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CONVOLUTION-FACTORABLE MULTILINEAR OPERATORS

EZGİ ERDOĞAN

Abstract. We study multilinear operators defined on topological products
of Banach algebras of integrable functions and Banach left modules with con-
volution product. The main theorem of the paper presents a factorization for
multilinear operators through convolution that implies the property known as
zero product preservation. By using this factorization we investigate prop-
erties of multilinear operators including integral representations and we give
applications related to orthogonally additive homogeneous polynomials and
Hilbert–Schmidt operators.

1. Introduction and preliminaries

The factorization of operators is a powerful technique widely used in functional
analysis to analyse the structure of an operator as well as the spaces on which
it acts. By decomposing an operator into simpler components, a great deal of
information can be obtained about the behavior and properties of this operator.
The factorization of operators through a generic map that we call product has
been studied by several authors in different contexts, such as lattices and algebras.
To obtain the squares of the Riesz spaces, Buskes and van Rooij proved such a
factorization for the bilinear operators defined on the topological product of a Riesz
space E which are zero valued for the pairs of orthogonal elements, and they called
these bilinear operators orthosymmetric maps (see [9] and [10]). In subsequent
works, Boulabiar and Buskes gave the definition of n-power of a vector lattice and
presented its universal characterization by using orthosymmetric n-linear maps [8].
In their study of Banach algebras, some researchers have used the bilinear and
multilinear operators called zero product preserving, which are zero valued for
the elements whose algebraic product is zero (see [1, 3] and references therein).
Recently, the factorization of bilinear and multilinear operators defined on Banach
function spaces through pointwise product has been studied by the author with
different collaborators in [14] and [16]. Though the structures of these spaces are
varied, the factorizations are mainly based on the disjointness preserving property.

The purpose of this paper is to present a generalization for n-linear operators
of the factorization given in [15] motivated by the convolution of three functions
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introduced by Arregui and Blasco in [4]. Although the main theorem is similar to
the bilinear case, completely new results are given and different applications are
presented.

The paper is organized as follows. In the introduction, we give some basic no-
tions and terminology. In Section 2, we give the main definitions and requirements
that will be the basis for the study. Section 3, which is the main section of the pa-
per, concerns factorization through convolution of Banach-space-valued multilinear
operators defined on the topological product of Banach algebras of integrable func-
tions and Banach left modules. Section 4 is devoted to domination inequalities and
integral representations obtained by using vector measures and some lattice geomet-
ric inequalities of convolution-factorable multinear operators. The paper finishes
with some applications. In these applications, we show an isomorphism between
orthogonally additive n-homogeneous polynomials and convolution-factorable oper-
ators and we give some integral and series representations by using Hilbert–Schmidt
operators.

Throughout the paper, we will use the standard terminology and notions from
functional analysis. Nevertheless, before going further, we remind the reader of
some notations. The capital letters X,Y, Z denote Banach spaces defined on the
same scalar field K = R or C. Z and N indicate the set of integer and natural
numbers, respectively. T is the circle group of complex numbers, that is, the real
line mod 2π. The topological dual space of a Banach space X is denoted by X ′. BX
is the unit ball of the spaceX. The notationX ∼= Y meansX and Y are isomorphic.
×nX denotes the n-fold Cartesian product of the Banach space X. The notation
`p (p ≥ 1) denotes the Banach space of absolutely p-summable sequences endowed
with the norm ‖(xn)‖`p = (

∑
|xn|p)1/p.

By operator (linear, multilinear or polynomial) we mean continuous operator.
We will write Ln(X1 × · · · × Xn, Y ) for the Banach space of n-linear operators
endowed with the norm

‖M‖ = sup{‖M(x1, . . . , xn)‖ : xi ∈ BXi , i ∈ {1, . . . , n}}.

Ln(X1×· · ·×Xn) and L(X,Y ) denote the n-linear forms defined on X1×· · ·×Xn

and the space of linear operators from X to Y , respectively.
W(T) is the unital algebra known as Wiener algebra under multiplication opera-

tions that comprises the continuous positive definite functions. Since T is a compact
Abelian group, W(T) corresponds to the space of functions having absolutely con-
vergent Fourier series and it is a Banach space with the norm ‖f‖ = ‖f̂‖`1 , where f̂
is the sequence of the coefficients of the Fourier series of the function f . It is known
that W(T) is isometrically isomorphic to the sequence space `1(Z) by the Fourier
transform (see [17, §32 and §34] and also [7, p. 7]). I(T) denotes the Banach alge-
bra of all the trigonometric polynomials on T. C(T) is the Banach space endowed
with the usual supremum norm of the scalar-valued continuous functions defined
on the compact group T. M(T) is the space of regular Borel signed measures on T.

A linear operator T : X → Y is called (p,q)-summing if there exists a constant
c > 0 such that, for every choice of elements x1, . . . , xm ∈ X and for all positive
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integers m, (
m∑
i=1

∥∥T (xi)
∥∥p
Y

)1/p

≤ k sup
x′∈BX′

(
m∑
i=1
|〈xi, x′〉|q

)1/q

.

