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BINOMIAL EDGE IDEALS OF COGRAPHS

THOMAS KAHLE AND JONAS KRÜSEMANN

Abstract. We determine the Castelnuovo–Mumford regularity of binomial
edge ideals of complement-reducible graphs (cographs). For cographs with
n vertices the maximum regularity grows as 2n/3. We also bound the regular-
ity by graph-theoretic invariants and construct a family of counterexamples
to a conjecture of Hibi and Matsuda.

1. Introduction

Let G = ([n], E) be a simple undirected graph on the vertex set [n] = {1, . . . , n}.
Let X = ( x1 ··· xn

y1 ··· yn ) be a generic 2 × n matrix and let S = k[ x1 ··· xn
y1 ··· yn ] be the ring

of polynomials whose indeterminates are the entries of X and with coefficients in
a field k. The binomial edge ideal of G is JG = ⟨xiyj − yixj : {i, j} ∈ E⟩ ⊆ S,
the ideal of 2 × 2 minors indexed by the edges of the graph. Since their inception
in [5, 14], connecting combinatorial properties of G with algebraic properties of
JG or S/ JG has been a popular activity. Particular attention has been paid to
the minimal free resolution of S/ JG as a standard N-graded S-module [3, 11].
The data of a minimal free resolution is encoded in its graded Betti numbers
βi,j(S/ JG) = dimk Tori(S/ JG,k)j . An interesting invariant is the highest degree
appearing in the resolution, the Castelnuovo–Mumford regularity reg(S/ JG) =
max{j − i : βij(S/ JG) ̸= 0}. It is a complexity measure, as low regularity implies
favorable properties like vanishing of local cohomology. Binomial edge ideals have
square-free initial ideals by [5, Theorem 2.1] and, using [1], this implies that the
extremal Betti numbers and regularity can also be derived from those initial ideals.
In this paper we rely on recursive constructions of graphs rather than Gröbner
deformations.

At the time of writing it is unknown if the regularity of S/ JG depends on the
characteristic char(k) of the coefficient field. Indication that it is indeed inde-
pendent comes, for example, from a purely combinatorial description of the linear
strand of the determinantal facet ideals in [6]. Here we use only combinatorial
constructions that are independent of char(k), based on small graphs for which the
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minimal free resolutions are independent of k. Our starting point are the following
bounds due to Matsuda and Murai [13], which are valid independently of char(k).

Theorem 1.1. Let ℓ be the maximum length of an induced path in a graph G.
Then

ℓ ≤ reg(S/ JG) ≤ n − 1.

Our aim is to investigate families of graphs for which the lower bound is con-
stant. We study the family of graphs with no induced path of length 3. These
are the complement-reducible graphs (cographs). They have been characterized in
[2, Theorem 2] as graphs such that for every connected induced subgraph with at
least two vertices, the complement of that subgraph is disconnected. Cographs
are hereditary in the sense that every induced subgraph of a cograph is a cograph
[2, Lemma 1]. The graphs G for which reg(S/ JG) ≤ 2 are all cographs by the
(char(k)-independent) characterization in [16, Theorem 3.2].

One can quickly find that, among (connected) cographs, arbitrarily high reg-
ularity is possible (Proposition 2.2), but when the regularity is considered as a
function of the number of vertices of the cograph, there is a stricter upper bound
than that in Theorem 1.1. Our Theorem 2.7 shows that for cographs the regularity
is essentially bounded by 2n/3. The experimental results and also the proof meth-
ods leading to the 2n/3 bound lead us to study regularity bounds in terms of other
graph invariants. Theorem 2.12 bounds reg(S/ JG) by the independence number
α(G) and the number of maximal independent sets s(G). This stands in the context
of a general upper bound of reg(S/ JG) by the number of maximal cliques c(G),
shown by Malayeri, Madani and Kiani [15]. Interestingly, for cographs the men-
tioned invariants are computable in linear time, while in general they are hard to
compute.

The investigations for this paper started with a large experiment in which we
tabulated properties of binomial edge ideals and the corresponding graphs for many
small graphs. To this end we developed a database of algebraic properties of S/ JG

and the necessary tools to extend the database. Our source code is available at
https://github.com/kruesemann/graph ideals.

In the course of this work we found a counterexample to a conjecture of Hibi and
Matsuda. We present this in Section 3, which also concerns graphs other than
cographs.

