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THE ALGEBRAIC SETS OF VECTORS GENERATING PLANAR
NORMAL SECTIONS OF ISOPARAMETRIC HYPERSURFACES

OF FKM TYPE

CRISTIÁN U. SÁNCHEZ

Abstract. We present a proof of the connectedness of the algebraic set of
vectors generating planar normal sections for all isoparametric hypersurfaces,
with positive multiplicities m1 and m2 of FKM type.

1. Introduction

The present paper is devoted to the study of isoparametric hypersurfaces M ⊂
Sn+1 ⊂ Rn+2 with g = 4 principal curvatures of FKM type (also called of OT-FKM
type).

Associated to each point p of any general isoparametric submanifold M , one
has the algebraic set of unit tangent vectors generating planar normal sections
at p, denoted by X̂p[M ] ⊂ S (Tp(M)) (see the definition below or [3]). The present
paper studies these algebraic sets X̂p[M ] (at any point p ∈ M) for an isoparametric
hypersurface M on the unit sphere Sn+1 ⊂ Rn+2. We concentrate here on those
with g = 4 principal curvatures, called of FKM type.

On the other hand, in [4] we studied X̂p[M ] when M ⊂ Sn+1 ⊂ Rn+2 is a
homogeneous isoparametric hypersurface (i.e., it supports a transitive action of a
compact Lie group). We proved that, for all of them, the algebraic sets X̂p[M ] ⊂
S (Tp(M)) (for p ∈ M) are connected by arcs1. Then what remains to be considered
is the study of X̂p[M ] ⊂ S (Tp (M)) in the case of non-homogeneous isoparametric
hypersurfaces in the sphere, and that is the theme of the present paper. In fact,
we study here the isoparametric hypersurfaces with g = 4 of FKM type and obtain
the following result.

Theorem 1.1. Let Mn ⊂ Sn+1 be an isoparametric hypersurface of FKM type
with four principal curvatures and positive multiplicities m1 and m2. Then, for
each point p ∈ M , the algebraic set X̂p[M ] ⊂ S (Tp (M)) is connected by arcs.
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1We have also studied this, with a different proof, in our preprint “The algebraic sets of vectors

generating planar normal sections of homogeneous isoparametric hypersurfaces”.
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The paper is organized as follows. In Section 2 we indicate some notation and
recall the definitions of X̂p[M ] and Co

(
X̂p[M ]

)
as well as basic facts from [3] needed

here. In Section 3, to determine our manifold M and basic point E0, we recall
known information from [1] concerning (symmetric) Clifford systems. Also in that
section we introduce some vectors in TE0(M) required to determine the eigenspaces
of the shape operator at the point E0. In Section 4 we introduce certain subspaces
of TE0(M) and, using formula (7.2) established in the Appendix, show that they
are in fact the eigenspaces of the shape operator at the point E0, in agreement
with [1, Cor. 3.75]. The knowledge of the eigenspaces is essential in Section 5,
which is the central part of the paper and contains the required lemmata to prove
Theorem 1.1. The proof makes essential use of the structure of the eigenspaces
and of formula (7.4), which gives the condition to be satisfied by a unit tangent
vector to generate a planar normal section at E0 and whose proof is also part of
the Appendix.

2. Planar normal sections

Let us consider an isoparametric hypersurface M ⊂ S2l−1 ⊂ R2l of FKM type
with four principal curvatures and positive multiplicities m1 and m2. Let ∇E be
the Euclidean covariant derivative in R2l and ∇ the Levi-Civita connection in M
associated to the induced metric. We denote also by

(
∇Y α

)
the usual covariant

derivative of the second fundamental form α of M in R2l. Let us consider, at
p ∈ M , for each unit vector Y , the affine subspace of the ambient R2l defined by
S (p, Y ) = p + Span

{
Y, T ⊥

p (M)
}

. If U is a small enough neighborhood of p in M ,
then the intersection U ∩ S (p, Y ) can be considered the image of a C∞ regular
curve γ(s) (parametrized by arc-length) such that γ(0) = p, γ′(0) = Y . This curve
is called the normal section of M at p in the direction of Y . We say that this
normal section γ is planar at p if its first three derivatives γ′(0), γ′′(0), and γ′′′(0)
are linearly dependent. Every unit tangent vector Y ∈ Tp(M) generates a normal
section, but we consider only those whose normal section is planar at p ∈ M . Recall
(see [3]) that the normal section γ of M at p in the direction of Y is planar at p
if and only if Y satisfies the equation

(
∇Y α

)
(Y, Y ) = 0. For a point p ∈ M , we

shall denote, as in [3],

X̂p[M ] =
{

Y ∈ Tp(M) : ∥Y ∥ = 1,
(
∇Y α

)
(Y, Y ) = 0

}
.

We consider also the corresponding bundle Ξ(M) union of all the sets X̂p[M ] (for
p ∈ M) which is contained in the unit tangent bundle S (T (M)) ⊂ T (M) of M . It
is also convenient to have the notation

Co
(
X̂p[M ]

)
=

{
Y ∈ Tp (M) : Y ̸= 0,

(
∇Y α

)
(Y, Y ) = 0

}
.

If V is a subspace of Tp(M), we may write Co(V ) = (V − {0}).
At this point we need to recall some basic facts from [3, Prop. 4.1] that will be

needed below. Let M be a compact rank h, full, isoparametric submanifold of Rn+h.
Since the normal bundle of M is globally flat, all shape operators are simultaneously
diagonalizable and we have common eigendistributions Dj (j = 1, . . . , g), that is,
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for any ξ ∈ T ⊥
p (M), Aξ(X) = λj (ξ) X for all X ∈ Dj (p). Each Dj is autoparallel,

hence integrable with totally geodesic leaves. Let Ni be the leaf corresponding to
the distribution Di containing p. We have the following proposition.

Proposition 2.1. At any p ∈ Ni, take X, Y unitary in Di (p) = Tp (Ni), and any
Z ∈ Tp(M). Then

(
∇Xα

)
(Y, Z) = 0.

Proposition 2.1 for the case X = Y = Z yields the following corollaries.

Corollary 2.2. If X ∈ Tp (Ni), then
(
∇Xα

)
(X, X) = 0. Hence ∥X∥ = 1 yields

X ∈ X̂p[M ].