The space of (p, q)-summing operators from X to Y is denoted by Πp,q(X,Y ), and
by Πp(X,Y ) if p = q.

For the locally compact Abelian group T, it is known that (T,B(T),m) is a
finite measure space, where m is the Haar measure that is simply the normalized
Lebesgue measure and B(T) is the Borel σ-algebra defined on T (see [19, Section
VIII.2]). We denote all m-a.e. equivalence classes of measurable functions on T by
L0(T). Lp(T) (p ≥ 1) denotes the Banach space of p-integrable functions equipped
with its standard norm ‖f‖Lp(T) = (

∫
T |f |

p dm)1/p. For p = ∞, L∞(T) = L∞(m)
denotes the Banach space of m-a.e. bounded measurable functions equipped with
the essential supnorm ‖.‖L∞(T).

Throughout the paper we will use the convolution operator defined on the Ba-
nach space L1(T) by the formula

f ∗ g(x) =
∫
T
f(x− y)g(y) dm(y).

Recall that L1(T) is a Banach algebra by its natural convolution product.
A net {eτ}τ∈Λ in a non-unital normed algebra A is called a k-bounded left ap-

proximate identity for A if eτx→ x (x ∈ A) and there exists a positive constant k
such that ‖eτ‖ ≤ k for all τ ∈ Λ (see [7, §11]).

A (linear, multilinear or polynomial) operator is called (weakly) compact if it
maps the unit ball to a relatively (weakly) compact set.

2. Product-factorable multilinear maps

Let X1, X2, . . . , Xn, and Z be Banach spaces. Consider a Banach-space-valued
n-linear map ~ : X1 ×X2 × · · · ×Xn → Z defined by

(x1, x2, . . . , xn) ~(x1, x2, . . . , xn) = x1 ~ x2 ~ · · ·~ xn
for all xi ∈ Xi (i = 1, 2, . . . , n).

We will call this particular map a norming product if the inclusion BZ ⊆
~(BX1 ×BX2 × · · · ×BXn) holds.

Here are some examples of norming product:
• The algebraic multiplication is a norming product for all unital Banach

algebras.
• The convolution operation ∗ is a norming product from L2(T)× L2(T) to
W(T).

• Let (Ω,Σ, µ) be a σ-finite measure space and let
∑n
i=1

1
pi

= 1
r and pi, r ≥ 1.

Then the pointwise product � defined on Lp1(µ) × · · · × Lpn(µ) to Lr(µ)
is a norming product (see [14, Section 4]). The pointwise product � :
`p1 × · · · × `pn → `r is a norming product for sequence spaces also.
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Recall that a multilinear operator B : X1 × · · · ×Xn → Y is called ~-factorable
for the norming product ~ if it can be factored through the product ~ : X1 ×
· · · × Xn → Z and a linear operator T : Z → Y such that B(x1, x2, . . . , xn) =
T ◦~(x1, x2, . . . , xn) = T (x1~x2~ · · ·~xn) for all xi ∈ Xi (i = 1, . . . , n) (see [14,
Definition 2.1]).

Thus, the following triangular diagram commutes for a certain continuous linear
operator T : Z → Y :

X1 ×X2 × · · · ×Xn
B //

~
��

Y.

Z

T

55kkkkkkkkkkkkkkkkkkk

The author showed [14, Lemma 2.3] that a multilinear operator B : X1 ×X2 ×
· · ·×Xn → Y is ~-factorable for the norming product ~ : X1×X2×· · ·×Xn → Z
if and only if there is a constant k > 0 such that for every finite set of vectors
(xji )mi=1 ∈ Xj (j = 1, 2, . . . , n), the following inequality holds:∥∥∥∥ m∑

i=1
B(x1

i , x
2
i , . . . , x

n
i )
∥∥∥∥
Y

≤ k
∥∥∥∥ m∑
i=1

x1
i ~ x

2
i ~ · · ·~ xni

∥∥∥∥
Z

.

In addition to this necessary and sufficient condition for the ~-factorability, it
has been proved that, for specified domains, ~-factorable multilinear maps satisfy
another property, called zero product preservation.

A multilinear map B : X1×X2×· · ·×Xn → Y is called zero product preserving
(zpp for short) if

B(x1, x2, . . . , xn) = 0 whenever x1 ~ x2 ~ · · ·~ xn = 0 for some xi ∈ Xi,

where i ∈ {1, 2, . . . , n}. The class of zpp multilinear operators is a Banach space
endowed with the usual multilinear operator norm. The Banach space of n-linear
zpp operators defined on X1 × X2 × · · · × Xn to Y will be denoted by Ln0 (X1 ×
X2 × · · · ×Xn, Y ).

