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A NOTE ON THE DENSITY OF THE PARTIAL REGULARITY
RESULT IN THE CLASS OF VISCOSITY SOLUTIONS

DISSON DOS PRAZERES, EDGARD A. PIMENTEL, AND GIANE C. RAMPASSO

ABSTRACT. We establish the density of the partial regularity result in the class
of continuous viscosity solutions. Given a fully nonlinear equation, we prove
the existence of a sequence entitled to the partial regularity result, approxi-
mating its solutions. Distinct conditions on the operator driving the equation
lead to density in different topologies. Our findings include applications to
nonhomogeneous problems, with variable-coefficient models.

1. INTRODUCTION

In this note we examine the density of the partial regularity result in the class
S(A, A) of continuous viscosity solutions to

F(D*u) =0 in By, (1.1)

where F : §(d) — R is merely a (A, A)-elliptic operator.

Given a viscosity solution u € C(B1) to (1.1}, we prove the existence of a se-
quence (uy, )nen, for which the partial regularity result is available, converging to u.
Different modes of convergence are examined, under distinct assumptions on F'.
We also consider the case of nonhomogeneous problems, in the presence of variable
coefficients. Our main contribution in this note is to implement a mollification
strategy for F. Our analysis is motivated by the class of results put forward in [6].

The regularity theory for fully nonlinear elliptic problems plays a prominent
role in the analysis of partial differential equations. An important development in
this realm stems from the works of Krylov and Safonov, and of Trudinger (see [14]
and [27]; see also [4] and [5, Section 8.2]). It ensures that if w is a viscosity
solution to (L.I), then u € CL(By) for some ag € (0,1) unknown. In addition,
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the appropriate estimates are available. This result is also understood as a fully
nonlinear counterpart of the De Giorgi—-Nash—Moser theory.

If ellipticity is combined with convexity of the operator F', further levels of
regularity are unveiled. This is the content of the Evans—Krylov theory [9] [13].
Under these assumptions, solutions to are actually of class C%®, locally, with
estimates. Once again, a € (0,1) is unknown. Independently developed by Evans
and Krylov, this corpus of results unlocks a set of conditions under which classical
solutions are available.

In [4], Caffarelli examines viscosity solutions to

F(D?*u,z) = f in By. (1.2)

The fundamental idea in that paper is to relate with the homogeneous equa-
tions driven by the fixed-coefficient counterpart of F(M,x). Under natural as-
sumptions on the oscillation of the operator and the integrability of the source
term, the author develops a regularity theory in Holder and Sobolev spaces; see [5].
For related developments, see also [8], [26] 28].

The corpus of results comprised by the C1'®-estimates, and the Evans-Krylov
and Caffarelli regularity theories suggest a fundamental question. It regards the
highest regularity level expected to hold in the presence of uniform ellipticity alone.
In other words, one asks if the C1®°-regularity theory is optimal in the absence of
further conditions on the operator.

Only recently has this question been answered affirmatively. In [I6] [I7] [I8],
19], Nadirashvili and Vladut produced a number of important counterexamples.
First, the authors obtained a (A, A)-elliptic equation with solutions whose Hessian
matrices blow up. Moreover, for every 7 € (0, 1), they managed to design a (A, A)-
elliptic operator F, such that solutions to

F,(D*v) =0 in B,

lack CY7-regularity. In brief, the former examples imply that ellipticity is not
enough to enforce Cl+!-regularity. Also, the conjecture that solutions are of class
Ch for every o € (0,1) is proven false. Surprisingly enough, the Krylov—Safonov
regularity theory is optimal if the operator driving the equation is merely elliptic.

This context motivates the development of methods to unlock further regularity
of the solutions. In line with this effort, one finds a number of contributions, as
several authors have been working on a variety of directions. We choose to mention
two among those.

In [24] Savin considers an equation of the form

F(D?u, Du,u,z) =0 in By (1.3)
and imposes a few conditions on F'. In that paper, the operator is supposed to be
degenerate elliptic. Also, F' is uniformly elliptic in a neighborhood of the origin
and verifies F(0,0,0,z) = 0. In addition, the author assumes F to be twice dif-

ferentiable, with a modulus of continuity for the Hessian. Under those conditions,
there exists a constant oo > 0 such that, if a viscosity solution to (1.3]) satisfies

||u||Loo(Bl) < oy,
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then u € C2°

loe (B1), with estimates. The og-smallness condition imposed on the L°-
norm of the solutions is known as flatness. The associated statement is: flatness
implies C*®. Of particular interest in [24] is the condition on the differentiability
of the operator with respect to its Hessian entry.