Corollary 2.3. If X ∈ Tp (Ni) ⊕ Tp (Nj) (i ̸= j), then
(
∇Xα

)
(X, X) = 0. Hence

∥X∥ = 1 implies X ∈ X̂p[M ].

3. Required facts and notation

To study the isoparametric hypersurfaces of FKM type we are going to use some
well-known facts from the book [1]. There, in Section 3.9, the authors include
everything that is needed here for our study of these hypersurfaces.

Let H (2l,R) be the space of symmetric real 2l × 2l matrices with the standard
inner product (A, B) =

( 1
2l

)
trace(AB). For positive integers l and m, the (m+1)-

tuple {P0, . . . , Pm} with Pj ∈ H (2l,R) is called a (symmetric) Clifford system on
R2l if the Pj satisfy

P 2
j = I, PkPj = −PjPk, k ̸= j, 0 ≤ k, j ≤ m; (3.1)

furthermore, they are orthogonal since

⟨Pjx, Pjy⟩ =
〈
x, P 2

j y
〉

= ⟨x, Iy⟩ = ⟨x, y⟩ .

We assume that {P0, P1, . . . , Pm} is an orthonormal basis for the given Clifford
system {P0, P1, . . . , Pm} such that m1 = m and m2 = l − m − 1 are both positive;
then one can construct F : R2l −→ R defined by

F (X) = ∥X∥4 − 2
m∑

j=0
⟨Pj(X), X⟩2

.

We take
M = {X : F (X) = 0} . (3.2)

Associated to the Clifford system {P0, P1, . . . , Pm} one has its Clifford sphere
Σ (P0, P1, . . . , Pm), which is a fundamental associated object. It is defined as the
unit sphere in the subspace SpanR {P0, P1, . . . , Pm} ⊂ H (2l,R), which has many
important properties that the reader can find in [1, Theorem 3.71]. We shall recall
only what is needed here.

It is important to notice that the gradient of F on the points X in M is of the
form

∇F (X) = 4 ∥X∥2
X − 8

m∑
i=0

⟨Pi(X), X⟩ Pi(X); (3.3)
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and at the points X ∈ M in (3.2) we have
∥∇F (X)∥ = 4 and ⟨∇F (X), X⟩ = 0 ∀X ∈ M.

We shall assume, as in [1, p. 174], that m2 > 0 and consider the focal submanifold
M+ = F −1 (1) of codimension (m + 1), where m = m1. From the definition of F
we have that

M+ =
{

x ∈ S2l−1 : ⟨Pj(x), x⟩ = 0, 0 ≤ j ≤ m
}

.

Then, on any x ∈ M+, the operators {P0, . . . , Pm} satisfy
⟨Pj(x), x⟩ = 0, 0 ≤ j ≤ m, (3.4)

and it follows (see [1, (3.228) and (3.229)]) that the normal bundle of M+ is trivial
with a global orthonormal frame {P0(x), . . . , Pm(x)} as x is moving along M+; that
is, the isoparametric hypersurfaces of the family containing M are trivial sphere
bundles over M+. Furthermore, for each x ∈ M+,

T ⊥
x (M+) = {Q(x) : Q ∈ SpanR (P0, P1, . . . , Pm)} .

We have a fixed member M = F −1(0) of the isoparametric family associated
to the focal manifold M+ and we want to fix a basic point in M . To that end we
apply one of the properties of the Clifford sphere indicated in [2, 4.2 (iii)]2, which
is:

For x ∈ M+ and P ∈ Σ (P0, P1, . . . , Pm), on the normal great
circle c (t) = cos (θ) x + sin (θ) P (x) we have F (c (t)) = cos (4t).

We fix a point x0 ∈ M+ (which we shall keep fixed below) and also fix
E0 = cos (θ) x0 + sin (θ) P0 (x0) . (3.5)

Since the solutions of the equation cos(4θ) = 0 are
{ 1

8 π + 1
4 πk : k ∈ Z

}
, we may

take the smallest positive one, that is, θ = π
8 , and maintain this θ also fixed below.

Since ⟨x0, x0⟩ = 1 and P0 is orthogonal, (3.4) yields ⟨E0, E0⟩ = 1. We also fix the
notation

H (E0) = 1
4∇F (E0) .

A straightforward computation shows that
⟨Pk (E0) , E0⟩ = 0 for 1 ≤ k ≤ m, (3.6)

and, on the other hand, for k = 0, we have

⟨P0 (E0) , E0⟩ = 2 sin (θ) cos (θ) = 1
2

√
2. (3.7)

Hence, F (E0) = 1 + (−8) sin2 (θ) cos2 (θ) = cos(4θ) = 0, so we have E0 ∈ M =
{X : F (X) = 0}.

Now, recalling (3.3), we have that

H (E0) = E0 − 2
m∑

j=0
⟨Pj (E0) , E0⟩ Pj (E0) .

2P. 485 in the original German version and p. 9 in the English translation.
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Clearly (3.6) yields H (E0) = E0 −2 ⟨P0 (E0) , E0⟩ P0 (E0), and by (3.7) we get that

H (E0) = E0 −
√

2P0 (E0) . (3.8)
Now we observe that, for 1 ≤ j ≤ m, we have

⟨Pj (E0) , P0 (E0)⟩ = (−1) ⟨E0, P0Pj (E0)⟩
= (−1) ⟨P0 (E0) , Pj (E0)⟩ ;

hence
⟨Pj (E0) , P0 (E0)⟩ = 0 for 1 ≤ j ≤ m. (3.9)

Then by (3.6), (3.9) and (3.8) we see that
⟨Pk (E0) , E0⟩ = 0 = ⟨Pk (E0) , H (E0)⟩ for 1 ≤ k ≤ m,

⟨E0, P0Pj (x0)⟩ = 0 = ⟨H (E0) , P0Pj (x0)⟩ for 1 ≤ j ≤ m,

and therefore, for 1 ≤ j ≤ m, Pj (E0) and P0Pj (x0) are in TE0(M). By definition,
the vectors Pj (E0) (1 ≤ j ≤ m) are of the form

Pj (E0) = cos (θ) Pj (x0) + sin (θ) PjP0 (x0)
= cos (θ) Pj (x0) − sin (θ) P0Pj (x0) .