3. Convolution-factorability of multilinear operators

To obtain a class of ∗-factorable multilinear operators we will use some well-
known results of harmonic analysis. Let us recall them. I(T) consists of all the
trigonometric polynomials on T in the ordinary sense, that is, it is the set of all
functions f(t) =

∑n
k=−n ak exp(ikt).

For the compact group T, L1(T) is a Banach algebra under convolution, where
the normalized Haar measure is the normalized Lebesgue measure (see [17, 28.46]
and [19, p. 202]). The non-unital Banach algebra L1(T) has a bounded left approx-
imate identity {eτ}τ∈Λ ∈ L1(T) consisting of positive trigonometric polynomials
such that ‖eτ‖L1 ≤ 1 for each τ and limτ ‖eτ ∗ f − f‖L1 = 0 for all f ∈ L1(T) (see
[17, Theorem 28.53]).

It is known that if U(T) is a left Banach L1(T)-module under convolution such
that the set I(T) of trigonometric polynomials defined on T is contained as a dense
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set, then any bounded left approximate identity {eτ}τ∈Λ of L1(T) is a bounded left
approximate identity for the subalgebra U(T), i.e., limτ ‖eτ ∗g−g‖U = 0 for all g ∈
U(T). Besides, this implies a factorization for U(T) such that L1(T)∗U(T) = U(T)
(see [17, Remark 38.6] and also [7] for more information about Banach algebras
and modules). There are some specific subalgebras of the Banach algebra L1(T)
that have the properties attributed to U(T) above: the spaces Lp(T) (1 ≤ p <∞),
C(T), and W(T) are left Banach L1(T)-modules with respect to the convolution
that include the Banach algebra I(T) as a dense set.

In this main section we will be interested in the multilinear operators

B : L1(T)× L1(T)× · · · × L1(T)× U(T)→ Y

and the n-convolution map

∗ : L1(T)× L1(T)× · · · × L1(T)× U(T)→ U(T),

where U(T) ∈ {Lp(T) (1 ≤ p <∞), C(T), W(T)}. By using the associativity of the
convolution we can write that

f1 ∗ f2 ∗ · · · ∗ fn−1 ∗ fn = f1 ∗ (f2 ∗ (· · · ∗ (fn−1 ∗ fn) . . . ))
= ((. . . ((f1 ∗ f2) ∗ f3) · · · ∗ fn−1) ∗ fn),

where f1, . . . , fn−1 ∈ L1(T) and fn ∈ U(T).

Remark 3.1. The convolution product ∗ is a norming product from L1(T) ×
L1(T) × · · · × L1(T) × U(T) to U(T), where U(T) ∈ {Lp(T) (1 ≤ p < ∞), W(T),
C(T)}. Indeed, this is seen from the Cohen factorization theorem and the factor-
ization L1(T) ∗ U(T) = U(T) for the mentioned function spaces (see [11] and [17,
Remark 38.6]). For f ∈ U(T), it is possible to write a factorization f = h ∗ g for
some h ∈ L1(T) and g ∈ U(T) by the factorization L1(T) ∗ U(T) = U(T). Be-
sides, the function f can be written as f = f1 ∗ · · · ∗ fn−1 by Cohen’s factorization
theorem, where f1, . . . , fn−1 ∈ L1(T).

Theorem 3.2. Consider a Banach-space-valued n-linear operator B : L1(T) ×
L1(T)×· · ·×L1(T)×U(T)→ Y , where U(T) ∈ {Lp(T) (1 ≤ p <∞), C(T), W (T)}.
The following statements are equivalent:

(i) The map B is zero product preserving.
(ii) The operator B is ∗-factorable for the norming product

∗ : L1(T)× L1(T)× · · · × L1(T)× U(T)→ U(T).

(iii) There exists a constant k > 0 such that, for every finite set of functions
(f ji )mi=1 ∈ L1(T) (1 ≤ j ≤ n− 1) and (fni )mi=1 ∈ U(T),∥∥∥∥ m∑

i=1
B(f1

i , f
2
i , . . . , f

n
i )
∥∥∥∥
Y

≤ k
∥∥∥∥ m∑
i=1

f1
i ∗ f2

i ∗ · · · ∗ fni
∥∥∥∥
U
.
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Thus, the following diagram commutes for a certain linear operator T : U(T)→ Y :

L1(T)× · · · × L1(T)× U(T) B //

∗
��

Y.

U(T)
T

44jjjjjjjjjjjjjjjjjjjjj

Proof. Let us consider a zero product preserving multilinear operator B : L1(T)×
L1(T) × · · · × L1(T) × U(T) → Y and denote by {eτ}τ∈Λ the left approximate
identity of L1(T) with bound 1. As stated before, this is an approximate identity
for U(T) as well, and, in addition, for all τ , eτ is a positive trigonometric polynomial
that can be represented by the form eτ (t) =

∑Nτ
k=−Nτ α

τ
k exp(ikt).