In [I] Armstrong, Silvestre and Smart examine viscosity solutions to
F(D*u) =0 in By

under differentiability assumptions on F. In fact, the authors suppose F' € C(S(d))
with a modulus of continuity for the gradient. Were those conditions in force,
solutions would be of class C>* in B; \ , with the Hausdorff dimension of
strictly below d. If d = 2, the set where C%“-regularity fails would be at most a
line. This has been known as partial regularity result and represents an important
advance in the theory. It addresses nonconvex operators by imposing a (uniform)
differentiability condition. The authors resort to some aspects of [24] and the
measure control for the Hessian put forward in [I2]. As a by-product of their
analysis, a conjecture on the precise formula of Fanghua Lin’s exponent is stated.
We refer the reader to [12]; see also [5, Proposition 7.4].

Although stated in fairly general terms, the partial regularity result does not
include important toy models of the literature. An example is the Isaacs equation.
For A: Ax B — S(d), mapping A x B 3 (o, f) — Aq,p, we consider

sup inf (—Tr(AapD?*u)) =0 in By. (1.4)
BEB acA

The Isaacs equation is of utmost relevance in the theory of fully nonlinear el-
liptic equations. This is partly because a fully nonlinear problem can be formu-
lated in terms of such an equation, for appropriate families of operators; see, for
instance, [3]. In addition, solutions to are value functions of stochastic two-
player zero-sum differential games; we refer the reader to [2] [10] [I1].

In the present work we produce approximation results for fully nonlinear (A, A)-
elliptic operators lacking differentiability. We relate their solutions to sequences
(un)nen in the class of viscosity solutions S(A,A). For similar results involving
nonlocal operators and smooth approximations, see the work of Caffarelli and Sil-
vestre [6]. For the density of improved regularity in the class of viscosity solutions,
we refer the reader to [23] 21].

Here we are interested in the following class of results. Suppose F' is a (A, A)-
elliptic operator and let u € C(B) be a viscosity solution to . Although it is
not possible to extend the partial regularity result to u, we prove the existence of a
sequence (u,)nen converging to u and for which C?%-regularity is available, except
in a subset 2 C B; of Hausdorff measure strictly less than d. Different assumptions
on the operator F' yield distinct modes of convergence. Ultimately, if one has an
interest in properties closed under certain limits, the starting-point of the theory
can be, in general, the partial regularity result. Our first main theorem reads as
follows.
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Theorem 1.1 (Density in the C!'A-topology). Letu € C(B1) be a viscosity solution
to , Suppose A to be introduced later, is in force. For every a € (0,1),
there exist Q) C By, a constant 6 > 0 and a sequence (un)nen Satisfying
(1) up € S\ A)NCHY(By \ Q) for every n € N;
(2) u, — u in the CYP-topology for every B € (0, By), where By € (0,1) is the
exponent driving the C1P -regularity for F = 0; and
(3) dimy Q < d—6.

The former theorem states that, although F' is not differentiable, u can be ap-
proximated in the C*#-topology by functions under the scope of the partial reg-
ularity result, in the same viscosity class. Therefore, when studying properties
closed under C#-limits, one can suppose the partial regularity result is available
in general. Under further conditions on the operator F' the convergence of the
approximating sequence takes place in a finer topology.

Indeed, if we suppose that F has a recession profile F'* with C!-!-estimates, it
is possible to prove that u, — u in the CHM0&LiP_topology. This occurs whenever
F* is convex/concave. For details on the notion of recession function, we refer the
reader to [2I], 23] 25]. Our second result is the following.

Theorem 1.2 (Density in the C118LP_topology). Let u € C(By) be a viscosity
solution to . Suppose A 7A to be introduced later, are in force. For
every a € (0,1), there exist Q C Bi, a constant 6 > 0 and a sequence (Up)neN
satisfying

(1) up € S\, A)NCHY(By \ Q) for every n € N;

(2) up — u in the CHLE NP _topology; and

(3) dimy Q < d—6.

This result refines Theorem [I.T]as it ensures the convergence of an approximating
sequence in the CMo8-1iP_topology. In particular, it includes the case of the C1+5-
topology for every 3 € (0,1).