(3.10)

4. Eigenspaces

We consider these two subspaces contained in TE0(M):
W1 = SpanR {Pj (x0) : 1 ≤ j ≤ m} , (4.1)
W2 = SpanR {P0Pj (x0) : 1 ≤ j ≤ m} ; (4.2)

their dimensions are clearly
dim W1 = dim W2 = m.

4.1. W1 and W2 are orthogonal. We have to understand ⟨PjP0 (x0) , Pk (x0)⟩.
By (3.4) this product is zero if j = k. Furthermore, if j = 0 and k ̸= 0, or j ̸= 0
and k = 0, the product is also zero. So we study the case j ̸= k, 1 ≤ j, k ≤ m. We
have that

⟨PjP0 (x0) , Pk (x0)⟩ = ⟨PjPk (x0) , P0 (x0)⟩
but also

⟨PjP0 (x0) , Pk (x0)⟩ = (−1) ⟨Pj (x0) , P0Pk (x0)⟩
= (−1) (−1) ⟨Pj (x0) , PkP0 (x0)⟩
= ⟨PkPj (x0) , P0 (x0)⟩ .

Using these two equalities we may write
2 ⟨PjP0 (x0) , Pk (x0)⟩ = ⟨PjPk (x0) , P0 (x0)⟩ + ⟨PkPj (x0) , P0 (x0)⟩

= ⟨[PjPk (x0) + PkPj (x0)] , P0 (x0)⟩
= ⟨0, P0 (x0)⟩ = 0.

So we get
⟨PjP0 (x0) , Pk (x0)⟩ = 0 for 0 ≤ j, k ≤ m. (4.3)
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Furthermore, we also have
⟨PjP0 (x0) , PjP0 (x0)⟩ = ⟨(x0) , (x0)⟩ = 1,

⟨PkP0 (x0) , P0Pj (x0)⟩ = 0 for j ̸= k, 0 ≤ j, k ≤ m. (4.4)
So, by (4.3), we have that (4.1) and (4.2) are two orthogonal subspaces in the

tangent space TE0(M) and, furthermore, the spanning sets are orthonormal bases
for each of them. We shall show that W1 and W2 are the two eigenspaces of AH(E0)
of dimension m in TE0(M).

4.2. Study of W1. Let us consider the formula (7.2) indicated in the Appendix.
Take the vector U = Pj (x0) (1 ≤ j ≤ m); then (7.2) becomes

AH(E0) (Pj (x0)) = (−Pj (x0)) + 2
m∑

k=0
2 ⟨Pk (E0) , Pj (x0)⟩ Pk (E0)

+ 2
m∑

k=0
⟨Pk (E0) , E0⟩ Pk (Pj (x0)) .

By (3.6) and (3.7), we have

⟨Pk (E0) , E0⟩ =
{

0 if 0 < k ≤ m,
1
2
√

2 if k = 0.
(4.5)

Then the second sum above is

+2
m∑

k=0
⟨Pk (E0) , E0⟩ Pk (Pj (x0)) = 2

(
1
2

√
2
)

P0 (Pj (x0)) =
√

2P0 (Pj (x0)) .

Now we study the first sum. So we need ⟨Pk (E0) , Pj (x0)⟩ and we have

⟨Pk (E0) , Pj (x0)⟩ =
{

0 if k ̸= j including k = 0,

cos(θ) if k = j.

Then, by (3.10), we have

+2
m∑

k=0
2 ⟨Pk (E0) , Pj (x0)⟩ Pk (E0) = 4 cos (θ) Pj (E0)

= 4 cos2 (θ) Pj (x0) + 4 cos (θ) sin (θ) PjP0 (x0) .

Putting the three terms together we get
AH(E0) (Pj (x0)) = (−Pj (x0)) + 4 cos2 (θ) Pj (x0)

+ 4 cos (θ) sin (θ) PjP0 (x0) +
√

2P0 (Pj (x0)) .

Now, since θ = π
8 , we have 4 cos (θ) sin (θ) =

√
2 and this yields

4 cos (θ) sin (θ) PjP0 (x0) +
√

2P0 (Pj (x0)) =
√

2PjP0 (x0) +
√

2P0 (Pj (x0)) = 0.

On the other hand, 4 cos2 (θ) − 1 =
√

2 + 1, and then we finally have

AH(E0) (Pj (x0)) =
(√

2 + 1
)

Pj (x0) = cot
(π

8

)
Pj (x0) . (4.6)
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4.3. Study of W2. Using again (7.2) from the Appendix, for j = 1, . . . , m, we
have

AH(E0) (P0Pj (x0)) = (−P0Pj (x0)) + 2
m∑

k=0
2 ⟨Pk (E0) , P0Pj (x0)⟩ Pk (E0)

+ 2
m∑

k=0
⟨Pk (E0) , E0⟩ Pk (P0Pj (x0)) .

Again, we have (4.5), so the second sum is

+2
m∑

k=0
⟨Pk (E0) , E0⟩ Pk (P0Pj (x0)) = 2

(
1
2

√
2
)

P0P0 (Pj (x0))

=
√

2Pj (x0) .

Now we must study the first sum, where we need ⟨Pk (E0) , P0Pj (x0)⟩ for our fixed
j and k = 0, 1, . . . , m.

Recalling (3.5), we have

⟨Pk (E0) , P0Pj (x0)⟩ = cos (θ) ⟨Pk (x0) , P0Pj (x0)⟩ + sin (θ) ⟨PkP0 (x0) , P0Pj (x0)⟩ .

By (4.3), ⟨Pk (x0) , P0Pj (x0)⟩ = 0 for 0 ≤ j, k ≤ m, and by (4.4), for j ̸= k, also
⟨PkP0 (x0) , P0Pj (x0)⟩ = 0. Then only the term corresponding to k = j remains,
and therefore

+2
m∑

k=0
2 ⟨Pk (E0) , P0Pj (x0)⟩ Pk (E0) = 4 ⟨Pj (E0) , P0Pj (x0)⟩ Pj (E0) .