Consider the trigonometric polynomials f1, . . . , fn ∈ I(T) and represent them as
fj =

∑Nj
l=−Nj f

j
l exp(ilt) for all j ∈ {1, 2, . . . , n}. Since the convolution of exp(ikt)

and exp(ilt) is zero valued unless k and l are the same, i.e., exp(ikt) ∗ exp(ilt) = 0
(k 6= l), it is seen that

eτ ∗ fj(t) =
Nτj∑

k=−Nτj

ατkf
j
k exp(ikt)

for all j ∈ {1, 2, . . . , n} and τ ∈ Λ, where Nτj = min{Nτ , Nj}.
Let us fix τ ∈ Λ and define the multilinear operator Bτ (h1, . . . , hn) = B(eτ ∗

h1, . . . , eτ ∗ hn) for all h1, . . . , hn−1 ∈ L1(T) and hn ∈ U(T). Clearly, the net
{Bτ}τ∈Λ of operators consists of well-defined, multilinear operators. Due to the
assumption of zero product preservation of the map B, we get that

Bτ (f1, . . . , fn)
= B(eτ ∗ f1, . . . , eτ ∗ fn)

= B

(
Nτ1∑

k1=−Nτ1

ατk1
f1
k1

exp(ik1t), . . . ,
Nτn∑

kn=−Nτn

ατknf
n
kn exp(iknt)

)

=
N∑

k=−N
(ατk)nf1

k . . . f
n
kB(exp(ikt), . . . , exp(ikt)) (N = min{Nτ1, . . . , Nτn})

= B

(
N∑

k=−N
ατk exp(ikt),

N∑
k=−N

ατk exp(ikt), . . . ,
N∑

k=−N
ατkf

1
k . . . f

n
k exp(ikt)

)
= B(eτ , eτ , . . . , eτ , eτ ∗ f1 ∗ · · · ∗ fn)

for the trigonometric polynomials f1, . . . , fn. Since the algebra I(T) is dense in
both L1(T) and U(T), the equality above holds for arbitrary functions in L1(T)
and U(T) by the continuity of B and the convolution product ∗. That is, for every
h1, . . . , hn−1 ∈ L1(T) and hn ∈ U(T),

Bτ (h1, . . . , hn) = B(eτ , . . . , eτ , eτ ∗ h1 ∗ · · · ∗ hn).
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Secondly, define the map Tτ : U(T) → Y given by Tτ (h) = Tτ (h1 ∗ · · · ∗ hn) =
Bτ (h1, . . . , hn) for all h = h1 ∗ · · · ∗hn and each τ ∈ Λ, where h1, . . . , hn−1 ∈ L1(T)
and hn ∈ U(T). The class {Tτ}τ∈Λ of maps is a net of well-defined, linear and
continuous operators. Indeed, for all τ , it is easily seen that Tτ is well defined and
linear by linearity of the multilinear operator Bτ in each variable. The boundedness
of Tτ is obtained by the bounedness of B and algebraic properties as follows:

‖Tτ (h1 ∗ · · · ∗ hn)‖Y = ‖Bτ (h1, . . . , hn)‖Y
= ‖B(eτ , . . . , eτ , eτ ∗ h1 ∗ · · · ∗ hn)‖Y
≤ ‖B‖‖eτ‖n−1

L1 ‖eτ ∗ h1 ∗ · · · ∗ hn‖U
≤ ‖B‖‖eτ ∗ h1 ∗ · · · ∗ hn‖U
≤ ‖B‖‖eτ‖L1‖h1 ∗ · · · ∗ hn‖U = K‖h1 ∗ · · · ∗ hn‖U .

Besides, the operator Tτ is independent of the representation of the function h.
To see this, assume h = h1 ∗ · · · ∗ hn = h′1 ∗ · · · ∗ h′n. Then we get

Tτ (h1 ∗ · · · ∗ hn) = B(eτ , . . . , eτ , eτ ∗ h1 ∗ · · · ∗ hn)
= B(eτ , . . . , eτ , eτ ∗ h′1 ∗ · · · ∗ h′n) = Tτ (h′1 ∗ · · · ∗ h′n).

Therefore, the net {Tτ}τ∈Λ is a net of continuous linear operators. On the other
hand, this net is pointwise convergent for each h = h1 ∗ · · · ∗ hn ∈ U(T). Indeed,

lim
τ
Tτ (h1 ∗ · · · ∗ hn) = lim

τ
Bτ (h1, . . . , hn) = lim

τ
B(eτ ∗ h1, . . . , eτ ∗ hn)

= B(lim
τ
eτ ∗ h1, . . . , lim

τ
eτ ∗ hn) = B(h1, . . . , hn).

So, {Tτ (h1 ∗ · · · ∗ hn)}τ∈Λ converges to B(h1, . . . , hn) for all h = h1 ∗ · · · ∗ hn.
Define the pointwise limit T (h1 ∗ · · · ∗ hn) = limτ Tτ (h1 ∗ · · · ∗ hn). It is clear that
the limit map T is well defined and linear. Let us see the boundedness of the limit
operator. By using the version of the Uniform Boundedness Principle (Banach–
Steinhaus theorem) for nets, it is seen that T is continuous (see [21, p. 141]).
Summing up, the linear operator T (h1 ∗ · · · ∗ hn) = B(h1, . . . , hn) is the desired
factorization operator.

