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TWO CONSTRUCTIONS OF BIALGEBROIDS
AND THEIR RELATIONS

YUDAI OTSUTO

ABSTRACT. We generalize the construction of face algebras by Hayashi and
obtain a left bialgebroid 2(w). There are some relations between the left
bialgebroid 2(w) and the generalized Shibukawa—Takeuchi left bialgebroid A .

1. INTRODUCTION

The quantum Yang-Baxter equation (QYBE for short) [T} [13] 25] plays an im-
portant role in the study of bialgebras. Coquasitriangular bialgebras give birth to
solutions to the QYBE. On the other hand, Faddeev, Reshetikhin, and Takhta-
jan [8] introduced a construction of coquasitriangular bialgebras using solutions to
the QYBE. This construction has been generalized with the development of the
study of the QYBE and bialgebras.

The quantum dynamical Yang—Baxter equation (QDYBE for short), a gener-
alization of the QYBE, was introduced by Gervais and Neveu [9]. Dynamical
R-matrices, solutions to the QDYBE, give birth to h-bialgebroids introduced by
Etingof and Varchenko [7]. If the dynamical R-matrix satisfies a certain condition,
called rigidity, this h-bialgebroid has an antipode and is called an h-Hopf algebroid.

A set-theoretical analogue of the QDYBE is the dynamical Yang—Baxter map
(DYBM for short) introduced by Shibukawa [19] [20]. The DYBM is a generaliza-
tion of the Yang—Baxter map [6] [24] suggested by Drinfel’d [5]. Shibukawa and
Takeuchi studied a construction of left bialgebroids by using DYBMs in [22] [2T].
A left bialgebroid A, is obtained by this construction. If the solution o satisfies
rigidity, then A, becomes a Hopf algebroid with a bijective antipode. The notion
of left bialgebroids (Takeuchi’s x r-bialgebras) was introduced in [23]. This is a
generalization of the bialgebra using a non-commutative base algebra R. Its co-
multiplication and counit are (R, R)-bimodule homomorphisms. Schauenburg [17]
proposed a Hopf algebraic structure on the left bialgebroid without an antipode,
called a x p-Hopf algebra. As a special case of the x z-Hopf algebra, Bohm and
Szlédchanyi [4] introduced the Hopf algebroid, which has a bijective antipode.

2020 Mathematics Subject Classification. Primary 16T05, 16T10, 16T20; Secondary 05C20,
05C25.

Key words and phrases. Left bialgebroids, Hopf algebroids, weak bialgebras, weak Hopf alge-
bras, Hopf envelopes.

339


https://doi.org/10.33044/revuma.2296

340 YUDAI OTSUTO

On the other hand, Hayashi [I0] introduced the notion of face algebras. In [I1],
a coquasitriangular face algebra 2((w) was constructed using a solution w to the
quiver-theoretical QYBE. In addition, if a coquasitriangular face algebra is clo-
surable, this face algebra has a Hopf closure, which is a Hopf face algebra satisfying
a certain universal property. Hayashi [11] constructed this Hopf closure by using
the double cross product and the localization of the face algebra. Later (Hopf) face
algebras were integrated to weak bialgebras (weak Hopf algebras) by Bohm, Nill,
and Szldchanyi [3]. Bennoun and Pfeiffer mentioned the Hopf closure (they called
it the Hopf envelope) of the coquasitriangular weak bialgebra in [2]. Schauen-
burg [I8] showed that a weak bialgebra (weak Hopf algebra) is a left bialgebroid
(x p-Hopf algebra) whose base algebra is Frobenius-separable. Conversely, a left
bialgebroid (x g-Hopf algebra) becomes a weak bialgebra (weak Hopf algebra) if
its base algebra is Frobenius-separable.

There is an interesting relation between Hayashi’s construction of face algebras
and Shibukawa—Takeuchi’s construction of left bialgebroids. If the parameter set A
of a DYBM o is finite, the left bialgebroid A, becomes a weak bialgebra since the
base algebra M consisting of maps from A to a field K is a Frobenius-separable
algebra over K. Matsumoto and Shimizu [I2] showed that the DYBM o gives
birth to a solution w, to the quiver-theoretical QYBE and gave a weak bialgebra
homomorphism ¢ from A(w,) to A,.

Shibukawa and the author generalized the construction of [22] 2I] to get a left
bialgebroid (Hopf algebroid) A, that is not a weak bialgebra (weak Hopf algebra)
from a DYBM with a finite parameter set A. In [I6], we generalized M to an
arbitrary K-algebra L.

It is natural to try to get a left bialgebroid 2((w,) corresponding to the general-
ized left bialgebroid A,.

The purpose of this paper is to discuss relations of two constructions of left
bialgebroids by extending Matsumoto-Shimizu’s homomorphism. Let R be an ar-
bitrary K-algebra, and we denote by M the K-algebra consisting of maps from A
to R. We try to generalize Hayashi’s construction to gain a left bialgebroid 2(w, )
corresponding to the generalized A, with the base algebra L = M and construct
a left bialgebroid homomorphism ® from 2(w,) to A,. In order to be able to
investigate properties of this ® easily, we specify a necessary and sufficient condi-
tion for bijectivity. This condition is very useful because it is unnecessary to see
elements in A,. If M is a Frobenius-separable K-algebra, the left bialgebroid A,
in [16] is a weak bialgebra. We also show that this A, becomes the Hopf closure
of A(w,) through @ if the collection o of elements in M is rigid. We expect that
this conclusion will pioneer the study of the Hopf closure of a left bialgebroid with
the non-commutative base algebra.

In [I5], we construct a left bialgebroid l(w) generated by two kinds of elements

B T e e

to generalize A(w) in [II]). The left bialgebroid A, with the base algebra M
induces l(w,) := YU(w) and we can construct a left bialgebroid homomorphism
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TWO CONSTRUCTIONS OF BIALGEBROIDS AND THEIR RELATIONS 341

o' (w,) = Ay. This @' is always bijective and it is equivalent to saying that
(w,) and A, become Hopf algebroids.

The paper is organized as follows. In Section [2| we review relations between
left bialgebroids (Hopf algebroids) and weak bialgebras (weak Hopf algebras) fol-
lowing [4] and [I8]. In Section |3} we recall a left bialgebroid (Hopf algebroid) A,
with the base algebra M from [16] and introduce a left bialgebroid A(w) as a gen-
eralization of [L1]. The weak bialgebra 2(w) as in [I1] has the base algebra M as
a left bialgebroid. We generalize M to M like the above left bialgebroid A,. If
the family w of elements in R is rigid, this 2A(w) becomes a Hopf algebroid. In
Section {4}, we induce a left bialgebroid 2(w) := 2A(w) by using the setting of the
left bialgebroid A, and construct a left bialgebroid homomorphism ® from 2(w, )
to A,. As a point of difference between [12] and this paper, we do not use DYBMs
to construct these 2(w,) and ®. We also give an example of the left bialgebroids
Ay, U(wy) and @ not using the DYBM. This @ is bijective if and only if the family
w satisfies a part of the condition for rigidity (see Theorem [4.5)). In Section [5] if
the K-algebra R is a Frobenius-separable K-algebra and A, is a weak Hopf algebra,
then 2A(w, ), A, and ® satisfy a certain universal property, called the Hopf closure.
For this purpose, we introduce the notion of the antipode as a generalization of the
antipode in the weak Hopf algebra theory and of Hayashi’s antipode with respect
to the face algebra in [II]. We can characterize weak bialgebras and generalize
Hopf envelopes in [2] by using these antipodes.

2. PRELIMINARIES

In this section, we recall the notion of left bialgebroids (Hopf algebroids) and
discuss relations with weak bialgebras (weak Hopf algebras). If the base algebra
of a left bialgebroid is a Frobenius-separable algebra, the total algebra has a weak
bialgebra structure. In addition, the total algebra is a weak Hopf algebra when the
left bialgebroid becomes a Hopf algebroid. For more details, we refer the reader
to [4] and [I§].

Throughout this paper, we denote by K a field.

Definition 2.1. Let A and L be K-algebras. A left bialgebroid (or Takeuchi’s X p -
bialgebra) Ay, is a sextuplet Ay, := (A, L,sp,tr,Ap,mr) satisfying the following
conditions:

(1) The maps s;.: L — A and t5,: L°? — A are K-algebra homomorphisms
and satisfy

SL(l)tL<ll) = tL(l/)SL(l) (Vl,ll S L) (2.1)

Here L°P means the opposite K-algebra of L. These two homomorphisms
make A an (L, L)-bimodule 1 Ay, by the following left and right L-module
structures A and Ay:

tA:l-a=sp(Da; Ap:a-l=tr(l)a (1€ L,ac A). (2.2)
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(2) The triple (AL, Ap,7r) is a comonoid in the category of (L, L)-bimodules

such that
amtr(l) @ ag = ap) @ ags(l); (2.3)
Ap(lg) =14 ®14; (2.4)
Ar(ab) = Ap(a)Ar(b); (2.5)
mr(1a) =1p; (2.6)
w1 (asp (mr (b)) = 71 (ab) = m(at (mr, (b)) (2.7)

for all | € L and a,b € A. Here we write Ar(a) = ap) ® ajg), known as
Sweedler’s notation. The right-hand side of is well defined because
of .
We write A;, = (A, L, s?,t8, A4, 78 if there is a possibility of confusion. For a
left bialgebroid Ay, these K-algebras A and L are called the total algebra and the
base algebra, respectively.

Definition 2.2. Let Ap, = (A, L,sp,ty,Ap,mp) and Ay, = (A", L', sp,tr, Ap,
7r) be left bialgebroids. A pair of K-algebra homomorphisms (®: A — A’ ¢: L —
L’) is called a left bialgebroid homomorphism Ay, — A/, if and only if

sppop==>osy; (2.8)
tprop=>®otr; (2.9)
T o® =¢omy; (2.10)
A o®d=(2d)oAy. (2.11)

The map @ P : A®yp A — A’ @1 A’ makes sense because of (2.8) and (2.9).

Let Ap, := (A,L,sp,tr,Ar,7) be a left bialgebroid and N a K-algebra iso-
morphic to the opposite K-algebra L°P. We suppose that A has a K-algebra anti-
automorphism S satisfying

SOtL:SL; (212)

S(a[l])a[gl = (tp o 0 S)(a) (2.13)

for all @ € A. The left-hand side of (2.13) makes sense because of (2.12). We

fix a K-algebra isomorphism w: L°? — N. Then A has left and right N-module
structures ¥ A and A" through the following actions:

NA:n-a=a(spow™)(n); AN:a-n=a(Sospow )(n) (a€ A neN).

(2.14)

By virtue of (2.12)), these two actions (2.14) make A an (N, N)-bimodule. We can
also define two K-linear maps Sag, 4 and Sagya by

SA®LAZA@LABG(@()}—)S(Z))@S(G)EA@NA; (2.15)

Sagna: AN AD>ab— S(b)®S(a) € ARy A. (2.16)

Definition 2.3. Let (Ap,S) be a pair of a left bialgebroid .4, and a K-algebra
anti-automorphism S: A — A satisfying (2.12) and (2.13). Suppose that Sagya
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has the inverse SZéNA. We say that the pair (Ag,S) is a Hopf algebroid if and
only if

SA®LAOALOS_1:SZQ1§NAOALOS; (2.17)
(AL®idA)OAN:(idA®AN)OAL; (218)
(AN®idA)OAL=(idA®AL)OAN. (219)

Here we define Ay = Sag, 4 0Ar oS™L. The map S is called an antipode.
We next introduce the notion of weak bialgebras and weak Hopf algebras.

Definition 2.4. Let B be a K-algebra endowed with a K-coalgebra structure by
A: B - B®g B and e: B — K. We say that a triple B := (B, A,¢) is a weak
bialgebra if the following conditions are satisfied:

A(ab) = A(a)A(b); (2.20)
AMDI®AQ) =111l 1lg =1 A1)(A(l)®1); (2.21)
e(ab(1))e(b(z)c) = e(abc) = e(aba))e(beryc) (2.22)

for all a, b, c € B. Here we write simply 1 = 15 and use Sweedler’s notation, which
is written by

A(CL) = a(1)®a(2) and ((A@idB)OA)(a) = a(1)®a(2)®a(3) = ((idB(X)A)OA)(a).

In order to avoid ambiguity, we write Ag = A and eg = ¢ as needed. The biop-

posite weak bialgebra BP°P of B can be defined similar to the ordinary bialgebra.
Let B’ be a weak bialgebra. A K-linear map f: B — B’ is called a weak bialgebra

homomorphism if f is a K-algebra and K-coalgebra homomorphism.

We introduce two maps €5, €:: B — B defined by
Es(a) = 1(1)6((11(2)); (223)
ei(a) = e(1qya)ly (a € B).

These maps €5 and €; are respectively called the source counital map and the target
counital map.