Notation. All graphs in this paper are simple and undirected, meaning that they
have only undirected edges with no loops and no multiple edges between two fixed
vertices. We often consider binomial edge ideals JG and JH of graphs on different
vertex sets V (G) ̸= V (H). In this case we can consider both ideals in a bigger
ring with variables corresponding to V (G) ∪ V (H). Embedding the ideals in a ring
with extra variables has no effect on the invariants under consideration and we still
write JG and JH independently of the ambient ring. By the regularity of G we
mean reg(S/ JG). The complement G of a graph G is a graph on the same vertex
set, but with the edge set E(G) = {(i, j) : i ̸= j, (i, j) /∈ E(G)}. The path of length
ℓ − 1 has ℓ vertices and is denoted by Pℓ.
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2. Regularity for cographs

Our first aim is to show that reg(S/ JG) can take arbitrarily large values, even if
G is restricted to connected cographs and the lower bound of Theorem 1.1 does not
apply. If one allows disconnected graphs, this follows from the simple observation
that regularity is additive under the disjoint union G ⊔ H of two graphs:

reg(S/ JG⊔H) = reg(S/ JG) + reg(S/ JH).
As noted in [3, proof of Theorem 2.2], this follows from the fact that JG and JH

use disjoint sets of variables. In particular, this is true independently of k. To see
that arbitrary regularity is possible for connected cographs, we employ the join of
two simple undirected graphs G and H, which is

G ∗ H = (V (G) ⊔ V (H), E(G) ∪ E(H) ∪ {{v, w} : v ∈ V (G), w ∈ V (H)}).
Here and in the following, V (G) and E(G) denote, respectively, the vertex set and
the edge set of an undirected simple graph G. The join also behaves nicely with
regularity as shown by Kiani and Madani [16, Theorem 2.1].

Theorem 2.1. Let G and H be simple, undirected graphs and not both complete.
Then, independently of char(k),

reg(S/ JG∗H) = max{reg(S/ JG), reg(S/ JH), 2}.

The join of two cographs is a cograph as the path P4 of length 3 is not a join
itself. It follows that the regularity can be made arbitrarily high by forming cones,
that is, joins with single vertex graphs.

Proposition 2.2. For any r ≥ 1 there is a connected cograph with reg(S/ JG) = r.
If r is even, then there is such a graph with 3

2 r + 1 vertices. If r is odd, then there
is such a graph with 3

2 (r + 3) vertices.

Proof. For r = 1 a single edge suffices. If r = 2a is even, let G be a disjoint union of
a copies of P3. If 3 ≤ r = 2a+1 is odd, then let G be a disjoint union of a copies of
P3 and a single edge P2. In both cases, reg(S/ JG) = r. Let cone(G) be the join of G
with a single vertex graph. Theorem 2.1 implies that reg(S/ Jcone(G)) = reg(S/ JG)
and thus cone(G) is a connected cograph with regularity r. □

With the lower bound settled, we aim for a stricter upper bound on the regularity
of cographs. For this we employ the original definition of complement-reducible
graphs: they are constructed recursively by taking complements and disjoint unions
of cographs, starting from the single-vertex graph. As a result, there is an unusual
one-to-one relationship between connected and disconnected cographs of the same
order.

Lemma 2.3. Let G be a cograph with at least two vertices. Then G is connected
if and only if G is disconnected.

Proof. Let G be disconnected and v, w ∈ V (G). If v and w are in different con-
nected components of G, then {v, w} ∈ E(G), so there is a path from v to w
in G. If v and w are in the same connected component of G, then there exists
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another vertex u ∈ V (G) in a different connected component of G. In particular,
{v, u}, {w, u} /∈ E(G) and so {v, u}, {w, u} ∈ E(G), so (v, u, w) is a path from v to
w in G. Thus G is connected.

The other implication follows from this stronger result [2, Theorem 2]: Every
induced subgraph of a cograph with more than one vertex has disconnected com-
plement. □

In Lemma 2.3, the implication “G disconnected ⇒ G connected” holds for any
graph, not just cographs. In the same generality, the join of graphs can be expressed
using complement and disjoint union.