Now, since
Pj (E0) = cos (θ) Pj (x0) + sin (θ) PjP0 (x0) (4.7)

we have

⟨Pj (E0) , P0Pj (x0)⟩ = (−1) ⟨Pj (E0) , PjP0 (x0)⟩
= (−1) ⟨E0, P0 (x0)⟩
= (−1) sin (θ) ⟨P0 (x0) , P0 (x0)⟩
= (−1) sin (θ) ,

and so the value of the first sum is

+2
m∑

k=0
2 ⟨Pk (E0) , P0Pj (x0)⟩ Pk (E0) = 4 (−1) sin (θ) Pj (E0) .

Now, replacing Pj (E0) by its expression (4.7) and interchanging Pj and P0, the
right-hand side above is

4 (−1) sin (θ) Pj (E0)
= 4 (−1) sin (θ) cos (θ) Pj (x0) + 4 (−1) sin2 (θ) PjP0 (x0)
= 4 (−1) sin (θ) cos (θ) Pj (x0) + 4 sin2 (θ) P0Pj (x0) .
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Now, since θ = π
8 , we may evaluate the coefficients of this last expression, which

are
4 (−1) sin (θ) cos (θ) =

(
−

√
2
)

, 4 sin2 (θ) =
(

2 −
√

2
)

,

and replacing everything in the formula, we finally have

AH(E0) (P0Pj (x0)) = −P0Pj (x0) +
(

2 −
√

2
)

P0Pj (x0)

+
(

−
√

2
)

Pj (x0) +
√

2Pj (x0) ,

that is,
AH(E0) (P0Pj (x0)) =

(
1 −

√
2
)

P0Pj (x0) . (4.8)

Remark 4.1. Comparing (4.6) and (4.8) with [1, Cor. 3.75], we see that, since we
have taken here (−t) = θ = π

8 , we have

cot (−t) = cot
(π

8

)
= 1 +

√
2,

cot
(π

2 − t
)

= cot
(π

2 + π

8

)
= 1 −

√
2,

which correspond to the two eigenspaces indicated there, with multiplicities m.

We have to study now the other two eigenspaces of AH(E0).

4.4. The other eigenspaces. Recalling the two eigenspaces (4.1) and (4.2), we
obviously have P0 (W1) = W2 and vice versa, and therefore

P0 (W1 ⊕ W2) = W1 ⊕ W2. (4.9)
Now, by definition, TE0(M) is orthogonal to E0 and H (E0), and since we have
(3.8), it is clear that P0 (E0) =

(
1/

√
2
)

(E0 − H (E0)) and also P0 (H (E0)) =
P0 (E0) −

√
2E0, so we see that the normal space T ⊥

E0
(M) at E0 is invariant by P0

and, since P0 is orthogonal, we have
P0 (TE0(M)) = TE0(M).

Let Q be the orthogonal complement of (W1 ⊕ W2) in TE0(M). Then, TE0(M) =
W1 ⊕ W2 ⊕ Q.

Clearly, (4.9) and the fact that P0 is orthogonal yield
P0 (Q) = Q,

and furthermore, it is clear that
Q = {X ∈ TE0(M) : ⟨X, Pj (x0)⟩ = 0, ⟨X, P0Pj (x0)⟩ = 0, 1 ≤ j ≤ m} .

Let now Q− and Q+ be the two eigenspaces of P0 in Q. Each of these orthogonal
subspaces is invariant by P0. We call them

W3 = Q−, W4 = Q+,

and, in fact, we may write
W3 = {X ∈ TE0(M) : P0(X) = (−X) , ⟨X, (W1 ⊕ W2)⟩ = 0} , (4.10)
W4 = {X ∈ TE0(M) : P0(X) = X, ⟨X, (W1 ⊕ W2)⟩ = 0} . (4.11)
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Since the tangent and normal spaces are invariant by P0, we may also write

TE0(M) = T
(+)
E0

(M) ⊕ T
(−)
E0

(M) tangent,

T ⊥
E0

(M) = T
⊥(+)
E0

(M) ⊕ T
⊥(−)
E0

(M) normal,

decomposing TE0(M) and T ⊥
E0

(M) respectively in the two eigenspaces of P0.
Let us now take Z ∈ W3 and consider Pq (Z) for each 1 ≤ q ≤ m. Since

Z ∈ W3 =⇒ P0 (Z) = −Z, we have

P0 (Pq (Z)) = (−1) Pq (P0 (Z)) = (−1) (−1) Pq (Z) = Pq (Z) .

Then Pq (Z) ∈ T
⊥(+)
E0

(M) ⊕ T
(+)
E0

(M), and since W3 ⊂ T
(−)
E0

(M), we see that

Z ∈ W3 =⇒ ⟨Pq (Z) , Z⟩ = 0 for every 1 ≤ q ≤ m, (4.12)

and similarly

Z ∈ W4 =⇒ ⟨Pq (Z) , Z⟩ = 0 for every 1 ≤ q ≤ m. (4.13)

4.4.1. The subspace W3. Let us study now the shape operator on the subspace W3,
which is of the form (4.10). Take X ∈ W3 and consider again (7.2) for U = X; we
have

AH(E0)(X) = (−X) + 2
m∑

i=0
2 ⟨Pi (E0) , X⟩ Pi (E0)

+ 2
m∑

i=0
⟨Pi (E0) , E0⟩ Pi(X).

For X ∈ W3, by (4.10) we have +2
∑m

i=0 2 ⟨Pi (E0) , X⟩ Pi (E0) = 0 and hence

AH(E0)(X) = (−X) + 2
m∑

i=0
⟨Pi (E0) , E0⟩ Pi(X).

On the other hand, by (4.5) and since X ∈ W3, we have

AH(E0)(X) = (−X) + 21
2

√
2P0(X) = (−X) +

√
2P0(X)

=
(

−1 −
√

2
)

X.

Since we have (−t) = π
8 , we have

cot
(

3π

4 − t

)
= cot

(
3π

4 + π

8

)
= −

√
2 − 1.

4.4.2. The subspace W4. Similarly, for X ∈ W4, the same computation above by
(4.11) shows that

AH(E0)(X) = (−X) + 21
2

√
2P0(X) = (−X) +

√
2P0(X)

=
(√

2 − 1
)

X.
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Again, since (−t) = π
8 , we have

cot
(π

4 − t
)

= cot
(π

4 + π

8

)
=

√
2 − 1.