Lemma 2.5. The maps 5 and &4 satisfy
€s0Es =Es, EtO0E&L=E;
es(lp) =e(1p) = 15. (2.24)
Lemma 2.6. For an arbitrary element a in a weak bialgebra B,
Layes(aliy)) = es(a), e(laya)ly = eila);
Ales(a)) = 1) ® es(a)lz) = 11) @ Liz)es(a); (
Afei(a)) = ei(a)lqy @ 1oy = L(nyer(a) @ 1iay; (
am) ®es(ae) =ala) ®es(le), elaq)) ®awe) =et(la)) ® Lgya; (2.27
esla) ®a@) =10) ®ale), an) @elae) =10)a® Le). (
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Lemma 2.7. We denote by B a weak bialgebra. For any a,b € B,
es(a)er(b) = e(b)es(a); ( )
e(ab) = e(es(a)b), e(ab) = e(aei(b)); (2.30)
gs(ab) = es(es(a)b), e¢(ab) = er(asy(h)); (2.31)
es(a)b = b(l)fs(ab@))a ag(b) = st(a(l)b)a(g); ( )
es(a)es(b) = es(ags (b)),  er(a)er(b) = er(ee(a)d.

Definition 2.8. A weak bialgebra H with an K-linear map S: H — H is called a
weak Hopf algebra if and only if

S(hy)he) = es(h);
h(l)S(h(g)) = Et(h);
S(ha))h@)S(hs) = S(h)
are satisfied for all h € H. This S, also called an antipode, is unique if it exists.

If there is a possibility of confusion, we write SWHA for the antipode of a weak
Hopf algebra and SHAP for an antipode of a Hopf algebroid.

Let us recall the notion of Frobenius-separable K-algebras to discuss relations
between the left bialgebroid and the weak bialgebra. A Frobenius-separable K-
algebra is a K-algebra L equipped with a K-linear map ¢: L — K and an element
eM @e® e L @k L such that

I =p(leM)e® = eMy(e?]), eMe® =1, (VIeL).
This pair (1, eM @ 6(2)) is called an idempotent Frobenius system.

Proposition 2.9 (See [I8, Theorem 5.5]). Let A, = (A, L, sy, tr, Ap,7r) be a left
bialgebroid. If the base algebra L is a Frobenius-separable K-algebra with an idem-
potent Frobenius system (w,e(l) ® 6(2)), then the total algebra A has the following
weak bialgebra structure (A, A, ¢€):

Aa) = tr(eM)ap @ sp(e®)agy; (2.33)
g(a) = @omp)(a) (acA). (2.34)

Under the conditions of Proposition [2.9] we suppose that the left bialgebroid Ay,
has an antipode SHAP . Then it is important to discuss whether the weak bialgebra
A becomes a weak Hopf algebra or not. Schauenburg [I8] solved this problem
when Ap, is a xp-Hopf algebra, which is a generalization of the Hopf algebroid.
We briefly sketch a special case of Corollary 6.2 in [I§].

For the total algebra A of a Hopf algebroid (Ar, STAP), we can define another
left N-module structure y A by

SHAD 5 5, ow™(n)a (a€ A, neN).

Then the tensor product A @ y A has two meanings depending on left actions ¥ A
and yA. In order to avoid misunderstandings, we specify these actions by AN @V A
and AN @ A. For example, the tensor product A®y A in (2.15) and (2.16)) stands
for AN @N A.

NA:n-a=(
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Proposition 2.10 (See [4, Proposition 4.2 (iv)]). Let (A, STAP) be a Hopf alge-
broid. Then the following K-linear map o is bijective with the inverse o™ ':

a: AN @y A3 a®@br ap ®apbe AR A;
a i AeL Asa®be at @ SHAP () e AN oy A.
These maps make sense by virtue of ([2.12). Here we write Ay (a) = al¥ ® al?.

Proposition 2.11 (See [I8, Corollary 6.2]). Let Ay, = (A, L,sp,tr,Ap,m) be
a left bialgebroid satisfying the conditions of Proposition . If (Ap, SHAD) s q
Hopf algebroid, then the total algebra A becomes a weak Hopf algebra whose antipode
SWHA s defined by

SWHA () = £,(aM)STAP(42) (4 € A).
This SWHA makes sense because of a~ and the following K-linear map:
B: AN @n ADa®@brs eg(a)b € A.
This B is well defined because of and .

3. TWO LEFT BIALGEBROIDS 2(w) AND A,

3.1. Summary of left bialgebroid A,. In this subsection, we recall a left bial-
gebroid A,. For more details, we refer the reader to [16]. This is a generalization
of [21].

Let R be a K-algebra and A a non-empty finite set. Let G denote a subgroup
of the opposite group of the symmetric group on the set A. We can define a right
group action of this group G on the set A:da = a(A) (A € A, @ € G). We denote
by M the K-algebra consisting of maps from A to R. For any a € G, the map
To : M — M is defined by

Toa()A) = f(Aa)  (f € M,AeA).

The map T, (o € G) is a K-algebra homomorphism such that T, o T,-1 = iday.
Let deg be a map from a finite set X to the group G. Define

AX := (M @g M°P)U{La | a,b € X}U{(L Y)ap | a,b € X}

Let 033 € M be a collection of elements for a, b, c,d € X, and we denote by K(AX)
the free K-algebra generated by the set AX. The symbol I, means the two-sided
ideal of K(AX) whose generators are:
(1) €+€ = (€+€), c€ — (c€), &€~ (€¢) (Ve € K, VE,€' € M @y M),
Here the notation £ + &’ stands for the addition in the algebra K(AX),
while the notation (£ + &’)(€ AX) is that of the algebra M ®g M°P. The
other two generators for the scalar multiplication and multiplication are

similar.
(2) Z Lac(L_l)cb - 5a,b®a Z(L_l)achb - 5a,b® (Va, be X)
ceX ceX

Here 6, € K (a,b € X) means Kronecker’s delta symbol and {) means the
empty word.
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( ) (Tdeg(a ( )® 1M) (
(11 @ Taegv) (f)) Lab — Las(1ns @ f),
(f®1M)( - )ab_( ) b(Tdeg b)( )®1M)a
(1M®f)( ) ( ) b(1M®Tdeg(a)<f)) (VfEM, Va,bEX).
@) Y (0% @1m)Lyalay — Y (I @ 0%%)LeyLax  (Va,b,c,d € X).
z,yeX z,y€X
(5) 0 =1y ®1n.

Theorem 3.1 (See also [16, Theorem 2.1]). If the following conditions are satisfied,
then the quotient A, := K(AX) /I, is a left bialgebroid whose base algebra is M.

0% (\) € Z(R) (VA€ A, Va,b,c,d € X);
Adeg(d) deg(b) # Adeg(c) deg(a) = o24(\) = 0.
Here Z(R) is the center of R.

f® 1),

(3.1)

Proof. Tt is sufficient to show that the condition (3.1)) implies

00N (Taeg(d) © Taegv) () = (Taeg(e) © Taeg(a)) (f)obe

for any f € M and a,b,c,d € X (see (11) in [16]).
We suppose that Adeg(d) deg(b) = Adeg(c)deg(a). By using the first condition

in ,

(008(Tacg(ay © Tacg(®)) (f))(A) = 008(A) (Tueg(a) © Tacg(v))
= g0t(A) f (A deg(d) deg(b)
= f(Adeg(d) deg(b))aoa(X
= f(Adeg(c) deg(a))opa(A

(Tdeg(c o Tdeg(a))( )( ) ( )
((Tdeg(r) OTdeg(a))( ) )( )
If A deg(d) deg(b) # Adeg(c) deg(a), then the second condition in induces that

(054 Taeg(a) © Taeg(v)) () (A) = f(Adeg(d) deg(b))aoa(N)
=0
= f(Adeg(c) deg(a))oge())
= ((Taeg(c) © Taeg(a)) (F)oab)(N).

Therefore the left bialgebroid A, can be constructed by using the condition (3.1).
O

()N
)
)
)

From now on, we will introduce sy, tyr, Apr, and mp; in order to construct the
left bialgebroid A, .
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The maps spr: M — A, and tp;: M°P — A, are defined by

sm(f)=f@ 1y + Iy;
tu(f)=1lu® f+1, (feM).

These are K-algebra homomorphisms and satisfy (2.1). Thus A, is an (M, M)-

bimodule via (2.2)).
Let Iy denote the right ideal of A, ®x A, whose generators are tp(f) ® 14, —

La, ® s (f) (Vf € M). The K-algebra homomorphism A: K(AX) — A, ®x A,
is defined by

A =sy@tm(§) (£ €M g MP);

Z(Lab) = ZLac+Ia'®ch+Io' (a,bGX);
ceX

Z((Lil)ab) = Z(Lil)cb +1, ® (Lil)ac + ;.
ceX

This map A satisfies A(I,) C I. Thus the K-linear map Ao+ I,) = A(a) + I
(o € K(AX)) is well defined. Since A, Qg A,/I2 = A, @y Ay as K-vector spaces,
we can induce the K-linear map Aps: A, — A, @y Ay from the map A. This VANY;
is an (M, M)-bimodule homomorphism.

The next task is to define the map mp;: A, — M. The K-algebra homomorphism
X: K(AX) — Endg (M) is defined by

X(f®g)(h) = fhg (f,g,h €M)
Y(Lab) = 5a,deeg(a);
y((Lfl)ab) = 5a,deeg(a)_1 (a, be X)

Because Y (I,) = {0} is satisfied, the map x(a + I,) = X(a) (o € K(AX)) makes
sense and is a K-algebra homomorphism. We define the map 7y, by

v Ay D a x(a)(1y) € M. (3.2)

This 7y is an (M, M)-bimodule homomorphism.

The triplet (A,, Ay, mar) is a comonoid in the tensor category of (M, M)-
bimodules. Since the maps Ajp; and 7y, satisfy the conditions 7, the
sextuplet (A,, M, spr, tar, Apr, mar) is a left bialgebroid.

Let 0 = {0%} 4 b.c.dex- This left bialgebroid A, has a Hopf algebroid structure
if o satisfies a certain condition, called rigidity.

Definition 3.2 (See [16, Definition 4.2]). The family o = {0%}, 4 .c.acx is called
rigid if and only if, for any a,b € X, there exist elements x4, yop € A, satisfying
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the following conditions:

Z((Lil)cb +Is)Tac = apla,;

ceX
Z xcb((L_l)ac + Io‘) - 5a,b1Aa; (33)
ceX

Z(ch + 15)Yac = dapla,;

ceX

Z ycb(Lac + Io’) = 5a,b1AU~

ceX

Proposition 3.3 (See [16, Proposition 4.1]). The following are equivalent:

(1) o is rigid.
(2) There exists a unique K-algebra anti-automorphism S: Ay — A, satisfy-
ing

S(fegt+l,)=g9gxf+1, (f,ge M)
S(Lap +1,) = (L YHap + 1, (a,be X).

Proposition 3.4 (See [16, Proposition 4.2]). If o is rigid, then the pair (As, S) is
a Hopf algebroid for N = M°P and w = idy,.

3.2. Left bialgebroid 2(w). In this subsection, we introduce a left bialgebroid
A(w) as a generalization of [II]. Similar to the above left bialgebroid A,, this A(w)
has a Hopf algebroid structure if the collection w of elements in R satisfies rigidity
(see also [15]).

Definition 3.5. Let A be a non-empty set. A set ) endowed with two maps
s5,t: Q — A is said to be a quiver over A. These maps s and t are respectively
called the source map and the target map. For a non-negative integer m, we define
the fiber product Q™ by

QY = A,
QY=g
Q"™ :={q=(q1, - qm) € Q™ | q) = s(qit1) Vi € {1,...,m —1}} (m>1).

The set Q™) (m > 0) is a quiver over A with s(q) = 5(q1), t(q) = t(gm). Q® is
also a quiver over A by s =t = id,.

Let A be a non-empty finite set, and @ a finite quiver over A. We denote by
&(Q) the linear span of the symbols e [ﬂ (p,qe Q™ , me Z>p):

6(Q) = b Kem .

q
P,q€EQ™) , mEZLxo
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This &(Q) is a K-algebra by the following multiplication:

p| [P pp
e [q} e {q’} = O4(p),s(»")Ot(q),5(a")© [qq’} ;

A
lo@ = ) e{ }
A HEA H
for p,g € QM) p',¢ € QM and m,n € Zso. Here 65, € K (\,u € A) means
Kronecker’s delta symbol. For a K-algebra R, let w [c Z b] € R be a collection

of elements for (a,d),(c,d) € Q?. We write J,, for the two-sided ideal of the
K-algebra 9(Q) := R ®k R°? @k &(Q) whose generators are

> owlely] ®1R®e[ﬂem

(z,9)€Q®

- Y ew|[s de emem (V(a,b), (c;d) € Q@) (3.4)
(z9)€Q® Y
We define 2(w) by the quotient 2(w) := H(Q)/Tw-

Theorem 3.6. If the following conditions are satisfied, then 2(w) is a left bialge-
broid whose base algebra is M :

w [c Z b} € Z(R) (¥(a,b),(c,d) € Q(z));
s(a) # s(c) or t(b) # t(d) = w {c Z b] _o.

We split the proof of Theorem [3.6] into multiple steps.
The maps spr: M — A(w) and tpr: M°P — A(w) are defined by

su(f) =) f(/\)®1R®em + Jw;

A UEA

(3.5)

ul o~
tu(f)= Y 1r® f(N) ®€N +3w (f€M).
A UEA

These maps are K-algebra homomorphisms satisfying . As a result, A(w) is
an (M, M)-bimodule by the actions (2.2)).