The implication between the statements (ii) and (iii) is obtained by [14, Lemma
2.3].

Finally, let us show the inequality given in the statement (iii) implies zero prod-
uct preservation. Assume that f1 ∗ · · · ∗ fn = 0. Then ‖f1 ∗ · · · ∗ fn‖ = 0. By the
inequality given in (iii), we get ‖B(f1, . . . , fn)‖ = 0. So B(f1, . . . , fn) = 0 and B
is zpp. This finishes the proof. �

As a consequence of the above theorem we get the following isomorphism be-
tween Ln0 (L1(T)× · · · × L1(T)×U(T), Y ) and L(U(T), Y ) (see the last paragraph
of Section 2, p. 106, for the definition of Ln0 (L1(T)× · · · × L1(T)× U(T), Y )).

Corollary 3.3. The correspondence T ←→ B is an isomorphism between the
Banach spaces Ln0 (L1(T)× · · · × L1(T)×U(T), Y ) and L(U(T), Y ). In particular,
for Y = R, we get Ln0 (L1(T)× · · · × L1(T)× U(T)) ∼= (U(T))′.
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Corollary 3.4. The above theorem gives the following isomorphisms for specified
U(T):

• Ln0 (L1(T)× · · · × L1(T)×W(T)) ∼= (W(T))′ ∼= (`1)′ = `∞.
• Ln0 (L1(T)× · · · × L1(T)× C(T)) ∼= (C(T))′ =M(T).
• Ln0 (L1(T)× · · · × L1(T)× Lp(T)) ∼= (Lp(T))′ = Lq(T) ( 1

p + 1
q = 1).

• Ln0 (L1(T)× · · · × L1(T)× L1(T)) ∼= (L1(T))′ = L∞(T).
• Ln0 (L1(T)× · · · × L1(T)× L2(T)) ∼= (L2(T))′ = L2(T) ∼= `2.

4. Domination inequalities and integral representations of
∗-factorable multilinear operators

We start this section by giving some basic notions from measure theory and
Banach function spaces. Recall that Lp-spaces are Banach function spaces (or
Köthe function spaces) (see [22, Definition 1.b.17] for the definition of Köthe func-
tion spaces). Besides, Lp(T) (p ≥ 1) has order continuous norm, that is, for
every downward directed set {hi}i∈Γ in Lp(T) converging to zero in dt-a.e., we get
limi ‖hi‖ = 0 (see [22, Definition 1.a.6]).

For the Köthe function spaces, another duality space called Köthe dual space
(also called associate space) appears that will be denoted X∗ for a Banach function
space X. For a Banach function space X(Ω,Σ, µ), the Köthe dual space X∗ is
the set of all the functionals belonging to the topological dual X ′ that can be
represented as integrals, i.e., if ψ is such a functional, there is a measurable function
gψ such that ψ(f) =

∫
Ω gψf dµ for all f ∈ X. It is known that X∗ = X ′ for an

order continuous Banach function space (see [22, p. 29]).
These notions will give some good integral representations for ∗-factorable mul-

tilinear operators. For example, since Lp(T) has order continuous norm for 1 ≤
p <∞ and Ln0 (L1(T)×· · ·×L1(T)×Lp(T)) ∼= (Lp(T))′ by Corollary 3.4, it is seen
that a multilinear map B ∈ Ln0 (L1(T) × · · · × L1(T) × Lp(T)) can be represented
by the integral B(f1, . . . , fn) =

∫
T(f1 ∗ · · · ∗ fn)h dm for some h ∈ L0(m).

Theorem 4.1. For 1 ≤ p < ∞ and any Banach-space-valued n-linear map B :
L1(T)× · · · × L1(T)× Lp(T)→ Y , the following are equivalent:

(1) For any finite subsets {f ij}mj=1 ∈ L1(T) (i = 1, . . . , n − 1) and {fnj }mj=1 ∈
Lp(T),

m∑
j=1
‖B(f1

j , . . . , f
n
j )‖pY ≤

m∑
j=1
‖f1
j ∗ · · · ∗ fnj ‖

p
Lp .

(2) There is a Y -valued vector measure µ on T such that Lp(T) ↪→ L1(µ) and

B(f1, . . . , fn) =
∫
T
(f1 ∗ · · · ∗ fn) dµ

for all f1, . . . , fn−1 ∈ L1(T) and fn ∈ Lp(T).