Then, as in Remark 4.1, these two facts agree with [1, Cor. 3.75]. In this way we
have identified the four eigenspaces of AH(E0) in TE0(M).

5. Required lemmata

Lemma 5.1. If M is a submanifold as above and we have in TE0 (M) three inde-
pendent non-zero vectors X1, X2, X3 such that

X1, X2, X3, (X1 + X2), (X1 + X3), (X2 + X3) ∈ Co
(
X̂p[M ]

)
,

then
(
∇(X1+X2+X3)α

)
((X1 + X2 + X3) , (X1 + X2 + X3)) = 6∇X1α (X2, X3).

Proof. By Codazzi’s equation we have(
∇(X1+X2+X3)α

)
((X1 + X2 + X3) , (X1 + X2 + X3))

=
(
∇X1α

)
(X1, X1) +

(
∇X2α

)
(X2, X2) +

(
∇X3α

)
(X3, X3)

+ 3
(
∇X2α

)
(X1, X1) + 3

(
∇X1α

)
(X2, X2) (a)

+ 3
(
∇X1α

)
(X3, X3) + 3

(
∇X3α

)
(X1, X1) (b)

+ 3
(
∇X2α

)
(X3, X3) + 3

(
∇X3α

)
(X2, X2) (c)

+ 6
(
∇X1α

)
(X2, X3) .

(5.1)

Now, since X1, X2, and X3 are in Co
(
X̂p[M ]

)
, we have that(

∇Xk
α

)
(Xk, Xk) = 0 for 1 ≤ k ≤ 3. (5.2)

Since (X1 + X2), (X1 + X3), and (X2 + X3) are also in Co
(
X̂p[M ]

)
, (5.2) yields

that each one of the lines marked with (a), (b), and (c) in (5.1) vanishes. Hence
we have the indicated equality. □

Lemma 5.2. Let us assume that M is an isoparametric hypersurface of S2l−1 with
four principal curvatures, and that E0 is a point in M . Let Wk (1 ≤ k ≤ 4) be the
four eigenspaces of the shape operators in TE0(M), and take three non-zero vectors
X, Y, Z in TE0(M), each contained in one of three different eigenspaces. Let us
furthermore assume that (X + Y + Z) ∈ Co

(
X̂E0 [M ]

)
. Then, for each t ∈ [0, 1],

we have (tX + Y + Z) ∈ Co
(
X̂E0 [M ]

)
.

Proof. By assumption we have(
∇(X+Y +Z)α

)
((X + Y + Z) , (X + Y + Z)) = 0,

and by Corollary 2.2 we have X, Y, Z ∈ Co
(
X̂E0 [M ]

)
. In turn, Corollary 2.3

yields that (X + Y ), (X + Z), and (Y + Z) are also in Co
(
X̂E0 [M ]

)
. Hence by

Lemma 5.1 we have
∇Xα (Y, Z) = 0. (5.3)
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Now (again by Corollaries 2.2 and 2.3), for each t ∈ (0, 1], the triple ((tX) , Y, Z)
satisfies the hypothesis of Lemma 5.1, that is,

(tX), Y, Z, ((tX) + Y ), ((tX) + Z), (Y + Z) ∈ Co
(
X̂p[M ]

)
, (5.4)

and then Lemma 5.1 yields the equality(
∇(tX+Y +Z)α

)
((tX + Y + Z) , (tX + Y + Z)) = 6∇(tX)α (Y, Z) for t ∈ (0, 1].

Now, since
∇tXα (Y, Z) = t∇Xα (Y, Z) for t ∈ (0, 1] ,

as a consequence of (5.3) we have(
∇(tX+Y +Z)α

)
((tX + Y + Z) , (tX + Y + Z)) = 0 for t ∈ [0, 1],

and then (tX + Y + Z) ∈ Co
(
X̂E0 [M ]

)
for t ∈ (0, 1]. We already know, by (5.4),

that, for t = 0, (Y + Z) ∈ Co
(
X̂E0 [M ]

)
, so the lemma is proved. □

Corollary 5.3. Lemma 5.2 means that if a vector of the form (X + Y + Z) is
in Co

(
X̂E0 [M ]

)
(with each term contained in one of three different eigenspaces),

then (X + Y + Z) can be joined to (Y + Z) ∈ Co
(
X̂E0 [M ]

)
by a segment totally

contained in Co
(
X̂E0 [M ]

)
.

Remark 5.4. So far we have established that all points of the form (X +Y +Z) ∈
Co

(
X̂E0 [M ]

)
(with each term contained in one of three different eigenspaces) form

an arc-wise connected set in Co
(
X̂E0 [M ]

)
. We do not know if vectors of this type

exist in Co
(
X̂E0 [M ]

)
at all, but we have just proved that if any one does then it can

be joined to those of the form (Y + Z) that are in Co
(
X̂E0 [M ]

)
by Corollary 2.3.

Remark 5.5. It remains to consider the case of points of the form X + Y +
Z + T with X ∈ W1, Y ∈ W2, Z ∈ W3, and T ∈ W4 (none of them zero) such
that (X + Y + Z + T ) ∈ Co

(
X̂E0 [M ]

)
. There may not exist such a vector in

Co
(
X̂E0 [M ]

)
, but we must consider the possibility that there is one. We study this

in the next section.