Let J2 denote the right ideal of 2(w) @k A(w) whose generators are tp(f) ®
Low) = lagw) @ sm(f) (Vf € M). In order to construct the map Ay, we define
the K-linear map V: H(Q) — 2(w) ®x A(w) by

V(r@r’@e{ﬂ) :UE%(:M(T@lR@e[Z] +JW) ® (1R®7"®e[ﬂ +3w)

for 7,7 € R, p,q € Q) and m € Z>o. The following proposition plays an
important role in order to construct Aps. In the proof, we use a map ry € M
(Vr € R) defined by rg(A) =r (A € A).
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Proposition 3.7. The map V is multiplicative and V(Jy) C Ja.

Proof. We first show that V preserves the multiplication of the K-algebra $(Q).
Let m and n be non-negative integers. For all 7,7/, s,s’ € R, p,q € Q™) p/, and
¢ €QM,

/

V((r@r'@e[p]) (s@s’@e{p/}))
q q
'] |~
= 0p)s) O ala) D (’“5 ®lp® e{ } + Jw)
yeQ(m+n) Yy
® (13 ®s'T® e[ y,} + 3w>
qq

Py’
= Z (rs ® 1r ® Oy(p),s(p) Ot(u),5(v) [uU:| * jw)
ueQ(™

’UEQ(n)
®(1R®ST ®5t(q ),5(q’)€ |: :|+j)

:( S (r®1R®em+3 o (tner ®eH+3 ))

u€Q(m)

X (ve%;m(sg)l}%@e{ﬂ +3w) ® (1R®s’®eB] +fiw)>
:V(r@r’®e[ﬂ)v(s®s’®e[§:]).

Let us check that V(a)B € Jg for any a € H(Q) and B € Ja. Since V is

a K-linear map, we have only to prove this fact when @ = r @ ' ® e{g ] and

B=1tam(f) ® Low) — law) @ sm(f) (f € M):

Vi= ¥ ((retmee]] o) (ersel +.))

ueQ('m)
A, T, VEA
<<1R®f( [ } +3w>®1m(w)
T
~Tag) @ (F(7) @ lagw H +3w))

-y (r@f(f(U))@ve{p] +3u) @ (1R®r’®em +3u)

u
ueQ(m)

_ <r®13®em +3‘w) ® (f(t(u))@r’@em +Jw)
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>

uEQ(m)
A, T, VEA

e (e mec]] +22)

((1re fa) @e [‘;

X <<r®13®e

D (tar(f(t(w))

u€Q(m)

5 +Jw) ® <IR®T'®e

X ((r®13®e

P +jw) ® (1R®T/®e Y
LU L9

] + jw> ® lQI(w)
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+ SW)) € Js.

351

In order to complete the proof, we need to show that V(v) € J, for an arbitrary

generator 7 as in (3.4). For any (a,b), (c,
equality by using the definition of Jy:

i

d)

(z,9)€Q® (z,9)€Q®

x _m'
(W[aby]@lR@e e
(%,y),(u,0)€Q? K

>

(z.9),(u,v)EQR)

>

(,9),(u,0)€EQM

>

(z.9),(u,0)€QP

>

(,9),(u,0)€EQM

(1R®1R®e|:a:|e
u

(tnow[-1+] oef:
Yy 1]

(1R®1R®eme_; +3u) @ (wleoo]

(tar ([,

> wleps]oteelllol)] - X tmow[+) ] se|
HEEDEIUEITEN
o) (me o) o]
|| +3v) & (1w 1nee|

R1lp®e

S

|
ARk

1] @ oo o [+4])

X ((1R®1R®emem +3w) © (1R®1R®emem +3w)) €T

Thus this proposition is proved.

By this proposition, V induces a K-linear map @(a +7J
5(Q)).

w):

construct the K-linear map Aps: A(w) — A(w) ®pr A(w) from the map V.
The next task is to construct the map mpr: 2A(w) — M. By using the map
dr € M (VA € A) defined by dx(p) = 0x,p (0 € A), we define the K-linear map

¢: H(Q) — Endg (M

) as follows:

c(rar oeP)) () = b (rft@)) (€00

€ Q¥ we can induce the following

O

V(a)+ 732 (a €
Since A(w) @k W(w)/To = A(w) @ A(w) as K-vector spaces, we can
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Proposition 3.8. The map C is a K-algebra homomorphism and {(Jw) = {0}.

Proof. We first check that ( is a K-algebra homomorphism. For all r,7/, s, s’ € R,
p,q € Q(m)’ plvq/ S Q(n)’ and f S j\l7 we have

/

= ’ p ’ p
C((r@r ®e{q])(s®s ®e{qlb)(f)
= pp’
= i a0 C (rs @ 8 D e {qq’] )
= 04(p),5(0") Ot(),5(a")Op,a0p" (TSf (t(q’))S’T’) Os(a)

and

/

(C(rere e[g])g(s . e[g,]))m
= p

= oyal(rar e M ) (7@ 05001

= Spadyq ({7 ()b ) (a)r') St

= 0¢(g),5(¢) Op.a0p’ .’ (rsf(t(q'))s/r/)ﬁés(q).
Iftp=gq, p =4¢, and t(q) = s(¢’), then we can deduce that t(p) = s(p’). Thus this
( is a K-algebra homomorphism. B

We next prove that ((Jy) = {0}. Since the map ( is a K-algebra homomorphism,

it suffices to show that ((y) = 0 for any generator v as in (3.4). We denote by f
an arbitrary element in M. By using the first condition in (3.5)),

{Fartideme Ml x werbidef}])o
= (w [a : d} f(t(d)))ﬁés(c) - (f(f(b))w [“ : d])ﬁfss(a)
b

- (w [a d} f(t(d)))ﬁés(c) - (w [aZd] f(f(b)))fs(a)

for all (a,b) and (c,d) € QP). If w [a Z d} # 0, then s(a) = s(c¢) and t(b) = t(d) are
satisfied because of the second condition in (3.5). This completes the proof. O

As a result of this proposition, the map ((a + Jyw) = ((a) (@ € H(Q)) is a
well-defined K-algebra homomorphism. We define the map 7, by

ma: A(w) 3 a C(a)(ly) € M.
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Proposition 3.9. The triplet (A(w), Apr, war) is a comonoid in the tensor category
of (M, M)-bimodules.

Proof. We first check that the map Ay is an (M, M)-bimodule homomorphism.
Let ®)s denote the tensor product of A(w) @y A(w). For any f,g € M, r,r’' € R,
p,q € QU and m € Zsy,

f'AM<r®r'®e[p] +3w) g

q
_ue%;M(SM(f)(T@lR@e[ } + w)) ( (1R®T ®em +3w)>
:%%;m)(f( s(p ))r®13®e{ ] + w)@ (1R®r9( (q ))®em +3w)
= A (fls)r @ 'gls(a) @ e [§]+ )

— (7 (rer'mel?] +3.) g),

We next prove that the map 7wy is an (M, M)-bimodule homomorphism. For
any f?g € M7 7",7" € Ra p,q € Q(m) and m - ZZO’

fmu ('r @r'®e [ﬂ + Jw) g = 0paf (r7)4905(q)-
On the other hand,
Ty (f (reree [ﬂ + Jw) “g9)=Tum (f(s(p))r ®@1'g(s(q)) @ e[ﬂ + jw)
= b0 (£(5(2)r7'9(5() ) )sdi(e)
Suppose p = ¢q. For all A € A,

((f(s(p))rr’g(5(0)))20s(a)) (N) = F(s(p))r"9(5(P))ds(p).x
= f(N)rr'g(A)dsp),x
= (F(rr")190s()) (A)-

Thus 7y is an (M, M)-bimodule homomorphism.
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Let us prove that (A(w),An,7as) is a comonoid in the tensor category of
(M, M)-bimodules. We have

(20 @ ita) o dur) (re o' ef!] +30)

— Z (Z (r®1R®eEj+3w>®1v1(13®1R®e[ﬂ+5w)>

weQ(m) pe(m)
QM (1R ®re® e[u} + Jw)
q

3 (r®1R®em+3w)®M( 3 (1R®1R®em+jw)

UEQ(’”) uEQ(m)

Rum (1R®r’®em +jw))

((id%(w) ® Apy) o AM) (7' @r'ee [ﬂ + Jw).

We writea = r7®7' ®e [ﬂ +Jw. By using Sweedler’s notation Ays(a) = ajy ®ajy,

we get
A u
(SM o WM)(a[l])a[g] = Z 6p,u((7")j55(u)>()‘) ®R1p® 6[ :|) <1R Qr ® e|: :|) + Jw
we@(™ H 1
A pEA
— Z 6$u(r®r'®e{ub+3w
ueQ(m) q

r®r’®em + Jw-
The proof for (£ o mar)(agz))ap) = a is similar. This is the desired conclusion. [

Proposition 3.10. The maps Ay and wpr satisfy the conditions (2.3)—(2.7).
Proof. We first show (2.3). For any r,7’ € R, p,q € Q™) , and m € Z>¢, we write

a=rr' e 2 4+ Jw. Let f be an arbitrary element in M. We can evaluate that
apyta (f) ®ur ap
p ’ u ~
= Z (r@f(t(u)) ® M +3w) Qm (1R®r ® L] +Jw)

UEQ(”")

= % i (reine ] <) ou (e s [!] +2)

= Y (rewe m +3w) @ su(F()) (1r @7 @ m +3w)

u
ueQ(m)
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= Y (r® 1 ® m +3‘w) @M (f(t(U)) ®r'® m +3w)
ueQ(m) Y 1
= ap) ©u agsm(f)-

Therefore (2.3)) is satisfied.
We next prove (2.4). Let ®k be the tensor product of A(w) ®x A(w) and ®ps

that of 2(w) @ A(w). For any A € A,

T2 2 tar(x) @k law) — law) @k sar(0x)

S (1R®1R®em +3w) &K (1R®1R®em + )

w, T, VEA
—n’e’z:UEA<1R®1R®e|:Z:| —|—3w) Rk <1R®1R®e[ﬂ —l—jw)
= M;A(1R®1R®em +3w) ®x (1R®1R®e[j] +Jw)
—U;A(lfg@ 1R®em +3w) @x (1 @ 1R®em +3)
+ Z (1R®1R®e|://<] +3w) QK (1R®1R®e|:7—:| +jw)
BT ’
-y (1R®1R®em +w) ®x (1R®1R®em +3)
g
= Z (1R®1R®em +Jw) ®K (1R®1R®em +3w>
w, T, VEA
A#AT

A
- <1R®1R®e|:;]:| +Jw) ®x <1R®1R®e[ } +3w).
n,0,vEA v
Ao£0

Because Js is a right ideal,

J2 2 Z (tM(5A) ®K Law) — Law) Ok SM(5A)) (<1R ®lr®e B} + 3w) ®K 191(w))
YEA

.
= > (wewnwe 5Mem +3w) @ (lr @ 1n e eu +3)
BT v, Y EA
AFET

- Z (1R®1R®577U6A’0e|:z:| +jw> ®]K (1R®1R®e|:2:| +3W>
n,e,)\l;,é'gel\
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- ¥ (1R®1R®em+Jw)®K(1R®1R®e{]+3)

M, VEA
AFET

Since A(w) @ A(w) /T2 = A(w) @ A(w) as K-vector spaces, we can deduce that
Z <1R®1R®em+3w)®M(1R®1R®e[]+3 ) (3.6)
w, T, VEA

AFET

By using the above conclusion, the left-hand side of (2.4) can be evaluated as
follows:

Anv(law) = Y (1R®1R®em +Jw) ®um (1R® 1R®em +3w)

A, TEA

A v .
+ Y (wetree| | +3) eu (lneiree| | +3y)
T [
A\ p, T, VEA
TH#V
A v -
= > (1R®1R®e +3w) ®Mm (1R®1R®e +Jw).
A\, T, VEA T H
Thus (2.4) is proved.

The proof for (2.5) is similar to that of multiplicativity of the map V.
Let us prove (2.6). Because 1g(g) = Zx,ﬂeAem? we have

M (Low)) = Z WY

A EA

225)\21]\/[.

Finally, we give the proof of (2.7)). Because ( is a K-algebra homomorphism, it
is sufficient to prove that ¢(a)(1ar) = C(sp(mar(a)))(1ar) = C(tar(war(a)))(1as) for
all a € A(w). Let .7’ € R, p,q € QU™ and m € Z>y. We can evaluate that

C(SM (FM(T®7" ®e{§] +jw)))(1M)
=> 5p)qg(rr’ ®1lp®e [S&q)] + Jw) (1)
AEA
= 5197«1(7’7’,)1155((1)
_ g(r@r/ ®e[ﬂ +3w)(1M).
The proof for §(tM(ﬂ'M(r®r’®e[]qg] +3w>)>(1M) = C(r@r’@e{g] +3w)(1M)
is similar. Thus we conclude (2.7). This completes the proof. O
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The sextuplet (2(w), M, sar, tar, Apr, war) is therefore a left bialgebroid by the
above propositions.
We next introduce a condition under which this 2l(w) becomes a Hopf algebroid.