Proof. (1)⇒(2) By the inequality given in (1) it is easily seen that the multilinear
operator B is zpp and factors through a linear operator R and convolution ∗. By
the order continuity of the space Lp(T), the linear map R : Lp(T) → Y gives
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a countably additive vector measure, called the vector measure associated to R,
defined by mR = R(χA) for all A ∈ B(T). Using [23, Theorem 4.14], we get that the
order continuous Banach function space L1(mR) is the largest space where Lp(T)
is continuously embedded. Besides, there is a unique Y -valued, continuous linear
extension of R and this extension is the integration operator ImR(h) =

∫
T h dmR

for all h ∈ L1(mR). Thus the following diagram commutes:

L1(T)× · · · × L1(T)× Lp(T) Y

Lp(T) L1(mR).

B

∗
R ImR

By the continuity of the linear map R, the space L1(mR) is a Banach function
space over a Rybakov measure η for mR, and η is m-continuous (see [13, Sections
I.2 and IX.2], [23, Theorem 3.7 (iv)]). Thus, the inclusion can be changed by
the identification of classes [f ]m 7→ [f ]η that defines a continuous operator called
an inclusion/quotient map that preserves the factorization. By using all of the
information above, we obtain

B(f1, . . . , fn) =
∫
T
(f1 ∗ · · · ∗ fn) dmR

for all f1, . . . , fn−1 ∈ L1(T) and fn ∈ Lp(T). The measure mR is the desired
measure µ.

(2)⇒ (1) By direct computations and from the integral representation given in
the statement (2), for every finite set of functions {f ji }mi=1 ∈ L1(T) (1 ≤ j ≤ n− 1)
and {fni }mi=1 ∈ Lp(T), we get

m∑
j=1

∥∥B(f1
j , . . . , f

n
j )
∥∥p
Y
≤

m∑
j=1

∥∥(f1
j ∗ · · · ∗ fnj )

∥∥p
L1(mR)

≤
m∑
j=1

∥∥(f1
j ∗ · · · ∗ fnj )

∥∥p
Lp . �

Theorem 4.2. For an n-linear map B : L1(T) × · · · × L1(T) × C(T) → Y and
1 ≤ p <∞, the following statements are equivalent:

(1) The following inequality holds for some constant k > 0 for every finite set
{f ij}mj=1 ∈ L1(T) (i = 1, . . . , n− 1) and {fnj }mj=1 ∈ C(T):(

m∑
j=1

∥∥B(f1
j , . . . , f

n
j )
∥∥p
Y

)1/p

≤ k

∥∥∥∥∥
(

m∑
j=1

(f1
j ∗ · · · ∗ fnj )p

)1/p∥∥∥∥∥. (4.1)

(2) The multilinear map B admits a factorization of the form

L1(T)× · · · × L1(T)× C(T) ∗ // C(T) T // Y

such that T is a p-summing operator.
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(3) There are a Borel–Radon measure η on T and a linear operator S : Lp(η)→
Y such that B has a factorization of the form

L1(T)× · · · × L1(T)× C(T) B //

∗
��

Y

C(T)
[i]

// Lp(η),

S

OO

where [i] is an inclusion/quotient map.
In particular, if B satisfies one of the previous statements, then it has an integral

representation B(f1, . . . , fn) =
∫
T(f1 ∗ · · · ∗ fn) dη by a countably additive vector

measure η on the Borel sets B(T) to Y for all f1, . . . , fn−1 ∈ L1(T) and fn ∈ C(T).

Proof. (1)⇒(2) Inequality (4.1) implies the zero product preservation of B. There-
fore, it factors through the linear map T : C(T) → Y given by B(f1, . . . , fn) =
T (f1 ∗ · · · ∗fn) for all f1, . . . , fn−1 ∈ L1(T) and fn ∈ C(T). From the given inequal-
ity, we get(

m∑
j=1

∥∥T (f1
j ∗ · · · ∗ fnj )

∥∥p
Y

)1/p

≤

∥∥∥∥∥
(

m∑
j=1

(f1
j ∗ · · · ∗ fnj )p

)1/p∥∥∥∥∥.
This shows the p-summability of the linear map T .

(2)⇒ (3) By using a consequence of Pietsch’s Domination Theorem (see [12,
Corollary 2.15]) it is seen that there is a regular Borel probability measure η on
T such that every p-summing linear continuous operator on C(T) factors through
Lp(η).

(3)⇒(1) It is known that the natural inclusion [i] : C(T)→ Lp(η) is p-summing,
thus S ◦ [i] is a p-summing linear operator by the ideal property of p-summing
operators. Therefore, we obtain the inequality (4.1) as follows:(

m∑
j=1

∥∥B(f1
j , . . . , f

n
j )
∥∥p
Y

)1/p

=
(

m∑
j=1

∥∥S ◦ [i](f1
j ∗ · · · ∗ fnj )

∥∥p
Y

)1/p

≤ k

∥∥∥∥∥
(

m∑
j=1

(f1
j ∗ · · · ∗ fnj )p

)1/p∥∥∥∥∥.
Let us show the map B has an integral representation if one of the statements

(1), (2) or (3) is satisfied. The operator T : C(T)→ Y appearing in the factorization
of B is weakly compact since it is a p-summing linear operator. Theorem 3.2 in [5]
implies that the linear operator T defined on C(T) is weakly compact if and only
if it has an integral representation by a countably additive vector measure η on
the Borel sets B(T) to Y for all f ∈ C(T). This gives the representation of B by
factorization. �
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5. Applications: polynomials and integral operators

We will finish the paper by giving some applications related with n-homogeneous
polynomials and Hilbert–Schmidt operators.