6. The case of four terms

Let us consider, again, the two eigenspaces
W1 = SpanR {cos (θ) Pj (x0) : 1 ≤ j ≤ m} ,

W2 = SpanR {(− sin (θ)) P0Pj (x0) : 1 ≤ j ≤ m} ,

which are those of dimension m = m1, and consider also the subspace
∆ = SpanR {(cos (θ) Pj (x0) + (− sin (θ)) P0Pj (x0)) : 1 ≤ j ≤ m}

= SpanR {Pj(E0) : 1 ≤ j ≤ m} ,
(6.1)

whose dimension is clearly dim (∆) = dim (W1) = dim (W2) = m.
Let ∆⊥ be the orthogonal complement of ∆ in (W1 ⊕ W2), whose dimension is,

obviously, also m. Let us consider also the two eigenspaces W3 and W4 and take now
any X ∈ TE0(M) such that X ∈ ∆⊥ ⊕W3 ⊕W4; then we have that X is orthogonal
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to ∆ and so, for 1 ≤ j ≤ m, satisfies ⟨Pj (E0) , X⟩ = 0. Furthermore, since (by
(3.8)) P0 (E0) ∈ T ⊥

E0
(M), we also have ⟨P0 (E0) , X⟩ = 0. Then considering formula

(7.4) in the Appendix, that is,

Γ(X) =
m∑

i=0
⟨Pi (E0) , X⟩ ⟨Pi(X), X⟩ ,

we see that Γ(X) = 0, and therefore X ∈ Co
(
X̂E0 [M ]

)
. Then we have proved the

following lemma.

Lemma 6.1. Co
(
∆⊥ ⊕ W3 ⊕ W4

)
⊂ Co

(
X̂E0 [M ]

)
.

Corollary 6.2. Also, Co
(
∆⊥ ⊕ Wh

)
⊂ Co

(
X̂E0 [M ]

)
for h = 3, 4 and Co

(
∆⊥)

⊂
Co

(
X̂E0 [M ]

)
.

Now we take a vector in TE0(M) of the form X + Y + Z + T such that X ∈ W1,
Y ∈ W2, Z ∈ W3, and T ∈ W4, as indicated in Remark 5.5. That is,

X + Y + Z + T ∈ Co
(
X̂E0 [M ]

)
. (6.2)

If there is such a vector, then (X + Y ) ∈ (W1 ⊕ W2), and we may write it as
(X + Y ) = U + V with U ∈ ∆ and V ∈ ∆⊥. Then we have

X + Y + Z + T = U + V + Z + T.

Now, by Lemma 6.1, we have that any point of the form (V + Z + T ) with
V ∈ ∆⊥, Z ∈ W3, and T ∈ W4 satisfies

V + Z + T ∈ Co
(
X̂E0 [M ]

)
, (6.3)

and, in particular, we may have Z = T = 0 or just Z = 0 or T = 0. Then, for our
given V, Z, T , we have

V, Z, T, (V + Z), (V + T ), (Z + T ) ∈ Co
(
X̂E0 [M ]

)
. (6.4)

Now, by assumption (6.2), we have(
∇(U+V +Z+T )α

)
((U + V + Z + T ), (U + V + Z + T )) = 0

and we notice that, by Corollary 2.3, Co (W1 ⊕ W2) ⊂ Co
(
X̂E0 [M ]

)
, so we may

add the pair U, (U + V ) to the set indicated in (6.4) and write

V, Z, T, (V + Z), (V + T ), (Z + T ) ∈ Co
(
X̂E0 [M ]

)
,

U, (U + V ) ∈ Co
(
X̂E0 [M ]

)
.

(6.5)

Notice that we do not know whether (U + Z) and (U + T ) belong to Co
(
X̂E0 [M ]

)
or not. Our next lemma takes care of this question.

Lemma 6.3. For every U ∈ ∆, Z ∈ W3, and T ∈ W4, we have that (U + Z) and
(U + T ) belong to Co

(
X̂E0 [M ]

)
.
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Proof. By the definition of ∆ in (6.1), an arbitrary U ∈ ∆ can be written as

U =
m∑

q=1
aqPq (E0) . (6.6)

Let Z be an arbitrary vector in W3. In order to prove that X = U + Z =∑m
q=1 aqPq (E0) + Z ∈ Co

(
X̂E0 [M ]

)
, we shall use again formula (7.4). Let us re-

place, in (7.4), X by
(∑m

q=1 aqPq (E0) + Z
)

and start by computing ⟨Pk (E0) , X⟩
for each k such that 1 ≤ k ≤ m. That is,

⟨Pk (E0) , X⟩ =
〈

Pk (E0) ,

m∑
q=1

aqPq (E0) + Z

〉

=
m∑

q=1
aq ⟨Pk (E0) , Pq (E0)⟩ + ⟨Pk (E0) , Z⟩ .

Here, since Pk (E0) ∈ W1 ⊕ W2 for 1 ≤ k ≤ m and Z ∈ W3, we have

⟨Pk (E0) , Z⟩ = 0 for 1 ≤ k ≤ m, (6.7)

and then we have

⟨Pk (E0) , X⟩ =
m∑

q=1
aq ⟨Pk (E0) , Pq (E0)⟩ .

But since

⟨Pk (E0) , Pq(E0)⟩ = 0 for k ̸= q,

⟨Pq (E0) , Pq(E0)⟩ = ⟨E0, E0⟩ = 1 for k = q,

we see that
⟨Pk (E0) , X⟩ = ak for 1 ≤ k ≤ m. (6.8)

On the other hand, since X is tangent to M at E0, by (3.8) we see that

⟨P0 (E0) , X⟩ = 0.

Then, by (6.7) and (6.8), it turns out that Γ(X) in (7.4) takes the form

Γ(X) =
m∑

i=0
⟨Pi (E) , X⟩ ⟨Pi(X), X⟩ =

m∑
k=1

ak ⟨Pk(X), X⟩ ,

that is,

Γ(X) =
〈( m∑

k=1
akPk(X)

)
, X

〉
. (6.9)
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Let us study the first factor in (6.9). Since X =
∑m

q=1 aqPq (E0) + Z, we have
m∑

k=1
akPk(X) =

m∑
k=1

akPk

( m∑
q=1

aqPq (E0) + Z

)

=
m∑

k=1

m∑
q=1

akaqPkPq (E0) +
m∑

k=1
akPk(Z),

(6.10)

and considering the first term of the last line in (6.10) (since 1 ≤ k, q ≤ m) we
clearly have

m∑
k=1

m∑
q=1

akaqPkPq (E0) =
m∑

j=1
a2

jE0 +
m∑

k<q

akaq [PkPq (E0) + PqPk(E0)] ;

but, by (3.1), we have

[PkPq (E0) + PqPk (E0)] = 0 for k ̸= q,

and then the first term of the last line in (6.10) is
m∑

k=1

m∑
q=1

akaqPkPq (E0) =
m∑

j=1
a2

jE0 = GE0, (6.11)

where we are setting G :=
∑m

j=1 a2
j ̸= 0, which is fixed by the definition of U , (6.6).