)

d (a,b),(c,d)€Q®
and only if, for any m € Z>¢, p, and q € Q™) there exist elements Xpgr Ypq €
A(w) satisfying the following conditions:

Definition 3.11. The family w = {w [c is said to be rigid if

Z (13 ®R1lp®e [p:| + jw)X%q = 5p,qu(6s(p)); (3.7)
ueQ(m) u
U
Z Xp,u (1R ®R1p® e[ :| + jw) = 5p,th(5t(p))§ (3.8)
ueQ(m,) q
> Xu(lneiree m + ) Xug = Xy (3.9)
U,UGQ(’”) v
u
Z (1R ®1p® e[ :| + jw) Yp’u = 610,th(55(1))); (310)
ueQm a
Z Vg (1R @lr@e [p} * jw) = Op,qsm (O(p)); (3.11)
ueQ(m) u
> Via(lrolrce H + 30 ) Yoo = Yoo (3.12)
w,veQ(m) u
Definition [3.11] entails that
Xp7qSM(55(q)) = XI%q = L‘M((St(p))Xp’q; (3.13)

sM (04(q))Yp,a = Ypg = Yp gt nr (85 ()
for any m € Z>o, p,q € Q™). We use these identities frequently.

Proposition 3.12. If w is rigid, then the elements X, and Y, , (m € Zxo,
p,q € Q™)) are unique.

Proof. We give the proof only for the uniqueness of X,, ;. Suppose that X, , and
X, 4 € A(w) satisfy (3.7)-(3.9). We have

X = 1)
P4 T p.aSn(9s(qg))
= Z Ou,qXpusm (Os(u))
ueQ(m)
U /
— Z Xp7u(1R®1R®e )qu
B v ’
w,weQ (™)
= 8 wtrr(Beip) X,
&3 Z pota( t(p)) v,q
veQ(m)
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= tM((st(p))X;ﬂ
!
p.q°

E13)
This completes the proof. O
We can construct a K-algebra anti-automorphism S: 2A(w) — 20(w) by using

these elements X, , and Y, ;. As a result, %(w) has a Hopf algebroid structure if
w is rigid.

Theorem 3.13. If w is rigid, then A(w) has a Hopf algebroid structure for N =
M°P and w =idy;.

Proof. We first construct a K-algebra anti-automorphism S: 2(w) — 2(w). The
K-linear map S: $H(Q) — A(w) is defined by

S(r®r’®em) = (r’®r®1®(Q) +3w)Xp,q

for any r,r’ € R, m € Z>o, p, and q € Q™). Let us check that this S is a K-algebra
anti-homomorphism. For the proof, the following lemma plays an important role:

Lemma 3.14. For any r,r’' € R, m,n € Z>q, p,q € Q™) p',q¢' € Q™
Xp,q(r [029] r 024 1(’5(Q) =+ jw) = (7‘ X® 7 [029] 1@(@) + jw)Xp’q; (314)
Xpr g Xpqg = 5t(p),s(p’)6t(q),5(q/)pr’,qq’5 (3.15)
Y o(r @1 @ leg) +Iw) = (r@r @ le@) + Iw)Ypq
Yo g Ypq = 5t(p)75(p')5f(q),5(<I’)Ypp’,qq’-

We postpone the proof of Lemma until the end of this section.
Lemma implies that
/

s((r@w@e[ﬂ)(s@y@e[g,}))

= d4(p),5(p)O1(a),5(¢) (8’7" @ 78 ® L (@) + Tw) Xppt g
(SI ®RsQ 1@(@) + 3w)(7”’ Rr® 1@5(Q) -+ jw)Xplyq/Xpyq

B
I
=

3.14 (f®@s® le@@) + Jw)Xp g/ (rere le@) + Jw)Xp.q

S(s@s’®e[§:])5(r®r’®e{§]>

for any r,r',s,s' € R, m,n € Z>q, p,q € Q) p/, and ¢’ € Q™. Since it is easy
to see that

I

X)\#L:Y)\# = 1R®1R®eL\

} + (3.16)
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for any A, u € A, we have

Saw) = > S(tr@1r ®em +3)

A EA

I
g
a

T

AuEA
P M ~
= Z 1R®1R®eu +Jw
ApEA
= Law)-

Therefore S is a K-algebra anti-homomorphism. We show that S(Jy) = {0}.
Since the map S is a K-algebra anti-homomorphism, it is sufficient to prove that

S(a) = 0 for every generator « in Jy,. We define a collection of elements w [c Z b}
(a,b,c,d € Q) in R as follows:

[c“b} D [CH , (a,b), (c,d) € Q@

w d
0, otherwise.
For any z’,%/, 2", and y" € Q,
O - Z Xy//7wa//’a
a,b,c,deQ
x c b
(et otes ] el o] )
b c| |d y z| |y
z,y€Q
X Xd ' Aex!
X Ota).s(y’ >( { } ®1r®le@) + 3W)Xy~,wa~ a
E1E3 ,c,er
T
(1R®1R®e|:0:| + w) c,x’
Z 5t(x”) s(y) (1R w [ ] ® 1@(@) + Jw) Xy”,b
b,c,d,yeQ

(1R®1R®e[b

:|+ w Xd,y’ch
Y

)8y’ )( [ ] @1 ® lgg) + Jw)Xy,,,ngCu,a

- Z Ot(ar).5 y”)(l [ ! }®1q5 Q)+ Iw )
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A
x(lr@lree L(y”)] + 3w ) Xay Xear
By using (3.15)) and (3.16]), we have

I /
Xac”,a(z 1R X lR ® e[ (i ):l + jw> = Z Xx”,aX)\,s(I/)

AEA AEA

= Z Os(2), A\ 0s(a),s(a') X' a
NeA

= 55((1),5(x’)Xz”,a

for any a € Q. We can similarly prove that

A
(1R R1Ip® e|: + jw)dey/ = 6t(y”),t(d)Xd,y’ (Vd € Q).

t(y”)}

Thus, by using the condition (3.5),

0= di(a).sy)0sa).se’) (ﬂ [a , y} ®1lr®leq) + Jw)qu,wa//,a

a,beQ
C
= D i) sty ity i@ <1R®E [w J d} ®leQ +3w)Xd,y'Xc’m'
c,deQ
= Z (W |:a$ y/:| ®1R®1®(Q) +3W)Xy”7be”7a
(a,b)eQ® b
C
- > (1R®W [w , d} ® Lo +3w)Xd,y'Xc,m'
(e, d)eQ® !
o , 2! y//
-3 1 oy w
< Z R®w{ by}®e[a}e{b}+3
(a,b)EQ®
1 ¢ C d ~
— Z W|::n //d} ®1R®e[ /]e[ ,} +Jw>.
Yy X Y
(e,d)eQ®

This fact implies that S(«) = {0} for any generator a in J,,. Therefore we can
define a K-algebra anti-homomorphism S(8 + Jw) = S(8) (8 € H(Q)). Similarly,
another K-algebra anti-homomorphism S”: 2(w) — 2A(w) can be defined such that

S’ <7" Q1 ® e[ﬂ + jw) =" ®@r®le@) +JuwYpg
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for any r,7' € R, m € Z¢, p, and ¢ € Q™). Let us show that S’0 S = S0 S =
idg((w). We can calculate that

S5 gy 3 6 (oo 02)
AEA
B ue%;m e (1R olne e{ (/:l)} i jw) 5 p)
AeA
3?0 u,vg(m) <1R @lr@e |:Z:| - jW)Yu,USI(XP’“)
= X (menmee e a)s(nalinemed ] <))
" %(13@ 1R®e{§] +3w>S/<1R® 1R®GL(/}\7)] +SW)

B P t(p) ~

o o] ]
AEA

N p

—1R®1R®e|:q:| +jw
for all p,q € Q™). Thus,

(S’oS)(rw’@e{Z] +:7w) = S8'(Xpo)(r @1’ @ le) +Iw)
:r@r'@e[ﬂ + 0w

for any r,7" € R, m € Zso, p, and q € Q™). Proving that So S’ = idgy(w) is
similar. Therefore the map S is a K-algebra anti-automorphism.

We next prove that this S gives 2(w) a Hopf algebroid structure if w is rigid.
Let N = M°P and w = idg((y). We assume the lemma below for the moment.

Lemma 3.15. Let X, , and Y, 4 (p,q € QU , m e Z>¢) be elements in A(w)
satisfying (3.7)—(3.12). Then the following identities hold:

= > Xug®Xpu; (3.17)
ueQ(m)

AM(YP,Q Z Y. a @ Y, U (318)
ueQm

7 (Xp.q) = 6p.gOt(p)- (3.19)
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For the proof of (2.12)), we have

(Sotu)(f) = %E:AS(lR@f [ ]*JW)
= > (fN) @ 1r @ leQ) + Iw)Xunx
A LEA
Al |~
A%;Af(/\)@g)1R®eM + Jw

Here the symbol f means an arbitrary element in M. Let us check that the identity
([2.13) holds. We write a = r @ r' ® e{ﬂ +Jw for all 7,7 € R, m € Z>, p, and
q € Q. The left-hand side of (2.13)) satisfies

Slamlapy = > (1R®r®1@<@+3W)Xp,u(1R®w®em+3w)
u€Q(m)

u
3:14 Z (1R®7‘/7“®1Q5(Q)+jw)Xp)u<lR®1R®e|:q:| +jw)
— weQ(m

A
=4 1 ®r’r®e{ }Jrjw.
B3 ”’qg i t(p)

By using (3.19)), the right-hand side of (2.13]) can be calculated as follows:

(tM O Tpr © S)(a) = 5p’th(C(’l"/ Rr R 1@5(@) + jw)<6t(p)))
= 6p7th((T/7")ﬁ6t(p))

A
=9 1 ®r’r®e{ }—i—jw.
pa 2 I ()

AEA

Thus (2.13) is proved. Let ®js be the tensor product of A(w) @ A(w) and Qn

that of 2A(w) @y A(w). It is easy to show that there exists the inverse S;l(lw)@mm(w)

of Sa((w)@n2A(w)- 57 A(w) @2 (w) Stisfies

Si(w ®NQ[(UJ)( ®M b) = Sil(b) ®N Sil(a)
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for all a,b € A(w). We will check (2.17). By using (3.16)) and (3.17),

(Sawyoaaiu) © Anr 0 571) (7" ®r®e m + Jw>

= Z S (w) @ a2 (w) (((T/ R1lp®e {ﬂ + JW)Y%q)

A, TEA
( 1R®T®e{ }

uEQ(m)
Z ((1R®1R®eH+ )(T®IR®1@(Q)+J )Xw)
A, TEA

uEQ(m)

QN ((1R®1R®e|:

U
q

3 <T®1R®e|:5:|+ w)(1R®1R®eH+g )

A, TEA
uEQ(m)

BN (1R®r’®em +Jw) (1R®1R®em +3w)

u
Z (T®1R®6{§] +7w) N (1R®7"I®e|:q:| +jw)

u€Q(m)

} + 3w) (IR @1 @ leg) + 3w)XA,T)

for all 7,7’ € R, m € Zxo, p, and ¢ € Q™. Similarly, the identities (3.16) and
(3.17) imply that

(Si(w)mm(w) oAy o S) (7’ R ®e m + ffw)

=Y Sihera (((Fe1re H £3) %)

A, TEA
uEQ(m)

O ((1R®r®eH+ W)X W)

- ¥ ((1R®1R®e[p +3 7~®1R®1@( )+3w)yw)

u
A, TEA
uEQ(m)

®N ((1R ®1lp®e {Z] + 7w> (1R @r' ®@le) + 3w> Y,\,T)

- ¥ (r®1R®em+j )(1R®1R®eH+3 )

A, TEA
uEQ(m)
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DN (1R®r’®em +jw)(1R®1R®em +3W)

q
—_ p / u ~
= > (relpeel |+Tv)an (le®r @e| |+Ty).
ueQ(m) u q
Thus (2.17) is proved.
We can check (2.18)) and (2.19)) similarly to the proof of Proposition This
is the desired conclusion. d

Proof of Lemma[3.1]} We give the proof only for (3.14)) and (3.15).
Let us show (3.14)). For any r,7’ € R, m € Z>q, p,q € Q™ we have

Xpq(ror @ 1leg) + Iw)
— Xp’q(T ®Rr ® 1@(@) + jw>SM<(55(q))

(3-13)
Z 5u,qXp,u (T Rr' ® 1(’5(@) + jW)SM(55(q))
ueQ (™)
~ u .
D > Xpulr@r' @l +Iw) <1R ®1lp@e M + Jw>Xv,q
u,veQ(m)
u
= Z Xp7u<1R®1R®e|:v:| +/JW)(T®’I"/®1®(Q) +/JW)X'U,q
u,'ueQ(m)
g 5 ’Ut 5 !/ 1 ’J’w XU
3 e%m potit (0 (r @1 @ 1o @) + Iw)Xug

ZtM((St(p))(T@’I“ ®1®(Q)+j ) p.q

= 1 T
= (ror' ®leg) + Iw)X,

We next prove (3.15)). For any m,n € Z>q, let p,q € QU™ and p', ¢ € Q)
t(p) = s(p’) and t(q) = s(¢'), then

u
Z 5t(v),5(v’)Xp’,u’Xp,u (1R® lR ®e|: :| +jw)
w,oeQ(™ v
u/,v/€Q<">

/
X (1R®1R®e|: /:| +3W>val7qq/

S <

A
_ Set).o(on X (17 ® 1 T
G3) - Hp) s ()2 (R® R®eL(P)}+ )
A

mm

v)\
/
(1R ® 1g ®e{ } -I-Jw)va/’qq/
!

u ~
- Z Ot(p).s(v") X' u <1R ®lp®e [U,} + Jw)Xp’u/,qq/
u’ v’ eQm)
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" 5t(p)75(p’)tM(5t(p'))pr’,qq/

= X ’ /.
B3 pp’,qq9

On the other hand,

u
DR TOREP e (PESPER | P
u,veQ™
u ' eQ™

u/

’U/:| + jw) Xm)’,qq’

X (1R®13®e[

wu']
= Z 5t(u),s(u’)6t(’u),5(v’)Xp’,u’Xp7u (lR & 1R ®e |:'U’U/:| + JW)XUU’,qq’

w,peQ ™
uw w'eQ™

: Xp g p,q3M<65(EI)>
Xp’-,q’Xp,q'

=
I [%]

.1

I 4(p) # 5

B
=

—

p'), then it follows that

u u’
> XpwXpu(lrolnoe M +3u)(1r@1r@e [v’} + 3 ) Xor Kong
uw,veQ(™

u,7UIEQ(7L)
- Y X (1 2ipoe| +3)(1 olpoe|® +3)X X
" , IGQ(W) pu R R ’c(p) w R R V! w v’ q"Ap,q
u' v

AEA
/

u
= 2 s Xy <1R ®lr®e L,] + Jw) Xorg Xpq
w’ v €QM)

& St(p),s(p )t (Oepr)) X Xpog

5t(p),5(p’)Xqu'Xp7q
=0.