Polynomials. Recall that an n-linear map B : ×nX → Y is called symmetric if

B(x1, . . . , xn) = B(xσ(1), . . . , xσ(n)) (x1, . . . , xn ∈ X)

for any permutation σ of the first n natural numbers. Lns (×nX,Y ) denotes the
space of symmetric multilinear operators defined on X to Y .

Remark 5.1. The space Ln0 (×nL1(T), Y ) of ∗-factorable n-linear operators is a
proper subspace of the space Lns (×nL1(T), Y ). Indeed, it is seen that any zpp
multilinear map B : ×nL1(T) → Y is symmetric by the factorization. By the
commutativity of the convolution ∗, the symmetry is seen as follows:

B(f1, . . . , fn) = T (f1 ∗ · · · ∗ fn) = T (fσ(1) ∗ · · · ∗ fσ(n)) = B(fσ(1), . . . , fσ(n)).

To show the reverse inclusion is not true in general let us give a counterexample.
Consider the bilinear symmetric functional B : L1(T) × L1(T) → C defined by
B(f, g) = (

∫
[0,π] f dt) · (

∫
[0,π] g dt) for f, g ∈ L1(T). For the functions f(t) = exp(it)

and g(t) = exp(3it), it is known that exp(it) ∗ exp(3it) = 0. However,

B(f, g) = B(exp(it), exp(3it)) =
(∫

[0,π]
exp(it) dt

)(∫
[0,π]

exp(3it) dt
)

= −4
3 6= 0.

Thus, we obtain that symmetry does not imply zero product preservation, i.e.,
Ln0 (×nL1(T), Y ) ⊂ Lns (×nL1(T), Y ).

A map P : X → Y is called an n-homogeneous polynomial if it is associated with
an n-linear symmetric map B : ×nX → Y such that P (x) = B(x, . . . , x) for all
x ∈ X. An n-homogeneous polynomial defined on the Banach algebra X is called
orthogonally additive if P (x+ y) = P (x) +P (y) whenever xy = 0 for x, y ∈ X. We
denote by P(nX,Y ) (resp., P0(nX,Y )) the spaces of n-homogeneous polynomials
(resp., n-homogeneous orthogonally additive polynomials) from X to Y . We will
write P(nX) and P0(nX) for Y = R.

The relation between n-homogeneous polynomials and zero product preserving
n-linear operators has been studied by various authors in recent years for both
Banach algebras and vector lattices (see [2, 6, 14, 18, 24, 25] and references therein).
Now we will give a similar result for the orthogonally additive polynomials defined
on the Banach algebra L1(T).

Theorem 5.2. There is an isomorphism between the spaces Ln0 (×nL1(T), Y ) and
P0(nL1(T), Y ).

Proof. Let us consider the zero product preserving map B ∈ Ln0 (×nL1(T), Y ).
Since B is symmetric and any symmetric multilinear map is associated to an
n-homogeneous polynomial, it follows that the map B defines an n-homogeneous
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polynomial PB such that it is orthogonally additive. Indeed, the orthogonal addi-
tivity of the polynomial PB is seen as follows:

PB(f + g) = B(f + g, . . . , f + g)

=
n∑
k=0

(
n

k

)
B(f, k. . ., f, g, n−k. . . , g)

= B(f, n. . ., f) +B(g, n. . ., g)
= PB(f) + PB(g)

by the zero product preservation of the map B, where f, g ∈ L1(T) satisfy f ∗g = 0.
Now, consider an orthogonally additive n-homogeneous polynomial P . By [2,

Theorem 3.1], the orthogonal additivity of the polynomial P implies the existence
of a linear operator TP : L1(T) → Y defined by P (f) = TP (f∗ n. . . ∗f) for all f ∈
L1(T). Since the linear operator TP defines a ∗-factorable n-linear operator BT :
×nL1(T) → Y by TP (f∗ n. . . ∗f) = BT (f, . . . , f), it is seen that the orthogonally
additive n-homogeneous polynomial P is associated with a ∗-factorable n-linear
operator. This can be represented by the following diagram:

L1(T)
P

!!D
DD

DD
DD

DD

∆nyy
×nL1(T)

∗

%%

BT

// Y,

L1(T)
TP

==zzzzzzzz

where ∆n is the canonical embedding, called diagonal mapping, from L1(T) to
×nL1(T). �

This theorem gives an integral representation for orthogonally additive polyno-
mial forms defined on L1(T).

Corollary 5.3. P0(nL1(T)) ∼= L∞(T) and every polynomial P ∈ P0(nL1(T)) has
an integral representation P (f) =

∫
T(f ∗ · · · ∗ f)g dt for some g ∈ L∞(T).

