™), there exist 3" sparse families
such that, for a.e. x € R™,

3" 3"
Taf@I<ed” Y 1R If Inaxal@) = ¢Y_ AR 4, f(2).
j=1

i=1Qe;
The grand maximal truncated operator Mr, is defined by

Mr, f(x) = sup esssup |To(fxrm\30)(€)],
Qs £€Q

where the supremum is taken over all the cubes @ C R" containing x. For the proof
of the preceding theorem we need to show that Mr, maps L"(dx) into Ln=em(dx).
Also we need the following definitions:

e For a cube Q9 C R"™, a local version of My, is defined as follows:

Mr, q,f(x) = sup esssup|Ta(fx3Q,\30)(E)l-
T€QCQo  £€Q

o Let K, € So N Hy oo We define

Tof(x) = / Koz — )|/ (4) dy.

Observe that if K, € So, N Hg 4, then |K,| € So,v N Hy o and Proposi-
tion holds for T,.

Lemma 3.2. Let0<a<n,1<r<oo, Ky € So, NHy o and let Qo C R™ be
a cube. Let T, be defined as in (L.1) and f € L°(R™). Then,

(1) for a.e. x € Qo,
|T04(fX3Qo)(x)| < MTa»Qof(x);
(2) forallz e R",

Mr, (f)(@) S Mo f(x) + Ta(lf]) ().
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From the last estimate and Propasition it follows that Mr, is bounded from
L"(dz) into L7am>(dx).

Proof. (1) Let Q(z, s) be a cube centered at = with side length s such that Q(z, s) C
Qo; then

ITa(fx3Q0)(®)] < |Ta(fX3Q(z,s))($)| + |Ta(fX3Qo\3Q(m,s))(m)"

For the first term, let us consider B(x, R) with R = 34/ns; then 3Q(x, s) C B(z, R).
As K, € Sq,, we have

|T0£(fX3Q(z,s))(-T)|
<[ K-y
B(z,R)
> |B(z,2"™R
- Z 97)‘ XB(z,2-mR\B(z,2-m—1R) [ Ka( — y)|| f(y)| dy
m=0| ( )‘ B(z,2—™R)

p%g

|B($, 2_mR)‘ HKOé||r/,|z\~2—m—1RHf”T,B(x,Q—mR)

m=0
< CMT( l‘) Z (2—mR)n(2—mR)a—n
m=0
= eM(f) ()R D (277) = My (f) () R
m=0

Then,
T (fx3Q0) (@)| < ens® M, f(z) + Mr, o f ().

Observe that by hypothesis M, f < oo; then, letting s — 0, we obtain the desired
estimate.

(2) Let z € R™ and let @ be a cube containing x. Let B, be a ball with radius
R such that 3Q) C B,. For every £ € @), we have

ITo (fXxrm\3Q)(E)] < |Ta(fXxrn\B,)(E) — Ta(fXrm\B, ) (2)]
+ |Ta(fxB\3Q) (O] + | Ta(f xR\ B, ) (2)]
ST (fxrnB,)(§) — Ta(fXrn\ B, ) (7)]
+[Ta(fxB.0\3) ()] + Tu(lf)(@).
For the first term, as K, € H, ,/, we get

|Ta(fXRn\BI)(f) - Ta(fXR“'\BI)<x)|
< / Ka(€ — y) = Ka(z— )|/ ()| dy

3 200 K€ — 3) — Kalz — )|I£()] dy

—1 ‘Qme| 2m+1Bm\2mBz
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8

< @RI (€ =) = Kale = lhrsynannlflramo,

M8 Il

CMR)" K€ =) = Ka(z =)l jy~2m pMa.r f(2)

c_arf()

For the second term, observe that there exists [ € N such that B(z,27'R) C 3Q;
then, as K, € S, 7, we obtain

ITa(fx5.030) ()] < / alr = )5 dy

-1
<

. [Ka(e = )17 dy
B(z,2-mR)\B(z,2-™—1R)

m=

< Z |B 2 mR |||K Hr !a|~2mm— 1RHf||’l"B z,2-™R)

-1
<ed @RMETR) T I p@e R

m=0

< CMa,rf(x)'
Finally, we get
| To(fxrm\3Q) ()] S Mo f(2) + Tal|f1) (). O

The following lemma is the so-called 3™ dyadic lattices trick. This result was
established in [I8] and affirms the following:

Lemma 3.3 ([I8]). Given a dyadic family D there exist 3" dyadic families D; such
that
3n
(3Q: Qe D} =D,
j=1
and, for every cube Q € D, we can find a cube Rg in each D; such that Q C Rg
and 3lg = lg,-

Proof of Theorem[3.1, We claim that, for any cube Qo € R™, there exists a %—sparse
family F C D(Qy) such that, for a.e. z € Q,

1T (fxseo) @) S Y BRI fllrsexa(®)- (3.1)

Qe

Suppose that we have already proved the claim . Let us take a partition of R™
by cubes @Q; such that supp(f) C 3Q; for each j. We can do it as follows. We start
with a cube Qg such that supp(f) C Qo and cover 3Qo \ Qo by 3" — 1 congruent
cubes Q;, with each of them satisfying Qo C 3Q;. We do the same for 9Qq \ 3Qo
and so on. The union of all those cubes will satisfy the desired properties.
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We apply the claim (3.1)) to each cube @;. Then we have that since supp(f) C
3Q; the following estimate holds for a.e. x € Q;:

T f (2)IxQ, (@) = |Ta(fxse,) @] S Y 13RI fr3ex0(@),
QET;
where each F; C D(Q;) is a 3-sparse family. Taking F = U; ;. we have that F
is a %—sparse family and, for a.e. x € R",

Taf (@) S BRI fllrsexe(@).

QEF

From Lemma [3.3] it follows that there exist 3" dyadic families such that, for
every cube @ of R", there is a cube Ry € D; for some j for which 3Q) C Ry and
|Ro| < 3™3Q)|. Setting

Zj={Rq e Dj: Q€ F},
and since F is 3-sparse, we obtain that for each family .%; is 54=-sparse. Then we
have that

4n
Taf@) S > QI Iflrexe(®)-

=1 Qe
Proof of claim (3.1)). To prove the claim it suffices to show the following recursive

estimate: there exists a countable family {P;}; of pairwise disjoint cubes in D(Qo)
such that 3, P; < 11Qol and

ITa (fx300) (@) X0 (%) < €3Q0] ™™ | flIr.300Xq0 (%) + Z Ta(fx3p;) (@) |xP; (2)

(3.2)
for a.e. z € Q. Iterating this estimate we obtain (3.1) with F being the union
of all the families {P}'} where {P}} = {Qo}, {P}} = {P;} and the {P}'} are the

cubes obtained at the k-th stage of the iterative process. It is also clear that F is

a %-sparse family. Indeed, for each PJ, it suffices to choose

2
Epr = PP\ PP
J

Let us prove the recursive estimate (3.2). Observe that, for any family {P;} C
D(Qo) of disjoint cubes, we have
ITa(fX3Q0) ()X q0 ()

< |Ta(fX3Qo)(z)|XQo\Uij (93) + Z |Ta(fX3QO)(:C)|XPj (‘T)
< Ta(fX00) (@) X@o\0, P, (8) + 3 [Ta(fXs@0\37,) (@) P, (2)

J

£ Y ITalf ) @), ()
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for a.e. € R™. So it suffices to show that we can choose a countable family {P;};
of pairwise disjoint cubes in D(Qq) such that Zj P; < %|Q0| and, for a.e. z € Qy,
we have

T (£x300) (@) [XQo\U, 7, () + D 1 Ta(fX300\3P,) (@) [XP, ()
J
5 |3Q0|a/n|‘f”r,3QoXQo (Ji) (33)

Now we define the following set:

E={z€Qo: Mz, q,f(x) > Bacl3Q0|*™|| fllr30, }-

By Lemma [3.2) we can choose 3, such that |E| < 5:1=|Qol-
We apply the Calderon—Zygmund decomposition to the function xg on Qg at
height A = 5:4—. Then, there exists a family {P;} C D(Qo) of pairwise disjoint

cubes such that
{.’I?EQ()ZXE( 2n+1} UP

From this it follows that |E \ U;P;| =0,

1
2B <27 B < 51Qol,
J

and
1 |P;NEl 1

< Tl

2t = Pl T2
from which we obtain |P; N E°¢| > 0.
Since P;NE° # (), we have Mz, o, (f)(2) < Bnc|3Qo|*/"|| |30, for some z € P;

and this implies that

ess sup ITa(FX300\3P,) ()] < Bucl3Qol*™ | fIlr300
€r;

which allows us to control the second term in (3.3).
By (1) in Lemma for a.e. x € @y, we have

|T06(fX3Q0)(x)|XQo\Uij ((,C) < MTa,Qof(x)XQo\Uij ('T>

Since |E \ U;Pj| = 0 and by the definition of E, we obtain, for a.e. z € Qo \ U; P;