In addition, we can calculate that

!/

> XpwXpu(lr@lnoe m +3u)(tr@lr@e [Z/] + 3 ) Xor Xong

u
= > XpgXpu (lR ®1p®e L}] + jw) s (0s(q)) Xv g
u,veQ(m)

= Xp’,q’tM (5t(p))3M (55(q’))XP7q
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Xp/7q/sM (65(q/))tM(5t(p))Xp7q

X o Xp.q-
e L

We can similarly prove that Xy o X, o = d¢(q),s(¢) Xp ' Xp,g = 0 if t(q) # s(¢').
This completes the proof. O

Proof of Lemma[3.15 We first prove (3.17)). By using (3.6),

329< 3 (1R®13®em+3w>®K(1R®1R®e[Z]+Jw)>

A\ u, T, VEA
HFET

X (2(1369 13@6@} +3w) ®K 1Ql(w)>

neA

> (1R®1R®em +3w) ®K (1R®1R®em +3‘w)

w, T VEA
WFET

for all v € A. Thus we can calculate that

> ((roirce m +9)Xog) ox ((1r@1nee m %)

v
u,v,z€Q (™)

ue%;m) ((lR R1lIp®Re |:5:| + jw)Xu,q) Rk SM((Sg(u)) + Jo
= Z (tM(ég(’u,)) (1R RIp®e |:§:| + jw)XU’q) KK 19{(1”) + Jo
u€Q(m)
- Z ((1R ®1p® em + jw)Xu,q) K lo(w) + J2
ueQ(™m)
6p,gSM (0s(p)) Ok La(w) + T2
=0pgq Z (1R ®lr® e{s(}z\o)} + 3w> ®K (1R ®1g ®e[)\} + jw)
A HEA M
+0p.q Z (1R® 1R®e[ﬁ(§\))} +jw) ®K (IR® lR®er} +jw) + Ty
Mg g
—0pa Y (lr@1ge e{ﬁ(ﬂ +3w) @k (1n®1n @em +0) 45
A UEA
=0pq Zﬁ(lm@ 1R®e[ﬁ(;)]> + 05
AEA
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for any m € Zso, p, and ¢ € Q™). We fix X,, € H(Q) such that X,, =
Xpq+Iw € A(w). By using (3.13), we can deduce that

Xpq— Zypaq <1R ®1lrp® er()?)]) € Jw.
AEA

We define an element «,, € Jy, (m € Z>p,v € Q(’”)) as follows:

o= ¥ Kpu(tneiree|t]) - b (tno roe| ) ]).

ueQ(m)
As a result,
ﬁ(y )+:[2 = Z§<Y (1R®1R®QE(Q) ))—Fjg
pq Prop.m Pa A
AEA
— (= 5
= > 5u7qV<Xp,u<1R ®1p® e[ (;L)])) +Js
AEA
uEQ(m)
= V(Xpyu(lR@@lR@e{u]))(XZ’q ®x Xy2) + Jo
V(fj(Q))szjQ u,v,zEQ(m) v
-y 5,,,ﬁ(1R Q1 ® e[ A } + ozv) (X2 ®k Xoz) + T
B t(p)
v,2eQ(™)

=1

3.16 Z X 7)‘Xu7q ®K Xf(p),MXP,U + j2
.19 A EA

uwe@™

= > Xug®k Xpu+Ja.
" ueQ(nl)

Since A(w) @x A(w)/To = A(w) @ A(w) as K-vector spaces, we can induce (3.17)).
It is similar to show ([3.18]).
Finally, let us check (3.19). By using (3.13), we have

o (Xpg) = 3 7 (XM(lR ®1p®e [S(Aq)} + :iw))
AEA

= Z 65(Q),>\<(Xp,q)(5>\)

AeA
= C(Xp,q)(és(q))
for any m € Z>o, p, and q € Q™). On the other hand, we have

Z M (Xp,u(lR ®1lgp®e [Z] + jw)) = Z 6u,q<(Xp,U)(5s(q))

u€Q(m) ueQm
= C(Xp,q) (55(q))~
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Since my; is an (M, M)-bimodule homomorphism, we can conclude that

T (Xpq) = Z WM(Xp,u(1R®1R®e|:Z:|+jW>)

u€Q(m)

= 4 tar (0
™™t (Oe(p)))
:‘Sp,q‘st(p)'

This is the desired conclusion. O

4. LEFT BIALGEBROID HOMOMORPHISM ®

In this section, we induce a left bialgebroid 2(w,) as in Subsection [3.2| from the
settings of the left bialgebroid A, in Subsection [3.1] and construct a left bialgebroid
homomorphism ® from 2(w,) to A,. This is a generalization of [I2]. Moreover,
we can also show that the bijectivity of @ is equivalent to a part of the condition
of rigidity for w (see also [15]).

Let A, be a left bialgebroid as in Subsection and 02 € M (a,b,c,d € X)
satisfying the condition . We define a quiver @ over A by

Q:=AxX, s(\z)=A t(\z)=Adeg(x) (AeA, zeX) (4.1)

and set
(Xa)

w {(u,c) (A’,b):l = 03,052 (\) (4.2)

(1'.d)
for all (A, a), (X, 0)), (1, ), (1, d)) € QP
Proposition 4.1. The definition (4.2)) satisfies the condition (3.5)).

Proof. Let (A, a), (N, b)), (1, ¢), (i, d)) € Q?). That w [(;w) ~

is clear because of o5%()\) € Z(R).

(X,b)} € Z(R)
(W',d)

(Aa)
We next prove that w [(u,c) (A’,b)] = 0if s(\,a) # s(u,c) or t(N,b) #
(W' ,d)
(Aa)
t(u',d). Tt follows from (4.2)) that w [(u,c) (X,b):| =0if s(\ a) # s(u, ).
(W)

Suppose that t(\,b) # t(i',d). By the definition of the fiber product of the
quiver (), we have

t(N,b) = Adeg(a)deg(b) and t(y',d) = pdeg(c)deg(d).

(Aa)
If A = p, then w [(u,c) (,\/,b)} = 0 because ¢%(\) = 0. This completes the
(1',d)
proof. O
Therefore we can construct the left bialgebroid 2(w,) := A(w) as in Subsec-

tion
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Theorem 4.2. Let r,7" € R, m € Z>o, p = ((A1,21),..., (Am,Zm)), and ¢ =
((15,91)s -+ s (fom, Ym)) € QU™ We define the K-linear map ®: $H(Q) — A, by

6(7‘ Rree [S]) = (13 @ 14) (0s(p) @ Os(q)) Ly~ Ly + Lo

Then ® induces a left bialgebroid homomorphism (®: A(w,) — Ay, idar).

Proof. We first prove that ®(J,,) = {0}. Since the map ® is a K-algebra homo-
morphism, we only need to prove that ®(«) = 0 for every generator « as in (3.4]).
For any ((:uv a)u (/1'/7 b))7 ((V7 C)a (V/7d)) € Q(2)7 we have

_ (A\,x) )\7 )\,7
e O 2
((nz),(Vy)€Q® (1',b) (v,e) | (v, d)
- Z (Ox0100, (N @ 1ar)(0x ® 6) LacLya + 1o
AeAz,yeX

Z (Ul:;jzf ® ]'M)(5# ® 5V)L15Lyd + Ia

z,yeX

(6. ®6,) Y (ohg @ Lar)LucLya + Lo,
z,yeX

and

_ (v,c) b
> F(1row|on v |oe|V]e[H:0)
(N.9) (A )] (N, y)
(A2),(V,9)€Q® ’
= > (lm®@8a0ys(¥)s) (0 @ 0x) Loz Ly + I
AeAN,z,yeX
Z (ln ® U;;laca)((su ® 5V)LawLby + Is
z,yeX

(6, ®0,) Y (Iar @ 04%) Lag Ly + L.

z,yeX

Hence ® induces a K-algebra homomorphism ®: 2(w,) — A,.
Let us prove that the pair of K-algebra homomorphisms (®,1id,/) satisfies ([2.8])—

(2.11). We can prove (2.8]) as follows:
(@03 ) = 3 (N @ L) (r @6.) + L,
A LEA

:Zf(A)(SA@lMJr[a

A€EA
— @1y + 1, = st (f).
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The proof of (2.9) is similar to that of (2.8). We next prove (2.10)). Since Tyeg(q) is
a K-algebra homomorphism for all @ € X, the left-hand side of (2.10]) satisfies that

(mie o@)(r@r’@e{ﬂ +3w>
= X((Tﬁ ® T{i)(6>\1 ® 5#1)L$1y1 T Lzmym + Ia)(lM)
= 5581,1/1 e aﬂfmyym (TT,)ﬂCSAl(SHl .
For any ¢ € {1,...,m — 1}, we can induce that ;11 = \;deg(z;) and p;41 =
wi deg(y;). This fact implies that
WQA%WU) (T Brige {Z] * jw) = Oxn,m 021,51 Oy (7”7"/)&6#1

_ {(W’)MU P=g

0, otherwise.

We conclude ([2.10]) because of the above calculation. Finally, we give the proof of
(2.11). Let ®k be the tensor product of A, Qx A, and ®js that of A, @y A,. We
have

(A% oé)(re@r’@e[ﬂ + )

= Z ((Tﬁ‘SM @ 1) Ly 2y - Ly, 2, + I5)

2150, 2m €X
QM ((1M ® r§5u1)LZ1y1 o 'Lzmym + Ia)a

(P ) oAQJ\l}w"))(r®r’®eB] —i—jw)

= Z ((r40x, ® 07) Layzy Lz, + 15)

TEA
Z1,0.,2m E€X

@ ((6r ® T{i‘sul)szl Ly, + 1)
We can check the following, whose proof is similar to that of (2.4) in Proposi-
tion B.I0
I > (t57 (6)) ®x 1a, — 1a, @ 57 (03))((1ar @ 0x + 1) ®x 14,)
=Y (ln @0+ 1) @k (5, @ 1as + 1)

HEA
AFu
for any A € A. Since A, ®k As/I2 = A, @u Ay as K-vector spaces, (2.11) is
proved. O

We introduce an example of o satisfying (3.1). This example is not induced by
dynamical Yang—Baxter maps.

Example 4.3. Let A :=Z/2Z and X := Z/2Z. We will denote by G the opposite
group of the symmetric group on the set A. For a € Z/27Z, deg(a)(A) = a + A
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(AeA=27Z/2Z). Themap o; : A x X x X - X x X (i = 1,2) is defined by the
following table:

(A a,b) | o1(N\ a,b)  o2(N a,b) (A a,b) | o1(N\ a,b)  o2(N a,b)
(0,0,0) (0,0) (1,1) (1,0,0) (1,1) (0,0)
(0,0,1) (0,1) (1,0) (1,0,1) (1,0) (0,1)
(0,1,0) (0,1) (1,0) (1,1,0) (1,0) (0,1)
(0,1,1) (0,0) (1,1) (1,1,1) (1,1) (0,0)

TABLE 1. The definition of o;

We denote by R a K-algebra. For any ¢ = 1,2 and a,b,c,d € X, the map
i0ab € M is defined by

iaabo\) _ {13’ Uio"avb) = (07 d);

d .
B 0, otherwise.

For any i = 1,2, the maps deg and ‘0% (a,b,c,d € X) satisfy the condition (3.1)).
Thus we can construct the left bialgebroids A,, A(ws), and the left bialgebroid
homomorphism & for each i =1, 2.

Remark 4.4. (1) This map o; (i = 1,2) is not a dynamical Yang—-Baxter map
because the map 7,: A x X x X 5 (\,z,y) — o;(\,y,2) € X x X does
not satisfy (2.1) in [I9]. Thus this example is a new one that we cannot
construct by using the way of [16] and [21].

(2) The family ‘o = {{c%}, ; cacx in Example is rigid. Thus, this A, is
a Hopf algebroid whose antipode S : A, — A, satisfies S((L™ 1) + I,) =
Loy + 1, (a,be X).

By using a part of the condition of rigidity for w, we can specify a necessary
and sufficient condition for ® to be invertible.