Our third result covers the case of nonhomogeneous equations, governed by op-
erators with variable coefficients. In [7] the authors examine conditions on the
structure of under which flatness implies improved regularity of the solutions.
Their findings are sharp, in the sense that Lipschitz continuity of the data with
respect to x leads to C>“-regularity. In contrast, mere continuity implies estimates
in Chloe-lip_gpaces. Consequential on the findings in that paper is a partial regu-
larity result for the solutions to provided F is well-prepared; see Theorem 2.6
We refer the reader to [7, Section 5].

Our techniques build upon [7), Section 5] and produce an approximation result
for the solutions to . This is reported in our third main result.

Theorem 1.3 (Nonhomogeneous, variable-coefficient equations). Let u € C(B)

be a wiscosity solution to (1.2]). Suppose A A and A to be introduced

later, are in force. For every a € (0,1), there exist Q@ C By, a constant § > 0 and
a sequence (Up)nen Satisfying

(1) u, € S\, A)NC?%(By \ Q) for every n € N;
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(2) u, — u in the CYB-topology for every B € (0, Bxs), where Brs is defined
as before; and
(3) dimy Q < d—6.

We argue through a regularization of the operator F', by means of a mollification
strategy. That is, for € > 0, we introduce the auxiliary operator

Fo(M) = (F xnc) (M),

where 7, : RS L Risa symmetric mollifying kernel. It is evident that F. is

continuously differentiable; therefore, solutions to
F.(D?u.) =0 in By

are under the scope of the partial regularity result. In addition, F. converges locally
uniformly to the original operator F, since the latter is (A, A)-elliptic.

The technical difficulties are in verifying that pivotal properties of the original
operator are preserved under convolution. Those include ellipticity, oscillation
control and regularity profiles associated with the recession function.

Once those difficulties are tackled, the family (uc)esq is entitled to regularity
results which ensure convergence in the desired topologies.

The remainder of this paper is organized as follows: Subsection details the
main assumptions under which we work. In Subsection we gather a few pre-
liminary results, whereas Section [3] presents properties of regularized operators.
Section [] reports the proofs of Theorem [I.1]and Theorem [I.2} The proof of Theo-
rem [I.3]is the subject of Section [5}

2. MAIN ASSUMPTIONS AND PRELIMINARY MATERIAL

In what follows, we detail our main assumptions. Moreover, we gather prelimi-
nary results to which we resort throughout the paper.

2.1. Main assumptions. We start by detailing the hypotheses used in this article.
With B; we denote the open unit ball in the Euclidean space R?. Also, the space
of d X d symmetric matrices is denoted by S(d). Our first assumption concerns the
uniform ellipticity of F.

A 2.1 (Uniform ellipticity). We suppose F': S(d) — R is (A, A)-elliptic. That is,
for 0 < A < A, we have

AN < F(M + N) = F(M) < AN
for every M, N € §(d), with N > 0. In addition, we suppose F'(0) = 0.

It is a known fact that A implies that F' is uniformly Lipschitz, with constant
Kr = Krp(M\ A, d). In addition, we notice that requiring F(0) = 0 imposes no
further restrictions on the operator, since G :== F — F(0) has the same ellipticity
constants as F'. In the case of variable coefficients F(M, z), A adjusts as usual.

The next assumption concerns the recession profile associated with the opera-
tor F'. We recall that

F*(M) = lim pF(u='M).
n—0
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A 2.2 (Convexity of the recession profile). We suppose the recession profile F* to
be convex.

The recession profile associated with a given operator is an important tool in
the study of regularity issues. For its main properties, and usual hypotheses placed
on this object, we refer the reader to [21] 25].

A natural question arising at this point concerns the connection of A [2:2)with the
differentiability of the original fully nonlinear operator. From a heuristic viewpoint,
the recession profile F** accounts for a derivative at the ends of S(d). However, it is
not expected that the differentiability of the operator would imply the convexity of
its recession function. Concerning the opposite implication, we discuss an example.

For ¢ € 2N + 1, let F,, : S — R be given by

d
Fy(M) =) (L+eD)'",
i=1
where ey, ...,eq stand for the eigenvalues of M. Although F,; might not be dif-
ferentiable, its recession profile is given by Tr M. Hence, an operator could fail
differentiability and still have a recession function satisfying A 2.2

In Section [5| we address fully nonlinear operators F' = F(M,x), with explicit
dependence on the space variable x € Bj, governing nonhomogeneous equations.
The next assumptions set the conditions under which we operate in this setting.