Proof. By Corollary 3.4 and Theorem 5.2, we get
P0(nL1(T)) ∼= Ln0 (×nL1(T)) ∼= (L1(T))′ = L∞(T).

By the order continuity of the space L1(T), any orthogonally additive polynomial
form P is represented by an integral that is the factorization of a ∗-factorable
multilinear form BP : ×nL1(T)→ R as P (f) =

∫
T(f ∗ · · · ∗ f)g dt by a measurable

function g. �

Integral operators. Our last applications are integral and series representations
of ∗-factorable multilinear operators defined on L1(T)× · · · × L1(T)× L2(T). For
these representations we will use the properties of Hilbert–Schmidt operators (see
[20, 1.b.14] for the definition of Hilbert–Schmidt operators).
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Corollary 5.4. Let B : L1(T)× · · ·×L1(T)×L2(T)→ L2(T) be an n-linear map.
Then the following statements imply each other:

(1) There exists a constant k > 0 for every finite set {f ij}mj=1 ∈ L1(T) (i =
1, . . . , n− 1) and {fnj }mj=1 ∈ L2(T) such that(

m∑
j=1

∥∥B(f1
j , . . . , f

n
j )
∥∥2
L2

)1/2

≤ k sup
φ∈BL2(T)

(
m∑
j=1
|〈f1

j ∗ f2
j ∗ · · · ∗ fn−1

j ∗ fnj , φ〉|2
)1/2

.

(2) The multilinear map B admits a factorization of the form

L1(T)× · · · × L1(T)× L2(T) ∗ // L2(T) T // Y

such that T is a 2-summing operator.
(3) There is a kernel K ∈ L2(T2,m2) such that B has the following integral

representation:

B(f1, . . . , fn)(x) =
∫
T
K(x, y)(f1 ∗ · · · ∗ fn) dm(y) x dm-a.e.

for all f1, . . . , fn−1 ∈ L1(T), fn ∈ L2(T).
(4) There is a regular probability measure µ on a compact Hausdorff space S

and a linear operator B̃ : L2(µ) → L2(T) such that the following diagram
commutes:

L1(T)× · · · × L1(T)× L2(T) B //

∗
��

L2(T)

L2(T)
I

// C(S)
J
// L2(µ),

B̃

OO

where I is the formal inclusion map and J is the canonical map.

Proof. (1)⇔ (2) The inequality given in the first statement implies zero product
preservation, hence factorization, of B such that the operator T appearing in the
factorization is 2-summing by the definition of summing operators and the inequal-
ity. The converse is clear.

(2)⇔(3) The map T : L2(T)→ L2(T) is a 2-summing operator if and only if it is
a Hilbert–Schmidt operator and this implies an integral representation T (f)(x) =∫
TK(x, y)f(y) dm(y) x dm-a.e. for a kernel K ∈ L2(T2,m2) and all f ∈ L2(T) (see

[12, Theorem 4.10] and [20, Prop. 1.b.15]). Since any f ∈ L2(T) can be written as
f = f1 ∗ · · · ∗ fn for f1, . . . , fn−1 ∈ L1(T) and fn ∈ L2(T), the map T defines the
multilinear map B by the integral representation. For the converse, assume that B
has the integral representation, then clearly it is zpp and admits the factorization
such that T is a Hilbert–Schmidt operator due to the integral representation. Since
Hilbert–Schmidt operators are 2-summing, so is T (see [12, Theorem 4.10] and [20,
Prop. 1.b.15]).

(4)⇔ (1) B admits such a factorization if and only if the linear map B̃ ◦ J ◦ I
is 2-summing (see [12, Corollary 2.16]). Thus, the inequality given in (1) follows
by the 2-summability of B̃ ◦ J ◦ I and the factorization B = B̃ ◦ J ◦ I ◦ ∗. For the

Rev. Un. Mat. Argentina, Vol. 65, No. 1 (2023)



116 EZGİ ERDOĞAN

converse, the first statement implies the ∗-factorability, and therefore we have the
factorization B = T ◦ ∗ with T 2-summing.

Therefore, the commutative diagram follows by [12, Corollary 2.16] again. �
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[15] E. Erdoğan and Ö. Gök, Convolution factorability of bilinear maps and integral representa-

tions, Indag. Math. (N.S.) 29 (2018), no. 5, 1334–1349. MR 3853430.
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[24] D. Pérez-Garćıa and I. Villanueva, Orthogonally additive polynomials on spaces of continuous
functions, J. Math. Anal. Appl. 306 (2005), no. 1, 97–105. MR 2132891.

[25] K. Sundaresan, Geometry of spaces of homogeneous polynomials on Banach lattices, in Ap-
plied Geometry and Discrete Mathematics, 571–586, DIMACS Ser. Discrete Math. Theoret.
Comput. Sci., 4, American Mathematical Society, Providence, RI, 1991. MR 1116377.

Ezgi Erdoğan
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