Theorem 4.5. The following conditions are equivalent:

(1) @ is bijective.
(2) For any m € Z>q, p, and ¢ € Q™) there exist elements X, , € 2A(w)

satisfying (37)-(B9)-

Proof. We first assume the condition (1). For any m € Zxq, p, and ¢ € Q™ we
set

Xpg= (I)_l((L_l)rmym T (L_l)xlyl (55(q) ® 55(1))) + 1)
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Here p = ((Ala Il)a ceey ()‘mﬂ zm)) and q = ((/u'la yl)a B (Hmvym))' Let us show
that this X, ; satisfies (3.8)). It is easy to show that

S £ @ g() @[2] = (Fe gt L),

A HEA

1R ® 1R ® e |:Zq):| + jw = (I)_l(((ss(,ﬂ) ® 55(Q))Lw1y1 o Lwnzlhn + IU)

for any f,g € M, m € Z>o, p, and ¢ € Q™). Since \jy1 = \;deg(x;) and
pi+1 = pideg(y;) for any i € {1,...,m — 1},

> Xp)u(lR @ 1g ®em +3‘w)
weQ(m ¢

= Z q)_l((L_l)fEmZm "'(L_1)$121(6T ®6)\16H1)L21y1 "'Lzmym +IU)

TEA
Z1yeens zm€X

= 0n 001,y Oamym @ (1ar @ Sy + 1)

Here we use the generators (2) and (3) in I, to induce the second equality. Thus

(3.8)) is proved. It is similar to show (3.7)) and (3.9).

We suppose the condition (2). Let © denote the K-algebra homomorphism
defined by

O: MR MP>fRg— Z f(A)@g(,u)@e[jj + Jw € A(we).
A uEA

By using this ©, we can define the K-algebra homomorphism ®: K(AX) — 2(w,)
as follows:

() =0(8) (£ e Mg MP);
O (Lay) = Z IR®1r® e[(/\’a)

+ Jw;
i (1, b)}

(L) ap) = Z Xova),(up) (a,beX).
A uEA

We prove that ®'(J,) = {0}. It suffices to show that
() =0 (4.3)

for every generator in I,. Because O is a K-algebra homomorphism, it is easy to
prove (4.3)) for any generator (1) in I,. We next show (4.3)) with respect to the
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generators (2) in I,. For any a,b € X,

(Y LaelL ™))

ceX
A, .
= > (roirse {( “)] + 3 ) Xy 0
= (1, ¢)
A u, T, VEA
(&a)}
— 1 ® 1 ® e + jVV X’T e, Cc),Vv de, X T,C v
B-19) (EZ)( ( R R [(u,c) ) deg(c),v deg(b) <X (T,¢),(1,b)
A,M:T,DEA
(A a) v deg(b)
_ 1h®1 3w><1 1 j’w)XT 3}
C;( (1r R®e[(u,c) TR @IRE el qog(e)] T ) Koo
A\, T, VEA
Aa -
= Z 6A deg(a),v deg(b)(su,f (]-R ®1lp®e |:EM C;:| + JW)X(T,C),(y,b)
ceX ’
A, T, VEAN
Aa -
= (1R ®lpwe ) +Jw)X<u,c>,<Adeg<a> deg(b)~1,b)
(1, ¢)
ceX
A UEA
A
) dab ,\%e:/\ O\, deg(a) deg(b) 1 (1R ®1lp®e i + Uw)
= &/ (3,,0).

The proof for & (3 .. x (L™ )acLer — dapd) =0 (a,b € X) is similar. Let us check
that any generator as in (3) satisfies (4.3). For all f € M, a, and b € X,

a((f ® 1M)(L_1)ab - (L_l)ab(Tdeg(b)(f) Y 1M))

A
= Z (f(/\) ® 1R®e[,u] +JW)X(T,Q)7(V,1>)

A, T, VEN
0
N Z X(v.a),(n.b) (f(9 deg(b)) @ lr®e [J + 3w>
v,m,0,kEA
3:16 Z (f(>\) & ].R ® ].Q-;(Q) —+ jW)XH’)\X(T,aL(u,b)
B2 5 irvea
— Z (f(0 deg(b)) & lR ® 1@(@) —+ jW)X(’Y,a),(n,b)XK,G
v,m,0,KkEA
1D > Frden@.ndacat A (FN) ® 1R & To@) + Iw) Xra), it
A, T, VEA
= Y Sdo(f(0deg(6) @ 1r @ Le(q) + Iw) X raninn
v,m,0,kEA
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= Y (f(rdeg(h) ® 1r ® L) + Iw) X(ra).(5)

T,VE

A
= Y (f(ndeg(h)) ® 1 ® Lo (@) + Iw) X (1,0),n1)
v,mEA

=0.

It is similar to show that the other three generators as in (3) satisfy (4.3). We will
prove that the generators (4) in I, satisfy (4.3). By using the relations (3.4) and

([1.2), we get
qy( Z (0ad @ 1ar) LyaLay — Z (1 ® UZ‘;) LcyLm>

r,yeX r,yeX

LN o (). (hdeg(w).2)]
- A%;A N ®1r® {((u, d), (udeg(d)vb))] T
z,yeX

) i) oo [ (720).( deg(e).)
2 tn@or >®e[<<u,y>,<udeg<y>,m>>} I

T.VEA
z,yeX
(9) A, ), (A deg(y),
~ Y W [w (Adeg@),x)] ®1R®e[<< V). (hdeg(s) a;))] o
A.p,mEN (1 deg(c),a) ((N” )7(.“ eg( )7 ))
z,yeX
- Z lp@w {WD <0deg<d),b)} ®e{((7’6)’(7 eg(c)’a))} + Jw
T.V,0EA (v deg(y),z) ((V7 y)7 (V deg(y)7 .’IJ))
r,yeX

=0

for all a, b, ¢, and d € X. Since 1) = Z/\,ueAem’ it is obvious that the

generator (5) satisfies (4.3). Thus we can conclude @Jw) = {0} and construct a
well-defined K-algebra homomorphism ®'(a + I,,) = ®/(«a) for all @ € K(AX). We
finally show that this ® becomes the inverse of ®. For any r,7’ € R, m € Zxq,

p= ((Alvxl)a sy ()‘maxm))a and q= ((,ufl,yl)a ceey (Nmaym)) € Q(m), we get
’ ’ p
(@ o@)(r@r ®e{q] +§w)
=9 ((Tﬁ ® 7’{1)(55(1)) ® 5s(q))Lw1y1 o Lgpy, + Ia)

- Z (r®r’®1®(Q))<1R®1R®eEEp)])

Tlyeoos Tms V1 Vm €A

(remmoe ) (nemee i)+

:r®r’®e[ﬂ +Jw.
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Let us check that ® o ® =id, . Since the maps ® and &’ are K-algebra homo-
morphisms, it is sufficient to show that (o ®')(a+1,) = a+1,. Here a € K(AX)
means that
feg (Vf,ge M)
a = Lap;
(L™ Y (Va,b € X).

Since Y ycp f(A)gox = f for all fe M,

@ow)fog )= 3 e/ e gt oe|)] +u)

A HEA

= > (FN: @ g (6r ®8,) +1
A HEA

=f®g+l1,

for any f,g € M. Similarly, we can prove that (® o ®')(Lap + I,) = Lap + I, for
all a,b € X. Let a = (L71)4. We can calculate that

(@0 @) (L™ ap + 15)

Z (X(xa), (b))

HEA
= Z (Xxa), by 511 (0))
{EHE

— Z 6“@( (M) ub)(lR®1R®e{u]+3W)>

ceX
A, TEA

= > (L7 aaLlae + Io) (X (x0),(u) (60 @ 1as + )
c,deX
A HEA

= Z ((Ll)ad+ja)(p((1R®1R®e|:(T
c,deX (V>
Ap, v EA

X (5u 1y + 1)
= Z ((Lil)adﬁLIo)

c,deX
A p,T,vEN

X @((1R®1R®e{

x (6, ®1p + 1)
_ L_la + 15
EI5).G18 cdze:x(( " |

A HEA

Zlﬂ + jw>X(>\,c),(Hvb)>

i) o) Caenee[GE] 3K 0)
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y @( (1R B e[(u deg(b)( fjef)(d)—l,d)} n 3w> Xovo, <u,b>)

X (5/1, ® 1M + Io’)
= Z 83 deg(b) deg(d)-1 7 06,a (L™ ad + 15)

57
=
AEA

x ¢ (SQ]\l/I(wU)(é)\dcg(b) dcg(d)*l)) (5)\ ® 1y + Io')

e > (L ab(0r @ 1ar) + I
’ AEA

= (L Yy + I.

Thus we can conclude that @’ is the inverse of ®. This completes the proof. O

Corollary 4.6. w is rigid if and only if ® is bijective and o s rigid.

Proof. Let us suppose that the family w is rigid. It is sufficient to prove that o
is rigid because of Theorem For any a,b € X, we define elements z,, and
Yab € A, as follows:

Tap =D (08 (X(xa)(ud);
A HEA

Yab = Z (I)(}/ik,a),(p,b))'
A pEA

We give the proof only for (3.3). Since }Zy ,cn (X (xa),(up) = (L™ Y)ap + I, for
a,b € X, we can calculate that

Z mcb((L_l)ac + Io')

ceX
= Z (P(S(X()\,c),(,u,b))X('r,a),(u,c))
ceX
A\ u, T, VEA
T,a ~
= Z ((I)OS)((13®1R®9[EV C)):| +JW)X(>\7C),(ILL,I7))
ceX ’
A\ u, T, VEA
T,Q
- Z ((I)oS)((lR@lR@e[E )] +3w)
= v, c)
A\, VEA
7 deg(a) ~
X (112 ®1lgp®e L deg(c)] + Jw) X(/\,C),(u,b))
(1,a)
3?5 Z 5)\,1/6M deg(b),7 deg(a) (®0S) ((1R ®lp®e [(M ¢) + jW)X(NC)a(Mab))

’ X
BIO »,swen
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= Z (®o9) ((1R Rlp®e [(M deg(b) deg(a)~t, a)} I 3w) X()\’C)’(u’b»

2 (A€
A HEA
Adeg(b) deg(a)~'] | .
" 5@,6A%A5Adeg(b)deg(a)I’A(‘I)OS)(lR@lR@e[ i —|—Jw>
= 5a,b1Ao

for all a,b € X. The proofs for the other conditions are similar.
We assume that ® has the inverse ®~! and o is rigid. For any m € Zso,

p= (()\1,@1), B (An'uam))a and q= ((/’le b1)7 EERR (/’(‘mv bm)) € Q(m)’ the elements
Xp,q and Y, , are defined by

Xp,q = q)il((Lil)ambm e (Lil)albl (65(q) ® 55(1))) + Io’);

Ypa =P Wanbn - Yarb (s(q) © Os(p)) + Lo).

We give the proof only for (3.11). By using the relations (2) and (3) of the gener-
ators in I,

S Y%q(lR@lR@e{ﬂ +3w)

u€Q(m)

= Z ®71(ycmbm o Yerby (5;“5)\1 & 5T>La1c1 e Lamcm + Ia')

TEA
Cly.,cm€X

= Oy Z q)_l(ycmbm “Yerby Larer =+ Lapen (0, deg(a1)-- deg(am) @ Iv) +1s)

= 5)‘lvﬂl 6a17b1 e 5arn7b7n(b_l(6t(p) ® 1M + IU)

t
_6p7q213®13®e{(>\)
AEA

= P,QSM(é’t(p))'

| +3

This is the desired conclusion. O

Remark 4.7. This homomorphism ® is not always injective. Let R = K and
[A| = 1. Then M is isomorphic to K as K-algebras and G = {idpy}. For any
a,b € X, let agy(# 0) € K be an arbitrary element such that a3, a,, and a9
are mutually different. We set X = {1,2} and define

Ocd =

ab ) Qab, c=band d=q;
0, otherwise

for all a,b,¢,d € X. By using these settings and the relation (4.2]), we can construct
ordinary bialgebras A, and 2(w,) over K.
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(x,a)

*
Let T, = 1K®1K®e[(*’b)

of Ty,

] + Jw for all x € A and a,b € X. By the definition

0= > wla v|Tlyu— > wle | T,

z,yeX z,yeX

— E yr § de

= Uba Tchyd - O'szaszy
z,yeX z,yeX

b d
- UgaTbcTad - chTadTbc

= QabTocTad — QdcTudTbe
for any a,b,c,d € X. This equality induces that
QaaTaaTab — aTupToa = 0;
QaaTayTaa — apTaaTay =0 (Va,b € X, a # ).
Thus we can calculate that
Qaa(aaTaaTab — baTabTaa) + a(aaTabTaa — abTaaTab)

= (aza - aababa)TaaTab
=0.