Hence, going back to (6.10), we have
m∑

k=1
akPk(X) = GE0 +

m∑
k=1

akPk (Z) ,

and therefore Γ(X) becomes

Γ(X) =
〈 m∑

k=1
akPk (X) , X

〉
=

〈
GE0 +

m∑
k=1

akPk (Z) ,

m∑
h=1

ahPh (E0) + Z

〉
.

Now,
∑m

h=1 ahPh (E0)+Z ∈ TE0 (M), therefore its product with GE0 vanishes. On
the other hand, since Z ∈ W3, by (4.12) we clearly have

〈 ∑m
k=1 akPk (Z) , Z

〉
= 0,

and therefore our Γ(X) takes the form

Γ(X) =
〈 m∑

k=1
akPk (X) , X

〉
=

〈 m∑
k=1

akPk (Z) ,

m∑
h=1

ahPh (E0)
〉

.

Now we may write this as

Γ(X) =
m∑

k=1

m∑
h=1

akah ⟨Pk (Z) , Ph (E0)⟩ =
〈

Z,

m∑
k=1

m∑
h=1

akahPkPh (E0)
〉

and, recalling (6.11), we see that

Γ(X) = ⟨Z, GE0⟩ = 0,

Rev. Un. Mat. Argentina, Vol. 63, No. 2 (2022)



HYPERSURFACES OF FKM TYPE 469

because Z ∈ W3 ⊂ TE0(M). The proof for T ∈ W4 is the same (changing Z by T )
because we only used here (4.12), and for T , we have (4.13). Then we have proved
Lemma 6.3. □

As a consequence of Lemma 6.3, we see that, for our point (U + V + Z + T ),
we may modify condition (6.5) to the condition

V, Z, T, (V + Z), (V + T ), (Z + T ) ∈ Co
(
X̂E0 [M ]

)
,

U, (U + V ), (U + Z), (U + T ) ∈ Co
(
X̂E0 [M ]

)
.

(6.12)

Let us go back now to our vector
X + Y + Z + T = U + V + Z + T,

which, as we are assuming, is contained in Co
(
X̂E0 [M ]

)
. Then it satisfies the

condition (
∇(U+V +Z+T )α

)
((U + V + Z + T ) , (U + V + Z + T )) = 0.

By expanding this expression, using Codazzi’s equation, we see that it is
0 =

(
∇U α

)
(U, U) +

(
∇V α

)
(V, V ) +

(
∇Zα

)
(Z, Z) +

(
∇T α

)
(T, T )

+ 3
(
∇U α

)
(V, V ) + 3

(
∇V α

)
(U, U)

+ 3
(
∇U α

)
(Z, Z) + 3

(
∇Zα

)
(U, U)

+ 3
(
∇U α

)
(T, T ) + 3

(
∇T α

)
(U, U)

+ 3
(
∇V α

)
(Z, Z) + 3

(
∇Zα

)
(V, V )

+ 3
(
∇V α

)
(T, T ) + 3

(
∇T α

)
(V, V )

+ 3
(
∇Zα

)
(T, T ) + 3

(
∇T α

)
(Z, Z)

+ 6
((

∇U α
)

(V, Z) +
(
∇U α

)
(V, T )

)
+ 6

((
∇U α

)
(Z, T ) +

(
∇V α

)
(Z, T )

)
.

(6.13)

Now condition (6.12) yields that the first seven lines of (6.13) vanish and therefore
we have the equality

0 =
(
∇(U+V +Z+T )α

)
((U + V + Z + T ) , (U + V + Z + T ))

= 6
[(

∇U α
)

(V, Z) +
(
∇U α

)
(V, T ) +

(
∇U α

)
(Z, T ) +

(
∇V α

)
(Z, T )

]
.

But condition (6.4) allows us to apply Lemma 5.1, and by (6.3) we clearly have(
∇V α

)
(Z, T ) = 0.

Then, for our vector (U + V + Z + T ) ∈ Co
(
X̂E0 [M ]

)
we have

0 =
(
∇(U+V +Z+T )α

)
((U + V + Z + T ) , (U + V + Z + T ))

= 6
[(

∇U α
)

(V, Z) +
(
∇U α

)
(V, T ) +

(
∇U α

)
(Z, T )

]
.

Therefore, (U + V + Z + T ) has the property that[(
∇U α

)
(V, Z) +

(
∇U α

)
(V, T ) +

(
∇U α

)
(Z, T )

]
= 0. (6.14)
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Now we associate to the vector (U + V + Z + T ) the segment

η(s) = (sU + V + Z + T ) for s ∈ [0, 1] ⊂ R,

which joins the vector (U + V + Z + T ) = (X + Y + Z + T ), which by hypothesis
is in Co

(
X̂E0 [M ]

)
, to the vector (V + Z + T ), which also belongs to Co

(
X̂E0 [M ]

)
,

by (6.3).
We observe now that the whole segment η(s) is contained in Co

(
X̂E0 [M ]

)
be-

cause

(
∇((sU)+V +Z+T )α

)
(((sU) + V + Z + T ) , ((sU) + V + Z + T ))

= 6
[(

∇(sU)α
)

(V, Z) +
(
∇(sU)α

)
(V, T ) +

(
∇(sU)α

)
(Z, T )

]
= (s)6

[(
∇U α

)
(V, Z) +

(
∇U α

)
(V, T ) +

(
∇U α

)
(Z, T )

]
= 0

by (6.14). So, for each s ∈ [0, 1], η(s) ∈ Co
(
X̂E0 [M ]

)
.

Remark 6.4. It is important to observe that conditions (6.3), (6.4), (6.5), (6.12),
and Lemma 6.3 also hold if we replace U with (sU) in all of them.

Then we have shown that if the vector (X + Y + Z + T ) ∈ Co
(
X̂E0 [M ]

)
exists,

then it can be joined to the point (V + Z + T ) ∈ Co
(
X̂E0 [M ]

)
by a segment which

is totally contained in Co
(
X̂E0 [M ]

)
.