Lemma 2.4. Let G1 and G2 be simple undirected graphs. Then G1∗G2 = G1 ⊔ G2.
Proof. Let V denote the common vertex set of both graphs. Let e = {v, w}, where
v, w ∈ V are arbitrary vertices. If e ⊈ V (Gi) for i ∈ {1, 2}, then e is an edge in
both G1 ⊔ G2 and G1 ∗ G2. If e ⊆ V (Gi) for one i ∈ {1, 2}, then e ∈ E(G1 ⊔ G2) if
and only if e is an edge in Gi, which is the case if and only if e ∈ E(G1 ∗ G2). □

Lemma 2.5. A connected cograph G is the join of induced subgraphs G1, . . . , Gm,
which are exactly the complements of the connected components of G.
Proof. By Lemma 2.3, G is disconnected. Let G1, . . . , Gm be the connected com-
ponents of G, and G1, . . . , Gm their complements. The Gi are induced subgraphs
of G since their edge sets arise from that of G by complementing twice. Then, by
Lemma 2.4, G = G1 ⊔ · · · ⊔ Gm = G1∗· · ·∗Gm, as both ⊔ and ∗ are associative. □

Using Lemma 2.5, we can assume that any connected cograph G is written as
a join of the complements of the connected components of its complement. Since
any induced subgraph of a cograph is a cograph, the Gi in the lemma are cographs
too and by Lemma 2.3 they are disconnected or have only one vertex.
Proposition 2.6. Let G be a connected cograph that is not complete. Then

reg(S/ JG) = max({2} ∪ {reg(S/ JGi) : i ∈ [m]}),
where G = G1 ∗ · · · ∗ Gm as in Lemma 2.5 and the Gi are cographs each of which
is either disconnected or a single vertex.
Proof. Since G is not complete, the Gi cannot all be complete, so the equation
follows from Lemma 2.5 and Theorem 2.1. □

We now have all the ingredients for a recursive computation of reg(S/ JG) for
any cograph G. In the disconnected case, add the regularities of all connected
components. In the connected case, compute the maximum regularity of the com-
plements Gi of the connected components Gi of G. We use this to bound the
maximum regularity.
Theorem 2.7. Let G be a cograph on 3k −a vertices, with k ∈ N and a ∈ {0, 1, 2}.
Then

reg(S/ JG) ≤ 2k − a.

If G is connected, k > 1, and a ∈ {0, 1}, then reg(S/ JG) ≤ 2k − a − 1.
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Proof. The proof is by induction over k. The cographs with at most three vertices
are K1, K2 = P1, K2, K3, K3, P2 and P2. Then reg(S/ JG) ≤ 2−a = reg(S/ JP3−a

).
Now let k > 1. By Proposition 2.6, if G is connected, it either has regularity 2

or there is a smaller, disconnected cograph with the same regularity. So it can
be assumed that G is disconnected. Let H be a connected component of G with
3kH − aH vertices and let H ′ = G \ H have 3kH′ − aH′ vertices, where kH , kH′ ∈ N
and aH , aH′ ∈ {0, 1, 2}. Then both H and H ′ have fewer vertices than G and

kH + kH′ =
{

k if aH + aH′ = a,

k + 1 if aH + aH′ = a + 3.

By induction, reg(S/ JH) ≤ 2kH − aH and reg(S/ JH′) ≤ 2kH′ − aH′ , and
reg(S/ JG) ≤ 2kH − aH + 2kH′ − aH′

=
{

2k − a if aH + aH′ = a,

2k − a − 1 if aH + aH′ = a + 3
≤ 2k − a.

If G is connected and k > 1, the regularity is either 2 or at most that of a discon-
nected cograph with fewer vertices. So if G has 3k − a vertices, with a ∈ {0, 1},
then reg(S/ JG) ≤ 2k−a−1. If G has 3k−2 vertices, then reg(S/ JG) ≤ 2(k−1) =
2k − 2. □

The following example shows that the bounds for disconnected cographs in The-
orem 2.7 can be realized.
Example 2.8. Let n = 3k − a ∈ N be a positive integer with a ∈ {0, 1, 2}. If
a = 0, let Gn be a disjoint union of k copies of P3. If a = 1, then let Gn be a
disjoint union of k − 1 copies of P3 and one of P2. If k = 2, let Gn be a disjoint
union of two copies of P2 and k − 2 copies of P3. Since Pn has regularity n − 1 and
regularity is additive under disjoint union, Gn has regularity 2k − a.