Mz, o (£)(@) < Bnc|3Qo| ™™ || fllr.30,-
Then, for a.e. z € Qo \ U; P}, we get

1Ta(fx3Q0)(7)] < Bnc‘3Q0|a/an”r,3Q0'
Thus we obtain the estimate in (3.3]). O
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4. SHARP BOUNDS FOR NORM INEQUALITY

Since the sparse domination is a pointwise estimate, it suffices to prove Theo-
rem and Proposition for the sparse operator A7 ;, for any sparse family ..

Theorem 4.1. Let 0 < a < n, 1 <r <p<nfaand l/qg =1/p—a/n. If
w" € Agﬁg, then

o o max 17%,@/7‘)/ (17%)
AT 5 fll Lawey < enlw] 4 { ’ }||f\|LP(wP)-

p/rq/T

This estimate is sharp in the following sense:
If there exists an increasing function ® : [1,00) — (0,00) such that

)

||Ag,.9’||LP(wP)~>LQ(wq) 5 P ([w’“]A

sks
she

for allw” € Az a, then
() > e {1-a e (1)}

Remark 4.2. The first approximation of this type for the fractional integral op-
erator, using the sparse technique, appears in [7]. In this paper the author does
not prove the sharpness of the constant. In the case r = 1, the appropriate sparse
operator for the fractional integral operator I,, we obtain the same sharp bound
as in [I]. If & = 0, we get the same sharp bound as in [I7].

We consider the following sparse operator defined in [9], for . a sparse family,
O<s<oocand 0< B <1:

3 () = Z(mﬁégamm

Qe

1/s

Theorem 4.3 ([9]). Let 1 <r <p<qg<oo, and 0 < B < 1. Let us consider the
weights u, 0 € As. The sparse operator Afy(ﬂ) maps LP (o) — Li(u) if and only
if the two-weight Ag,q-chamctem'stic

[ 01ag () = ooy Q1 u(@) 0 (Q)'”

1s finite, and in this case,

1
P

1

142 5 (llzoo) 11t :
< IO < (ol { + [l

oo

[w, 0148 ()

Proof of Theorem[J-1} Let o =w~®/"'". Observe that

1/r

() = (A0 )

Rev. Un. Mat. Argentina, Vol. 63, No. 2 (2022)



FRACTIONAL TYPE OPERATORS WITH L*s5-HORMANDER CONDITIONS 437

Then,
@ r _ || gt—a/nger o 1 a/ng pr _—
145, W any = [ A28y = A5 70000

5 [wq7U]A1 (’/” R4 [ ]A/CZ, +[wq]A:f ||fTO—71HLT’/T(U)'
()

r r

Lq/r(wq)

Now observe that

[wq,a]A1 a/n(zy S [wr];/pq/m/r
and :
1 e~ zorrioy = 1 2o ury:
Since
Parsiporesa =W w0y = 0
we have

145 laony S 0T (1015 + 2 ) " U aon

r 1/r
1 r) (r ra
<4, (W80 w0, Wl
ml/atmax{(p/r)'r/q* L}
<[w'us " f e wr)

p/rq/T

< [w ]max{(l—*)@/” /a,1— Ot/"}”f”Lp (wP)>

p/rq/m

where the last inequality holds since (1 + (p/r)'r/q) = (1 — 2Z)(p/r)" and 1/q +
1/p=1-—a/n. O
5. EXAMPLES

5.1. Sparse operator A} .. In this subsection, we prove the sharpness of Theo-

rem E.T1

Proof. Let A= A ., be the sparse operator. Let 0 <& < 1. If

we(z) = |z and flz) = |$|%XB(0,1)7

then

[Wllay 4 ~ e and || fwe||pe ~ e VP,

Let {Q} be the cube of center 0 and length 27% and observe that B(0,1) C Qo.
This family {Q} is a %-sparse family with Eq, = Q \ Qk+1-
Now, if x € Eg, , k € N, then we have that

1/r 9—ke 1/r
Af(2) > |Qule/m 1 ( /Q |y|f-") > (2-knya/n-1/r ()
k

3
z 5—1/r|$|a—n/r+€/r.
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Therefore,

/ Afiwd > Afiwd
k

=1 EQk
n—e
Zg—q/r/ |x|Q(a*n/r+€/r)+q7r(p/,,,)/ de
B(0,3)

~ €7q/7‘71

since ¢(a/n —1/r+¢/r) + e eq/p —n. Then

€

1 1 _ _ 9
e T YT VYYD A L) pawt) S q)<5 T(pw)'

. q
Now, taking t = e r®/»’ we obtain

(1) > 1/ 1/a0—ar/m).