A 2.3 (Oscillation control). We suppose the oscillation measure

|F(M,x) — F(M,x0)]
B(x,xg) == sup
(&, 20) Mes(d) M| +1

satisfies
/ Bz, zo)ddx < Bgrd
BT(CE())

for some By > 0.

Introduced in [4], the former assumption is a cornerstone of the theory for
variable-coefficient operators. See [5] for variants of A appearing in distinct
regularity regimes; see also [5, Remark 8.2] for the connection of (-, z¢) with the
Holder-regularity of F' with respect to x.

At this point we briefly relate A and A with the Isaacs operator in
(1.4). Because the latter is positively homogeneous of degree 1, it coincides with
its recession function. As a consequence, the Isaacs equation does not meet A 2.2}
A more suitable assumption regarding is a variant of A In fact, consider

2235122 (= Tr(Aa,s(z)D*u)) =0 in By.
A condition on the coefficients A, g(-) that parallels A is the following: suppose
there exists a matrix A(-), not depending on the parameters « € A and § € B,
such that

Aap(z) - Alw)] < 1
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uniformly in z, o and . In this simple case, would be connected with
the linear elliptic operator — Tr(A(z)M), whose fixed-coefficient counterpart is
the Laplace operator. For some regularity results on the Isaacs equation under
perturbative methods (following the program launched in [4]), we refer the reader
to [20]. For a remark on variants of A we mention [22, Remark 1].

We conclude with an assumption on the source term f.

A 2.4 (Nonhomogeneous setting). We suppose f € L*(B;) to be a continuous
function.

The former assumption is instrumental in framing our analysis in the context
of continuous viscosity solutions. In the next section we collect a few preliminary
results.

2.2. A few preliminary results. In what follows, we collect former results and
developments used in the paper. We begin with the partial regularity result.

Theorem 2.5 (Partial regularity result). Let u € C(By) be a viscosity solution to
(1.1). Suppose A is in force. Suppose further F € CY(S(d)), with a uniform
modulus of continuity. For every a € (0,1), there exist Q@ C By and a universal
constant § > 0 such that u € C>*(By \ ) and dimy; Q < d — 4.

For the proof of Theorem [2.5| we refer the reader to [I]. This result states that
solutions to nonlinear equations driven by regular operators fail C*“-regularity only
within a set of controlled Hausdorff dimension. We also resort to a generalization
of Theorem [2.5] to the context of nonhomogeneous, variable-coefficient equations;
see [7, Corollary 5.2].

Theorem 2.6. Let u € C(B1) be a viscosity solution to . Suppose A is in
force. For every x € By, suppose F(-,z) € C1(S(d)), with a modulus of continuity
not depending on x. In addition, assume F and the source term f are Lipschitz
continuous with respect to x. Then, for every a € (0,1), there exist Q C By and a
universal constant § > 0 such that uw € C**(By \ Q) and dimy Q < d — 4.

For the proof of the former theorem we refer the reader to [7]. In fact, in that
paper the authors establish a variant of this result, in the context of nonhomo-
geneous fixed-coefficient equations. However, the Lipschitz continuity of F' with
respect to x unlocks the argument leading to Theorem [2.6

Our analysis also depends on former regularity results. We are interested in
improved regularity in borderline-Holder spaces.

Theorem 2.7 (Regularity in C11°8MP_gpaces). Let u € C(By) be a viscosity solu-
tion to F(D*u)=f in By,
where f € L>(By). Suppose A and A are in force. Then u € C=0%MP(By)

loc
and there exists C' > 0, depending solely on the dimension d and the ellipticity
constants X and A, such that
sup |u(z) — u(zo) — Du(wg) - (x — 20)| < Cr?lnr~?
x€B,(x0)

for every By(z¢) € Bj.
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We refer the reader to [25] for a proof of Theorem We notice that under
an appropriate oscillation control Theorem [2.7] extends to the case of variable co-
efficients. Also, the requirement f € L°°(Bj) in the latter can be replaced with
f € BMO(By); see [25] and also [21].

In what follows, we examine the effect of convolutions on the properties of fully
nonlinear elliptic operators.

3. PROPERTIES OF THE CONVOLUTION

For ease of presentation we set

d(d+1)

—

Notice that the algebraic dimension on §(d) is precisely d*. Throughout this section
we consider standard mollifiers 7. € C*°(R®") for £ > 0, and define

Fe(M) = (F %) (M) (3.1)

d* =

for every M € S(d).

Under A it is straightforward to notice the convolution in is well
defined. Moreover, we have that F. — F uniformly on compact subsets of S(d) as
e — 0. Finally, F. € C*°(S(d)). See [15, Theorems C.19 and C.20].