To make connected examples, use the cone construction from Proposition 2.2.
Even more, in two of three cases the graphs from Example 2.8 are the only cographs
of maximum regularity, as the following theorem shows.
Theorem 2.9. Let G be a cograph with 3k−a vertices, where k ∈ N and a ∈ {0, 1}.
Then reg(S/ JG) = 2k − a if and only if G is a disjoint union of P3 and at most
one P2.
Proof. With Example 2.8 in place, just the only-if direction remains. Let G be
a cograph. By Theorem 2.7, there is nothing to prove if G is connected, so we
assume it is disconnected. We first show that any connected component has at
most three vertices. To this end, let H be a connected component of G with
3kH − aH vertices, kH > 1, and aH ∈ {0, 1, 2}. Let H ′ = G \ H have 3kH′ − aH′

vertices with aH′ ∈ {0, 1, 2}. Then

kH + kH′ =
{

k if aH + aH′ = a,

k + 1 if aH + aH′ = a + 3.
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If aH ̸= 2, then, by Theorem 2.7,
reg(S/ JG) ≤ 2kH − aH − 1 + 2kH′ − aH′

=
{

2k − a − 1 if aH + aH′ = a,

2k − a − 2 if aH + aH′ = a + 3
< 2k − a.

If otherwise aH = 2, then since a ∈ {0, 1}, G must have another connected compo-
nent H ′ with 3kH′ − aH′ vertices and aH′ ∈ {1, 2}. Let H ′′ = G \ (H ⊔ H ′) with
3kH′′ − aH′′ vertices, where kH′′ ∈ N0 and aH′′ ∈ {0, 1, 2}. Then

kH + kH′ + kH′′ =
{

k + 1 if aH + aH′ + aH′′ = a + 3,

k + 2 if aH + aH′ + aH′′ = a + 6.

Therefore, Theorem 2.7 implies
reg(S/ JG) ≤ 2kH − aH + 2kH′ − aH′ + 2kH′′ − aH′′

=
{

2k − a − 1 if aH + aH′ + aH′′ = a + 3,

2k − a − 2 if aH + aH′ + aH′′ = a + 6
< 2k − a.

We have thus shown that if G has a connected component with more than three
vertices, it cannot have maximum regularity. Since the only cographs of maximum
regularity with three and two vertices are, respectively, P3 and P2, it follows that
if G has maximum regularity, then it is a disjoint union of 2-paths P3, single edges
P2 and isolated vertices. We now analyze these cases separately for two possible
values of a.

Suppose first that a = 0. If G has a connected component H with one or
two vertices, that is 3 − aH vertices and aH ∈ {1, 2}, then G must have another
connected component H ′ with 3 − aH′ vertices, where aH′ ∈ {1, 2}. With a similar
computation as above, we find that reg(S/ JG) < 2k. Therefore, if G has 3k vertices
and maximal regularity, each connected component must have exactly three vertices
and be equal to P3.

Finally, consider the case a = 1. If G has an isolated vertex, then G must
have another connected component with fewer than three vertices. Then G cannot
have maximal regularity as isolated vertices contribute no regularity, and a disjoint
union of an edge and a vertex has regularity 1. If there are two isolated edges,
then the subgraph on these four vertices contributes regularity only 2 and thus G
cannot have maximal regularity. □

Remark 2.10. Graphs with 3k − 2 vertices and maximal regularity, which would
constitute the a = 2 case in Theorem 2.9, do not have a simple characterization.
For example, the class contains cones over disjoint unions of 2-paths as well as
other types of joins and disjoint unions of joins, paths, and isolated vertices.

The following corollary partially characterizes connected maximizers of regular-
ity.
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Corollary 2.11. Let G be a connected cograph with maximum regularity among
connected cographs on 3k−a vertices with k > 1 and a ∈ {0, 2}, that is, reg(S/ JG) =
2k − 1 for a = 0 and reg(S/ JG) = 2k − 2 for a = 2. Then G is a cone.

Proof. Let G be a connected cograph with 3k−a vertices and maximum regularity,
where k > 1 and a ∈ {0, 2}. By Lemma 2.5, G = G1 ∗ · · · ∗ Gm, where the Gi are
disconnected or single vertices. Proposition 2.6 shows that if G is not a cone, that
is, neither of the Gi is a single vertex, then reg(S/ JG) = reg(S/ JG′) for some G′

which has at least two vertices fewer than G. So assume G′ has 3k − a − 2 vertices
and apply Theorem 2.7. If a = 0, then G′ has 3k −2 vertices and thus regularity at
most 2k − 2, but G had maximum regularity 2k − 1, a contradiction. If a = 2, then
G′ has 3(k − 1) − 1 vertices and thus regularity at most 2(k − 1) − 1 = 2k − 3, but
G had maximum regularity 2k −2, another contradiction. By these contradictions,
either G is a cone after all, or its regularity was not maximal. □

Applying the reasoning in the proof to the a = 1 case does not yield the con-
tradiction. In this case, G has 3k − 1 vertices and thus a regularity bound of
2k−1−1 = 2k−2 while G′, with its 3(k−1) vertices, has regularity at most 2(k−1).