Since a2, — agppa # 0, TaaTap = 0 for any a,b € X (a # b). We can similarly
prove that

TaaTva = TapToa = TyaTaa = 0;

T2, =0 (Ya,b€ X,a#b).
By using these facts,

An(TH) =T @ T + TuTis @ T T
+ T1oTy1 @ T Ty + Tip @ Tty
= T121 ® T121-

In addition, because m(T%) = 1k, we conclude that T is a group-like element
of 2A(wy). Thus the localization A(w,)[(T?)] with respect to the monoid (T%)
generated by T2 can be constructed. Since T3 Th; = 0, Ty is an element in the

kernel of the canonical map ¢: 2A(w,) — A(w, ) [(TE)]-
Moreover,

la, = (L7Y1)°LY, + Lo = LT (L) + L,

is satisfied because of [21], Lemma 4.2]. Therefore we can conclude that ®(T»;) =0
and ® is not injective (see also |11, Remark 8.1]).
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5. RELATIONS BETWEEN A,, A(w), AND &

In this section, we show that 2(w), A,, and ® satisfy a certain universal prop-
erty in case the K-algebra R is a Frobenius-separable K-algebra. To this end, we
characterize weak bialgebras (weak Hopf algebras) by generalizing the notion of
the antipode SWHA and Hayashi’s antipode f~ in [T}, Section 2].

We first recall the convolution product. For an arbitrary K-coalgebra (C, A, ¢)
and K-algebra A, the K-vector space Homg(C, A) becomes a K-algebra by the
following multiplication:

(f*9)(c) = flcay))glcw) (f,g € Homg(C,A),ce C);
1HomK(C,A) (C) = E(C)IA.
This multiplication is called the convolution product.

Let A be a K-algebra and e™, e™, and 2" elements in A. An element 2~ € A is
called an (e, e™)-generalized inverse of ™ if the following conditions are satisfied:
zteT = e, ataTet =gt
We can easily check that the (e*, e™)-generalized inverse of 2T is unique if it exists.
Definition 5.1. Let H be a weak bialgebra, A a K-algebra, and fT: H — A a
K-linear map. A K-linear map f~: H — A is called an antipode of f+ if f~ is the

(fToes, fT og)-generalized inverse of f* with regard to the convolution product
of Homg (H, A).

The following lemmas are generalizations of [I1, Lemma 2.1 and 2.2].

Lemma 5.2. Let H be a weak bialgebra.

(1) This H is a weak Hopf algebra with the antipode S if and only if S €
Endg (H) is the antipode of idy .

(2) If H' is a weak Hopf algebra with the antipode S and f*: H — H' is a
weak bialgebra homomorphism, then S o fT is the antipode of f¥.

Proof. We first prove (1). It is clear that H becomes a weak Hopf algebra whose
antipode is S if S € Endg(H) is the antipode of idy. Suppose that H is a weak
Hopf algebra with the antipode S. We give the proof only for idy x S xidy = idg.

By using (2:20),
h1)yS(hez))he) = hayes(hz))
= h)l)e(hz)l)
—h

for any h € H. Hence the antipode of idy is S € Endg (H).
Let us show (2). Since f* is a weak bialgebra homomorphism, we have

(eeo fH)(h) =em (1) fH (M)l
=em (fwyh) T (1)
=en(lyh) fH (1)
= (fToe)(h)
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and

(fT*(So fH))(h) = fH(h)ayS(fH(h))
= (et o f)(h)
= (fToe)(h).
Similarly, we can also prove that e; 0 f* = fToeg, and (So fH)x fT = ftoe,.
The identity (2.20]) induces
(Frx(So fH)x fH)(h) = fH(h)es(f7(h)2)
= fF(wlwen (FH(h)@le)
= f*(n)
for all h € H. The proof for (So fT)x fT%x(So fT)=So f* is similar. O

Lemma 5.3. Let H be a weak bialgebra, A a K-algebra, and f7: H — A a K-
algebra homomorphism.

(1) If f* has the antipode f~, then f~: H — A° is a K-algebra homomor-
phism.

(2) In addition to the above situation (1), if A is a weak bialgebra and f+ is
a weak bialgebra homomorphism, then the antipode f~: H — AP°P is a
weak bialgebra homomorphism.

Proof. Let us first show (1). We define five maps P*, P/, Py, €T, and £ €
HOHIK(H Rk f[7 A) as
Pr(geh) = fT(g)f*(h);
Pr(g@h)=f"(gh); Py(g@h)=f"(h)f (9);
EX(g@h)=fToelgh); € (g@h)=f"oei(gh) (g9.h€ H).
Since the generalized inverse is unique, it suffices to prove that P, and P, are
(ET,E7)-generalized inverses of PT. Tt is easily seen that P is an (€7,E7)-

generalized inverse of P because the map f1 has the antipode f~. For all g and
h € H, we can calculate that

(PT*Py)(g®h)=f"(g 1))f+(h(1))f7(h(2))f7(9(2))
fJr 9(1)516( Nf (9(2))

o | Gl (ge1e)

= e ) (9@E (M) )
— (er oet)(ger(h))

" (f* oer)(gh)
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and

(Pt %Py PY)(g@h) = fH(ga)) fT(ha)f~ (h)f (92 (9i) f T (he))
= [T (90))(f T o &) () (fF o ea)(g2) f T (h2))

1» f+(g(1))(f+ o Es)(9(2))(f+ o Et)(h(l))f+(h(2))

= fT(9)f* ()
=Pt (g®@h).
We can also prove that P; « PT = £t and Py « PT x Py = P; by using (2.20)),
(12.25)), (2.29)), and (2.31]). Hence f~ is multiplicative. In addition, this f~ preserves
the unit. By using (2.21]) and (2.24)),
[ (g) = f_(1(1))f+(1(2)1/(1))f_( 2)
= (f*oes)(u)(f* oer)(ln)

=14.

Therefore f~: H — A°P is a K-algebra homomorphism.
We next prove (2). For this purpose, we assume the following lemma for the
moment (see also [I4] Lemmas B1 and B2]).

Lemma 5.4. Let H and A be a weak bialgebra. If a weak bialgebra homomorphism
fT: H — A has the antipode f~, the following conditions are satisfied for all
g,he H:

ghy ® f~ (h) [ (he)) = gayhay @ f~ (9@)h@) T (96) 1 (he)); (5.1)
hayg ® [ (he)) [~ (hy) = hayga) @ T (he) fH9e)f~ (h3)96); (5.2)
7 (hay) @ f~ (h2y) = [~ (b)) f T (heay) £~ (hisy) @ f~ (R f T (hes)) £~ (he))-(5.3)
For the comultiplicativity of f—, it is equivalent to show that

F (b)) @ f(hay) = (W)@ f~ (M)
for all h € H. We set

J= (") @ f Ao))A(fT oe) (1)),

J=A((f*oes) ) (f~ (1) ® f (Lz)))-

For J and J, see [I4, Proposition B4]. Let h be an arbitrary element in H. We
show the following three formulas:

(fT(he) @ f (hay))d =J(f"(R)oy @ f(hw@); (5.4)
J=A(1a) = J;
JT=f"(12) ® £~ (1)) (5.6)
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For , it follows that
(f~(h2) @ f(hy))J
= (/" (Lyhe)) @ f~(Layha) AT (L) f~ (Lw))

(f~(h@) © F~ Qb)) AU e he) f~ Qwhay))

(f(hey) @ f(h))A (f+(h(3))f7 (h(ay))
(fToes)(h@) @ F (hay) f T (ha) A (b))

((f+ oes)(L(2)) ® f~ (hayl)) ST (h)A(f~ (hs)))
((f+ oes)(12) @ f~ (L) (fF o) (h))A(f ™ (hz))

((f+ 0e5)(1i2) ® f~ (L) (fT oes) Uiy )A(f ™ (R{y))
(f (L) f () @ f~ (Lipl a)f( 2))Af (hlls)))

( (L lig)f (11 3) @ f (A 1/1))f+( YA (R1s))

=
(EI

) )
ol Hu NE
(=)

N
[
X

@) @ F~ (L) AT (L)) A (L)AS ™ (R)

)y @ [~ (h)2))-

A/\

fa
f(h

Let us prove

J:((erOss)(l(Z)) ST A@)AS™ (1w))
o3) (f+(1(1)®f (L) FH (L 1) A~ (13))
= (f*(1ay)) @ (f* oes) A1) T (12))A(S ™ (1))
i( (1(1)®f+(1'(1)1(2)))A(f (1{2)))
i( 1) @ fFLe)A (Ls)
=A((fToer)(1n))

— A1)

12.24)

Similarly, we can prove that J = A(1,4). For the proof of (5.6), we have

JJ = JA(f~Aay)AT Q) (f~ (Lw) @ F (1))
= (") @ [T Q) AT Le) (1) @ f (1))
= (" (Le)le) @ f~1aly))
X AT () f~ Q) Q) (- () © F7 (1))

(ff(l(g)ll(z)) ® f’(l(l)lzl)))

< A(fT (1)) S Qg f T Qs (L) @ (1))
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= (fTLe)®f~Aao)AST Q) AE) © F (1))

Z.20)
=) MA@ (e) @ fF~Aa)fTQw)f~ (1))

) (@)@ f~(Aw)-

It follows from (5.4)—(5.6) that J = JJ = f~(1(2)) ® f~(1(1)). Therefore we can
calculate that

(Mo @ f (M) =A04) (M) @ f (h)@)

)
=J(f~ (M@ f (h))
= (f(ha)® f (hay))d
= ([T(h@) @ f (hay)(f (@) f(1w))

= (f7(he) ® [ (ha)))
for any h € H. Thus f~: H — AP°P preserves the comultiplication. By using
(2.30), we can prove that f~ is counital:

(eao fT)(h) =ea(f~(hw)(fT o) (h2)))
=cea(f~ (h))fT (h2)))
=ca((eso f7)(h))
(a0 fH)(h)
=cn(h)
for all h € H. This is the desired conclusion. O
Proof of Lemma 5.4 We first prove . Forall gh e H,
ghay @ f~ (h(z )f+(h(3 ) = ghq) ®(f*o gs)(h2)
= ghla) @ (f* o) (1)
= gmyha) @ (f7 o es)(9@)h2)
=gayha) ® f~ ( 2h2) T (93) T (hs))-
Here we use the identity (2.27). The proof for is similar.
Let us evaluate . By using , , and Lemma (1),
7 (hy) @ [~ (k)
(ha)f~ L) f Q) f~A) @ f~ () fH (i) f~ (he)
“Aha) @)~ (Ue) @ F~Qehe) T Uehe)f~ (ha)
“Amha) T Qha)f~ L he) @ F~(Lyh@) T 1ehe)f~ (he)
= [ (h@) ST (h)f~ (h) @ F~ (he)) f T (ha) f~ (7))
for any h € H. This completes the proof. O

The convolution product and the antipode f~ generalize the notion of the Hopf
envelope in [2].
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Definition 5.5. Let H be a weak bialgebra, H a weak Hopf algebra, and ¢.: H — H
a weak bialgebra homomorphism. A Hopf closure of H is a pair as above (H, )
satisfying the following universal property:

For any weak bialgebra B and any weak bialgebra homomorphism

fT: H — B with the antipode f—, there exists a unique weak bial-

gebra homomorphism F': H — B such that the following diagram

is commutative:

H—>H

N

B.

We can deduce that H is unique up to isomorphism if it exists.

Remark 5.6. (1) In [2], the weak bialgebra B is always a weak Hopf algebra
with the antipode S. Thus Definition is a generalization of Definition
3.14 in [2] because S o fT gives the antipode of f* € Homg (H, B).

(2) Let H be a face algebra. Hayashi [I1] considered the construction of the
Hopf closure H if H is coquasitriangular and closurable. Then this H
satisfies Definition replaced with the notion of face algebras, that is to
say, ft: H— Band F: H — B are face algebra homomorphisms (see [LT,
Theorems 5.1, 8.2, and 8.3]).

Let A be a non-empty finite set and X a finite set. For a left bialgebroid A,
as in Subsection [3.I] we suppose that the K-algebra R is a Frobenius-separable K-
algebra with an idempotent Frobenius system (¢, e ®e(2)). For the K-algebra M,
we define a K-linear map ¥: M — K and an element E®V @ E®? ¢ M @g M as
follows:

= STU(FN) (f € M);
AEA
ED ® 52 — Z e(1 5y ® eﬁ2)5
AEA

Proposition 5.7. The pair (\I/,E(l) ® E(Q)) is an idempotent Frobenius system
of M.

Proof. For any f € M and 7 € A,
(P(FED)E®@) (1) = 3 (w((fefox)(1)es”63)(7)

ApEA

= Z e®) 2)5/\)( )
XeA

= ¢(f(r)eM)e

= f(7).

The proof for EMW(E®) f) = f is similar.
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On the other hand,
(EWE®)(7) = ((eMe®)363)(r)

AEA

=3 bpreWe®

AEA
— oD@
=1g
for any T € A.
Hence this (¥, EM) ® E®) is an idempotent Frobenius system of M. O
By virtue of Proposition and the left bialgebroid A, has a weak bialge-

(Aa)
bra structure. The quiver @ defined by (4.1)) and elements w |:(u,c) (,\/,b)} €
(', d)
R (((\a), (N, b)), (), (1, d)) € QP) as in ([@.2) give birth to a weak bialgebra

2(wy) and its homomorphism @ as in Section |4} The symbols w, wjye, and wyg.

stand for
J— Lab a .
w{(L_l)ab (a,b € X);
w _ Lac (’U.) = Lab); w _ ch (’LU = Lab);
T e e = el T {(E e (w = (L7 w)

for any ¢ € X. By using these notations, we get the explicit formulas of these weak
bialgebras A, and 2A(w,):

As,(fRg)+1)=> ((f ®e§1)6,\) +L,) ® ((e§2)5>\ ®g) - L,) ;
A€EA

Ay (w+1,)= Z ((11\/[ X 651)(&) wiy)e + Ig) & <<e§2)5>\ & 1M) Wigle + IU) ;

AeA
ceX
en, (F@Qw+1,) =040 Y V(fg)(N) (f.g€ M);
AEA
Asi(w,) (T ®r'®e [ﬂ + 3w> = Z (r e ®e {ﬂ + ﬁw)
weQ(m)

®<e(2) ®r® e[u} + 3“,);
q
E(wy) (7’ Qr® e[ﬂ + 3w> =8, (") (r,r' € R, m € Zso, p,q € Q™).