Let 0<e< 1. If

and f(z) = |‘r|¥XB(O,1)a
then

~g and | fwell e < e /P,

Since 1/r+1/¢=1/r—a/n+1/p>1/p,

/ frur = / | TP / | |PEQ/r+1/0)=n(1/r+1/0)
B(0,1) B(0,1)

< / | [PEQ/rH1/a)—n/p) o 1,
B(0,1)

Now, if x € Qo,

1/r 1 1/r
Af(a) > |Qo|*/n10" ( /Q |y|€"> > () e e,
0

3

Since B(0,1) C Qo, we get

Jarmezee [ apraszen
B(0,1)

then,
c—1-1/q < HAfHLq(wg) < ‘I)(E_l)||f”LP(w§) < @(5—1)5—1/9.

Now, if we take t = ™!, then

tm/n < B(t).
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5.2. An operator T,. In this subsection, we give an example of an operator to
prove the sharpness of the Proposition [[.12}

Proof omeposztwn 1.9. Let 0 < a < 1, 8 > max{0,q/r — 1}, 1 <r <p < 1/a,

E 1 —aand —i— = 1. Let us con51der

1 1/r'

k(t) = (tl()g,(e/t)W) X(0,1)(1)-

As shown in [14, 22], we know that k € H,» N .S,.. Now, let
Ko (t) = |t +4["k(|t +4]);

by [3l Proposition 4.1], Ko € Hy N Sq,. Let us consider T, f = K * f.
Observe that there exists 0 < ¢y < 1 such that k is decreasing in (0, o).

Let 0 <e< 1. fw(zx)= |9:|Té"7:>’ and f(z) = "X (=5,—3)(x), then

[wila, o =~ e and || fwellpe < eV
’V‘ T

and |y| < 1, then |z| < 2 and supp(T'f) C [-2,2].

Observe that if |2 — y| <
| <1,and 0 < |y| < |z|/2; then 1|z| < |z —y| < 2|z| and

Let x € supp(T'f), |z —y
[z —y|* 2 fx|™
For |z| < 2t < 2, since k is decreasing in (0, to), we have

1+8

, 1 7
w0 [ e (o) s

o (3 .
2lolk (Glel) [ Wit
ly|<|z]/2
S ese (3
e | +rk(2|x|>.

Then, using that log(t) < % fore >0 and t > 1, we get

q —e
[1rs@le) de 2 e /| . a2k (F1ol) ol (77 o
z|<5to
q
:E*Q/ k(ip) 2| 7|25 da
|z|<2to

|£L'|€ 7%(1+ﬁ) a a q
|z|<Zto €

>5—q—1/ oA (F B 1 gy
~ 2] < 2 to

1dy

The last inequality holds since 8 > max{0,¢/r’ — 1}.
If r > 2,
1 1
1 t—q(3-5) <0
roor r
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Then
[irr@ps@ e z et [ e
R |z|<Zto
>€—q—l/ |m‘s(%(1+5)+%)—1 dx
|| <Zto
> 7072 > g7l
Ifr <2,
1 1
11,11
ror roor
Then
[Irs@im@dez et [ jafpe s g
R |2|<2to
4% te(L(1+8)+21)
> E—q—l tO

4 _ 49 a9 q
: r,+a(r,(1+ﬂ)+p)

Then, for 1 < r < oo, we obtain
[ rr@lwse)ds 2 0.
R

Therefore,
”TfHL‘l(wg) Z 5_1_1/(1'

Then,
e T M1 eI ST o)ty S Bl T

and
®(t) > tw/n)1/all-ar)

Let 0 <e < 1. If we(z) = |x\% and f(z) = |z + 4]¥/""1x(_s5,_3), then

U and | fwellee SV,

In an analogous way we obtain, for 0 < |z| < 2to, Tf(z) 2 e z|*"7k (2|2]) and
Tl paquey 2 et

Hence

tme/n < B(t). O
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