The results so far give a fairly clear picture of the asymptotic behaviour of regu-
larity in the class of cographs and individually for graphs with known complement-
reducible decomposition. If the exact structure of a cograph is unknown, it can be
useful to bound regularity using graph-theoretic invariants. We consider here α(G),
the size of the largest independent set; s(G), the number of maximal independent
sets in G; and c(G), the number of maximal cliques of G. The recursive construc-
tion of cographs yields bounds because these invariants satisfy simple formulas
under disjoint union and join:

s(G ⊔ H) = s(G) s(H), (2.1)
s(G ∗ H) = s(G) + s(H), (2.2)

α(G ⊔ H) = α(G) + α(H), (2.3)
α(G ∗ H) = max{α(G), α(H)}. (2.4)

We find the following bounds which are independent of the number of vertices.

Theorem 2.12. Let G be a cograph. Then reg(S/ JG) ≤ min{s(G), α(G)}.

Proof. The proof is by induction on the number of vertices of G. An isolated vertex
has exactly one maximal independent set with one vertex and reg(S/ JK1) = 0, so
the statement holds. Now let G be any cograph. If G is connected, it is the join of
smaller cographs G1, . . . , Gm and by induction

reg(S/ JGi
) ≤ min{s(Gi), α(Gi)} for all i = 1, . . . , m.

If G is complete, both inequalities are trivial. In the other case, it follows by
Theorem 2.1 and (2.2) that

reg(S/ JG) = max{{2} ∪ {reg(S/ JGi) : i = 1, . . . , m}} ≤
m∑

i=1
s(Gi) = s(G)
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and, since α(G) = 1 if and only if G is complete, (2.4) leads to
reg(S/ JG) = max{{2} ∪ {reg(S/ JGi

) : i = 1, . . . , m}}
≤ max{α(Gi) : i = 1, . . . , m} = α(G).

If G is disconnected, it has connected components G1, . . . , Gm which by induction
satisfy

reg(S/ JGi
) ≤ min{s(Gi), α(Gi)} for all i = 1, . . . , m.

In this case, since G is the disjoint union of its connected components, and since
regularity is additive, with (2.1) we have

reg(S/ JG) =
∑

i

reg(S/ JGi) ≤
∏

i

s(Gi) = s(G).

Finally, by (2.3) we have

reg(S/ JG) =
∑

i

reg(S/ JGi
) ≤

∑
i

α(Gi) = α(G). □

The method of bounding by s(G) seems coarse as the maximum and the sum
over a set of integers are respectively replaced by the sum and the product over
those integers. Nevertheless s(G) can be a good bound as discussed in Remark 2.15.

Since independent vertices cannot be in the same clique, we have α(G) ≤ c(G).
Thus reg(S/ JG) ≤ c(G) holds for cographs, but in fact it holds for all graphs
by [15].

Our last bound uses the maximum vertex degree δ(G) of a connected cograph G.

Proposition 2.13. Let G be a connected cograph. Then
reg(S/ JG) ≤ δ(G) = max{δ(v) : v ∈ V (G)}.

Proof. If G = Kn, then reg(S/ JG) ≤ 1, δ(G) = n − 1, and the inequality holds. If
G is not complete but connected, it is the join of induced subgraphs G1, . . . , Gm

as in Lemma 2.5. Then reg(S/ JG) = max{2, reg(S/ JG1), . . . , reg(S/ JGm
)} by

Proposition 2.6. Writing ni for the number of vertices of Gi, Theorem 1.1 gives
reg(S/ JG) ≤ max{2, n1 − 1, . . . , nm − 1}.

Let nmax = max{n1, . . . , nm}. Then reg(S/ JG) ≤ nmax, since G is not complete
and thus nmax ≥ 2. Since G is a join of the Gi, the maximum vertex degree satisfies
nmax ≤ max{δ(v) : v ∈ V (G)}, which gives the desired inequality. □

Remark 2.14. The bound in Proposition 2.13 does not give anything new for
cone graphs since in this case it agrees with Theorem 1.1.