There is now a small point to be made here, as Corollary 5.3 cannot be applied
to the vector (V + Z + T ) since V ∈ ∆⊥ and this is not an eigenspace. However,
it follows from Lemma 6.1 and Corollary 6.2 that

(rV + Z + T ) ∈ Co
(
X̂E0 [M ]

)
for r ∈ [0, 1] ⊂ R

because (rV ) ∈ ∆⊥ for all r ∈ [0, 1] ⊂ R; then the vector (V +Z +T ) can be joined
to one of the form (Y + Z) ∈ Co

(
X̂E0 [M ]

)
inside Co

(
X̂E0 [M ]

)
.

We have then the following theorem.

Theorem 6.5. Co
(
X̂E0 [M ]

)
is connected by arcs.

Now, if we had more than one connected component in X̂E0 [M ], then we
should have more that one connected component in Co

(
X̂E0 [M ]

)
because 0 /∈

Co
(
X̂E0 [M ]

)
. Then we have that X̂E0 [M ] is connected by arcs. The point E0 is

determined by our choice of x0 ∈ M+, and this choice was arbitrary, so we have
proved Theorem 1.1.
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7. Appendix

Here we prove first formula (7.2) for the shape operator used above.
We keep the previous notation, in particular H (E0) = 1

4 ∇F (E0). Let us take
U ∈ TE0(M); we have AH(E0) (U) =

(
− 1

4
) (

∇E
U (∇F )

)
, where ∇E is the Euclidean

covariant derivative in R2l. Let γ(s) be a curve in M with γ(0) = E0, parametrized
by arc length. By recalling (3.3) and evaluating on γ(s) we have to compute(

∇E
U (∇F )

)
(E) = d

ds

∣∣∣∣
s=0

(∇F (γ(s)))

for

∇F (γ(s)) = 4γ(s) − 8
m∑

i=0
⟨Pi (γ(s)) , γ(s)⟩ Pi (γ(s)) . (7.1)

We have d
ds

∣∣
s=0 γ(s) = γ′(0) = U , and also

d

ds

∣∣∣∣
s

⟨Pi (γ (s)) , γ(s)⟩ Pi (γ(s))

= 2 ⟨Pi (γ(s)) , γ′(s)⟩ Pi (γ(s)) + ⟨Pi (γ(s)) , γ (s)⟩ Pi (γ′(s)) ,

which evaluating at s = 0 yields
d

ds

∣∣∣∣
s=0

⟨Pi (γ (s)) , γ(s)⟩ Pi (γ(s)) = 2 ⟨Pi (E0) , U⟩ Pi (E0) + ⟨Pi (E0) , E0⟩ Pi (U) .

Hence
d

ds

∣∣∣∣
s=0

∇F (γ(s)) = 4U − 8
m∑

i=0
(2 ⟨Pi (E0) , U⟩ Pi (E0) + ⟨Pi (E0) , E0⟩ Pi (U)) ,

which dividing by 4 clearly yields

AH(E0) (U) = (−U) + 2
m∑

i=0
2 ⟨Pi (E0) , U⟩ Pi (E0)

+ 2
m∑

i=0
⟨Pi (E0) , E0⟩ Pi(U).

(7.2)

Now we establish formula (7.4), which is the objective of this Appendix.
We have the Cartan–Münzner polynomial F of M and we have to compute the

polynomial defining the planar normal sections. In order to do this we use the
formula proved in [3], that is,

Γ(X) = (−X)
〈
∇E

γ′(s) (∇F (γ(s))) , γ′(s)
〉
. (7.3)

Let E0 ∈ M = F −1(0) and let γ(s) be a normal section of M at the point
E0. Then γ is a curve in M , parametrized by arc length, such that γ(0) = E0,
γ′(0) = X, ∥X∥ = 1, and ∇X (γ′(s)) = 0. We use formula (7.3).

We have to evaluate ∇F (X) on γ(s), that is, again (7.1), and compute

∇E
γ′(s) (∇F (γ(s))) = d

ds
(∇F (γ(s))) .
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Using that the operators Pk are symmetric, we may write

∇E
γ′(s) (∇F (γ(s)))

= 4γ′(s) − 8
m∑

k=0
2 ⟨Pk (γ′) , γ⟩ Pk(γ) − 8

m∑
k=0

⟨Pk(γ), γ⟩ Pk (γ′) ,

and computing the inner product with γ′, we get〈
∇E

γ′(s) (∇F (γ(s))) , γ′ (s)
〉

= 4 − 8
m∑

k=0
2 ⟨Pk(γ), γ′⟩2 − 8

m∑
k=0

⟨Pk(γ), γ⟩ ⟨Pk (γ′) , γ′⟩ .

Now (−X)
〈
∇E

γ′(s) (∇F (γ(s))) , γ′(s)
〉

is just the derivative of the inner product
with respect to the parameter s of γ. We have

d
〈
∇E

γ′(s) (∇F (γ(s))) , γ′(s)
〉

ds

∣∣∣∣∣
s

= −8
m∑

k=0
4 ⟨Pk(γ), γ′⟩ (⟨Pk (γ′) , γ′⟩ + ⟨Pk(γ), ∇γ′ (γ′)⟩)

− 8
m∑

k=0
2 ⟨Pk(γ), γ′⟩ ⟨Pk (γ′) , γ′⟩

− 8
m∑

k=0
2 ⟨Pk(γ), γ⟩ ⟨Pk (∇γ′ (γ′)) , γ′⟩ .

Evaluating now at s = 0, we have γ(0) = E0, γ′(0) = X, and also ∇X (γ′) =
∇γ′ (γ′) = 0. Then we obtain

d
〈
∇E

γ′(s) (∇F (γ(s))) , γ′(s)
〉

ds

∣∣∣∣∣
s=0

= −48
m∑

k=0
⟨Pk (E) , X⟩ ⟨Pk(X), X⟩ .

Then, finally, our polynomial Γ(X) can be taken (eliminating the factor −48) as

Γ(X) =
m∑

k=0
⟨Pk (E) , X⟩ ⟨Pk(X), X⟩ . (7.4)

Therefore the condition for X ∈ TE0(M) to generate a planar normal section is
Γ(X) = 0.
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