Theorem 5.8. If o is rigid, the pair (A,,®) satisfies the following universal prop-
erty:

For any K-algebra A and any K-algebra homomorphism

I Wwy) — A with the antipode f~, there exists a unique K-algebra
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homomorphism F: A, — A such that the following diagram is
commutative:

A(w,) ——> A,

BN

A.

If this K-algebra A has a weak bialgebra structure (A, A,e) and f* is a weak bial-
gebra homomorphism, then so is F.

Proof. We first show the existence of the K-algebra homomorphism F. The K-
algebra homomorphism Y: M ®g M°P — A is defined by
A
YT(g®h)= Zf+( ()®e[]+3w) (g,h € M).
A pEA H
By using this T, we define the K-algebra homomorphism F': K(AX) — A as follows:
F(§)=7() (£€MexM?P);

— _ (M a) '
F(Lap) = A;A FHiroinee {(M, b)] +3.) (abex);
il - — - (Aaa)
P = 3 1 (1n 0 1n w0 1),
We prove that F(I,) = {0}. It suffices to check that

F(a)=0 (5.7)

for every generator «v in I,. For any « as in the generators (1), the condition
is obviously satisfied since the map T is a K-algebra homomorphism. We next
prove that the generators (2) satisfy . Let r and 7’ be arbitrary elements in R.
For any m € Z>g, p, and ¢ € Q™) we get

es(r®r’®em + )
= % (e se] +an)e((rorael]) (@ s mee[]) <)

A, TEA
_ D) ool 17 ) o Pl 4
= > (1R eV we|”| + Jw)e(re &1 ® Sy, O(q) €| | + Jw>

A, TEA T q

(1) A ~ @) ot o 2|~

:Z(1R®e vel, +Jw>5(re @r ®e +Jw)

® q

A

= 0y, 1r @ eMy(re®y’ ®e{ }—l—jw )
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We can also prove the following in a similar way:

st<r®r’®em +fiw) 5p,qur’®1R®e[5(;\])} + T
q AEA
For all a,b € X,

F(Z (Lil)aCch)

ceX
_ : N -\
E29) ;{ ! (1R ©lpe [(% 0) + Jw) (fToes) (Qagw.))
A\, T, VEA

X f+(1R® 1R®eﬁ:gﬂ +3w>

B _ (A a)
- ;{ f (1R®13®e[(w)] + )
PWTR R VR WA

Xf_(1R®e(1)®e[T:| ) ((2)®1R®e|::]+jw>

Xf+(1R®1R®e|: }

— 1 (1) @ o1 (1, ) T
Lem.(2) ;{ f R®€ ®e|: :| (6 “wlree (T7b) i )
A\, TEA
A
= Z (f* 055)(13@ 1R®e[( ’a):| —|—jw>
A HEA (/”'a b)
=040 Z Sy f+(1R®€(1)1/1(6(2))®e T +jw)
’ " Adeg(a)
A, TEA
A
=0, (1 1 Tw
3 e, ]
= F(64,40).

Therefore F(ZCeX(L’l)aCLCb — 0ap0) = 0 is satisfied for any a,b € X. We can
prove that F(ZCGX Loc(L7™Y)ep — 8apP) = 0 for all a,b € X in a similar way. Let
us check that any generator « as in (3) satisfies (5.7)). For g € M, a, and b € X,

F((Tdeg(a)(g) by 1M)Lab - Lab(g 02y lM))

> (o0 degla ))®1R®em)(m®1R®e{((2’72ﬂ)+:fw)

A, T, vEA M
oI (G ICOISPEE MRS
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= > 7 (g(rdeg(a ))®1R®em”“ﬂ w)
(

b
— Z f+( (v deg(a ))®1R®e|:(:;:(;:| —|—Jw>

The proof of F((1a ® Taegv)(9))Lab — Lap(1ns ® g)) = 0 (Va,b € X) is similar.
To complete the proof of the other two generators as in (3), we use the following

two identities (for the proof, see the calculation of e (r ®r Qe B ] + §w> and

(r@r ®e[ } + 0w ))

Zss(lR@vr@eHJrjw) ZlR@or@eH T (5.8)

HEA HEA

Zst(r®13®eH ) Zr®1R®em+TIW(VreR,/\eA).(5.9)

pEA SN

For any g € M, a, and b € X, we have
F((g®1a) (L™ )ap)
- >\ at - (Tva)
= Z f+(g(>\) ®1p ®eL] + Jw)f <1R ®R1g ®e[(y,b)] +jw)

A TV EA
)\ ~
& ;{ (froe)(sn @inee M +2)
A, T, yEA
o ( ) (Tv a)
X (f+ 53)(1R®€ 1 ®e|:(’y’c):| +jw>
<[ (P elnee [((Z Zﬂ +3w)
= o (1) (1,a)
239 g}:{ (f+ 55)(1R®6 L ®e|:(fy’c):| +jw)
A, TV, YEA

< (1 oe)(a) @ n e Y] +3)

c,de X
ATy, m,0 €A

Rev. Un. Mat. Argentina, Vol. 67, No. 1 (2024)



TWO CONSTRUCTIONS OF BIALGEBROIDS AND THEIR RELATIONS 389

Lem. (2)

- (1) o o A @)
c,dze:x d (1R®el ®e[( C)}
A\ u, T, VEA

+
Na)| |~

cdze:x a (1R ®e(1) ®e[( 0)} Jer)

A, T, VEA

S (1R eV e {((2 Z;

Z f- (1R 2 e ® eﬁ/\’a;] + Jw>

c,deX

A, vEA

X f- ((2) (2)" ®1R®e[

11 11 " ’ ,C ~
x f (6(2)g(udeg(c)) ® e 1/)(6(2) e e ) ® e{g': d;] + Jw)

x f~ <6(2)'e(2)" ®lp®e [ET’ dg 3w>
1,
x ft (e(z)g(,u deg(c)) @ eV @ e EM’ C)] + ﬁw)

¥ f- (e@)’ Rlp®e {EZ d)} + jw)

)

A u,TEA

< (1 o2 (@gluden(e) @ 1w ()] +3.)

Z OprOb,ef ™ (13 e e [E)\7 a))} + 3w>

JTNe

AT VEA

x ft (e(z)g(,udeg(c)) ®1g ®e{ } +Jw)

> r(thedVoe {EA a;] + )

Ap,TEA

M, 0
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+(o(2) H

x fr{eg(pdeg(h)) @ Irp®@e| | +Tw
T

A, T, VEAN

(<9
Z f- (1R®1R®e[2’?)ﬂ+3w>(f+0€s)(1m(wa))
(ot

x f(g(r deg(b) ®1R®e{}+§ )

= F(( )ab(Tdeg b)( )®1M))

That F((1ar @ g)(L™Y)ap — (L™ ab (1nr ® Tyeg(a)(g 0 (Va,b € X) is also
induced by using Lemma- , 2.29)), and (5.8 We can show ({5.7) for any
generator « as in (4) similar to the proof of (4. 3 in Theorem. It is easy to prove
that the generator (5) satisfies (5.7) because of low,) = >_y 4ea 1R®1R®e[ |+ 3w
Hence the K-algebra homomorphlsm Fla+1,) = F(a) (o € K(AX)) is well
defined.

We next show that f© = F o ®. Since these three maps f*, F and ® are
K-algebra homomorphisms, it is sufficient to prove that

plorodig] )= wntper ot )

for all r,7 € R, (\,a), and (i, b) € Q. We can evaluate that

(Fod)(rere e[(A’a)] + )

(1, 0)
:f+<r®r’®e[2 +3) (> f+(1R®1R®e[E:ZH +3u))
TVEA ’

:f+<r®r'®eﬁ)\’g] +3w>.

We give the proof of the uniqueness of F. Let F’ be a K-algebra homomorphism
such that f* = F' o ®. We see at once that F'(g®@ h+ I,) = F(g ® h + I,) and
F'(Lgp + 1) = F(Lay + I,) for all g,h € M, a, and b € X. Let SWHA denote the
antipode of the weak Hopf algebra A,. We assume the following lemma for the
moment.

Lemma 5.9. We suppose that the family o is rigid. For any a,b € X,

AN(Lab + IO') - Z(Lac + Io’) N (ch + Io’)-
ceX
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For any a € A,,

() = Lmye(al(z))

IS
&

Ly (Vo mar)(al(z))

©
i Il
ﬁ

— tM(E(l))(\II o ’]I'M)(OLSM(E(z)))

)
ol
&

= (Womy)(E® @1y + 1)1y ® EW + 1,).
According to Proposition and Lemma and the generators (3), SWHA
satisfies that
SWHA(Lab + Io’)
=Y eu(Lac + Io)S"AP (Lo + 1)
ceX
= > (Vo mum)(Lae(E? @ 1) + L) (1ns @ EV)(L™)ap + 1)
ceX

= Z(\II © 7-‘-1\4)((Tdeg(a) (E(2)) ® 1M)Lac + Io)((Lil)cb(lM ® Tdeg(a) (E(l))) =+ IU)
ceX

=3 w( o (E@) @ 1y + L) x(Lac)) (1ar))

ceX
X (LY (s © Taeg(ay (EM)) + L)

— Z 5a,C\P(Tdeg(a)(E(Z)))((Lil)Cb(lM ® Tdeg(a)(E(l))) + IU)
(3-2) ceX

= Z ab 1M ®eﬂ 6)\deg(a) I\I/(eﬁ 5)\deg (a)~ 1)) +1,
A€A

= (L7 Ya(1yr @ EWU(E@)) + 1,
= (Lil)ab + IG'
for any a,b € X. Therefore we compute that
F'(L Yy + 1) = (F' o SWHA)Y Loy + 1,,)
A
= > (FosV0a)(1ne 1R®e[( ’a)} +3u)-
ME

Let us prove that the map f := F’ o SWVHA o & is the antipode of f*. For all
a € Ww,),

(f* fH)(a) = F/(sVHA (@
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The proof for f+f = ftoe, and fx ftxf = f is similar. Thus f is the antipode
of f*. We can deduce that f = f~ because of the uniqueness of the antipode.
Hence F’' = F is satisfied.

Finally, we show that F is a weak bialgebra homomorphism if A is a weak
bialgebra and fT is a weak bialgebra homomorphism. Let us prove that F is
comultiplicative. Since Ay, and Ay satisfy (2.20), it suffices to check that ((F ®
FyoAy )(a+1,) = (Aso F)(a+1,). Here,

g®h (Vg,h e M);
a = Lab;
(LYY (Va,b e X).

Ifa=g®h (Vg,h € M), we get
(F®F)oAu,)g®h+1,)

- f*(gu)@e@@em +34) ®f+(e<2>®h(u>®em +3)

A, TEA

- X @ae (s eni el +3.)

A HEA
— (M40 F)(g@h+1,).

The proof for a = Ly, (Va,b € X) is similar. Let us suppose that a = (L™1),; for
any a and b € X. Since f~: A(w,) — AP°P is a weak bialgebra homomorphism
(see Lemma [5.3](2)), we can deduce that

(F®F)o A ) (L™ Yap + 1)
= > As(l)
ex

C
Ap,TVEA

X f<1R®1R®e|:()\’C)

(u,b)} +3u) ®f(1R®1R®e[

S (@) oA, ) (law.)

2]

r
(v,

ceX
A, p,TvEA
s (momody] e r (mormodi ] <2
- 2 remeel il ea) e o oef ] +an)
_ . (a)
" X e (e e ) )

= (Bao F)(L™ap + 15).
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Hence the map F' is comultiplicative. We prove that F' preserves the counit. Since
the counit satisfies (2.22)), it suffices to show that

(eao F)((g®h)Lap + Is) = €a,((9 @ h)Lab + I5); (5.10)
(a0 F)(g@h) (L™ ap + 1) = €a,((9 @ B) (L™ )ap + L) (5.11)
for any g,h € M, a, and b € X. For (5.10), we can evaluate that

Eae F)(9@ M) Loy +1) = 3 cawy) (o) @ h(n) @ e m Z;] +3)
A HEN )

= 3 e stlgWh ()

A HEA

— 5up 3 B((gh)(N)

AEA
=¢ea,((g®@h)Lap + 1,,).

We can prove (5.11)) in a similar way. This completes the proof. O
Proof of Lemma[5.9 Let a and b be arbitrary elements in X. Since we can easily

prove that S3'o ) (a®pb) = S71(b) @n S7!(a) (see also [2I, Theorem 3.9]), it
follows that

AN(Lab + Ia) = (SZéNA oApo S)(Lab + IG)

= Z SZ;@NA((L_l)cb + IO' Qm (L_l)ac + Io-)
ceX

= Z Lac +IO' SN ch +IO"
ceX

This is the desired conclusion. O

Corollary 5.10. If o is rigid, then the pair (A,, ®) is the Hopf closure of A(wy).
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