Remark 2.15. One can ask if one of the bounds in this section is generally prefer-
able over the others. Table 1 shows that any bound can beat any other bound,
with the exception of α(G) ≤ c(G). On the other hand, if one asks for the best
bound, it can be confirmed that among the 2,341 cographs in our database, for
505 of them s(G) is strictly the best bound, and for 724 α(G) is strictly the best
bound. No other bound is ever strictly the best and for all remaining graphs there
is a tie for the best bound.
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order bound c(G) s(G) α(G) max deg
order bound 0 968 968 146 1,090

c(G) 918 0 1,049 0 724
s(G) 920 1,050 0 514 837
α(G) 1,830 1,139 1,522 0 1,150

max deg 5 362 201 1 0

Table 1. Comparisons of five regularity bounds for all 2,341
cographs in our database. Each figure is the number of cographs
for which the bound in the corresponding row header is strictly
better than the bound in the corresponding column header. ‘Or-
der bound’ stands for the bound in Theorem 2.7 and ‘max deg’
denotes the maximum vertex degree in Proposition 2.13. Compar-
isons with ‘max deg’ are made only for the 1,171 connected
cographs.

Remark 2.16. The questions about regularity in this paper can also be asked
about the regularity of S/IG, where IG is the parity binomial edge ideal of [10].
Using our database we observed the following inequality, slightly weaker than the
one in Theorem 1.1:

ℓ ≤ reg(S/IG) ≤ n.

Based on our computations we conjecture that the maximum regularity is achieved
exactly for disjoint unions of odd cycles. Minimal free resolutions of parity binomial
edge ideals contain many interesting patterns that remain to be investigated. At the
time of the first posting of this paper, explaining even the minimal free resolution
of S/IKn

was open and we conjectured that reg(S/IKn
) = 3. In the meantime this

has been confirmed in [8].

3. Regularity versus h-polynomials

As a standard graded k-algebra, the Hilbert series of S/ JG takes the form hG(t)
(1−t)d ,

where d is the Krull dimension and hG(t) ∈ Z[t]. The numerator hG is known as
the h-polynomial. In the first arXiv version of [7], Hibi and Matsuda conjectured
that for binomial edge ideals its degree bounds the regularity from above. The
conjecture was removed from a subsequent version of their paper after we informed
them of the following minimal counterexample on eight vertices:

Example 3.1. Let G be the graph in Figure 1, that is, the graph on the vertex
set {1, . . . , 8} with edges {1, 8}, {2, 6}, {3, 7}, {3, 8}, {4, 5}, {4, 8}, {5, 6}, {5, 7},
{6, 7}, {6, 8}, {7, 8}. Then reg(S/ JG) = 4 and deg(hG) = 3.

At the time of writing, our database contains 39 counterexamples and none shows
a difference greater than 1 between reg(S/ JG) and deg(hG). However, gluing two
copies of the counterexample in Figure 1 at vertex 1 yields a graph G (visible in
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Figure 1. A graph with reg(S/ JG) > deg(hG).
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Figure 2. A graph with reg(S/ JG) > deg(hG) + 1.

Figure 2) which satisfies reg(S/ JG) = 8 and deg(hG) = 6. We now show that the
difference can be made arbitrarily large. To this end we employ the following two
theorems that explain the behaviour of the regularity and the Hilbert series upon
gluing two graphs G1 and G2 over a vertex which is a free vertex in both graphs.
If G is a gluing like this, then G1 and G2 are a split of G.

Theorem 3.2 ([9, Theorem 3.1]). Let G1 and G2 be a split of a graph G at a
vertex v. If v is a free vertex in both G1 and G2, then reg(S/ JG) = reg(S/ JG1) +
reg(S/ JG2).

Theorem 3.3 ([12, Theorem 3.2]). Let G1 and G2 be the decomposition of a
graph G at a vertex v. If v is a free vertex in both G1 and G2, then

HilbS/ JG
(t) = (1 − t)2 HilbS/ JG1

(t) HilbS/ JG2
(t).

Theorem 3.4. Let k ∈ N. Then there exists a graph G such that
reg(S/ JG) = deg(hG) + k.
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Proof. Let G1 be the graph in Figure 1. The reduced Hilbert series of S/ JG1 can
be computed with Macaulay2 [4] as

HilbS/ JG1
(t) = 1 + 7t + 17t2 + 13t3

(1 − t)9

and its regularity as reg(S/ JG1) = 4. Since G1 has two free vertices 1, 2, we can
glue a chain of k copies of G1 along free vertices (see Figure 2 for the case k = 2 in
which the vertices 2 and 9 are available for further gluing). By Theorem 3.3, the
Hilbert series of the resulting graph is

HilbS/ JG2
(t) = (1 + 7t + 17t2 + 13t3)k

(1 − t)7k+2

and, by Theorem 3.2, reg(S/ JG2) = 4k. Thus reg(S/ JG) − deg(hG) = k. □
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