We move forward with a proposition.

Proposition 3.1. Suppose A holds true. Then, the operator F is (A, A)-
elliptic for every e > 0.

Proof. We have

F.(M + N)— F.(M) = /R [F(M+N-Q)—-FM-Q)|n.(Q)dQ.

Hence,

RO+ N) = RO < [ PO+ N =@) = POM - Q)]1.(@)dQ

3.2
<AV [ n(@dQ (32
=A[N].
An analogous computation yields
|[Fe(M + N) = Fe(M)| = AN . (3.3)
By combining (3.2)) and (3.3)) we complete the proof. O

Therefore, the family (F.).so inherits the uniform ellipticity of the original op-
erator F'. However, the mollification also preserves asymptotic properties. In fact,
if we suppose that F™* is convex, then (F.)* is also convex for every € > 0. As a con-
sequence, by requiring F* to be convex, we ensure that F. has a convex recession
profile for every ¢ > 0.
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Before the next proposition we observe that

F*(M) = i% pF(p='M — Q) for all Q € S(d). (3.4)

Indeed, notice that

|WF (™M = Q) — puF (' M)| < uKr Q||
for every @ € S(d).

Proposition 3.2 (Convexity of the regularized recession operator). Suppose A
and A hold. Then (F.)* is convex for every e > 0.

Proof. Fix 0 < p < 1 and notice that
(o) (pM + (1= p)N) =l | F(p™ (pM + (1 = p)N) = Q)1-(Q) dQ.
By (3.4), we obtain
(P (M + (1= ))N) = [ (oM + (1= p)N)).(Q) Q.
As A 2 holds, we have
L @M 0=V n@dQ <p [ F001@0dQ

Ra*
+1=p) [ POOn@de
Once again, by using (3.4)), we have

/R | F(M)1:(Q) dQ = T / Fu'M — Qne(Q)dQ = (F.)* (M)

Rd*
and
W@ d@Q = Ty | F(p™'N - Q)n-(Q)dQ = (F.)"(N).
Hence,
(F2)"(pM + (1 = p)N) < p(F2)" (M) + (1 — p)(F2)"(N),
which ends the proof. O

Remark 3.3 (Rate of convergence). An important aspect concerning the recession
profile of a given operator F' is the rate of convergence

lim pF(p™' M) = F*(M).
We observe that
B M) = FEO0] = [ a7 0 = Q) = (M — @)] Q) dQ
< o(1) (14 M ~ Q)

as i — 0. In other words, the rate of convergence

pF- (=t M) = FZ(M)
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is independent of € > 0. Therefore, properties depending on the aforementioned
rate are uniform along the family (F.):sq.

In Section [5| we examine (1.2]). In this case, the operator depends explicitly on
the space variable. Here we argue through a double-convolution argument. Let F’
satisfy A and A We define

Foa) = [ PO = Q=)@ () dQay.

As before, F; , preserves the ellipticity of the original operator. However, when it
comes to the regularity of the solutions to ([1.2]), the oscillation

F T M» _F T ]\47
Be,r(x,20) == sup |[Fe,r (M, x) — Fe 7 (M, )|
Mest [+ 1

plays a relevant role. In fact, estimates in Sobolev and borderline-Hélder spaces
require fBe . (x, zg) to satisfy

/ 18 (2, 00)| dar < Bl
Br(xo)

for some By > 0 and every zy € Bj.
In what follows, we prove that . . is controlled by the oscillation of the original
operator F(M,x) for small values of the parameters € and 7.

Proposition 3.4 (Oscillation control). Suppose F': S(d) x B; — R satisfies A
and A [2:3 Then, there exist e* > 0 and 7* > 0 such that, if e < e* and 7 < 7%,
we have

HBE,T(HIO)HLd(B (mg)) = < 2B(,, IO)”Ld(B (z0))
for every xo € By and r > 0 with B,.(x¢) C Bj.

Proof. Notice that
F(M - Q,z—y) — F(M — -
[, e L Qn 20, () () aQay
B, Jra*

M|l +1

|M - Q| +1
/Bl/Rd* T P o —u)ne(@r(y) dQ dy

M —
(o) [ L ) a0,

where 87 denotes the convolution of § with 7,. Because

M — 1
L @ae -

there exists ¢* > 0 such that, if € < £*, we have

Ba,'r($7 xO) < 257—(1', LU()).

The Holder inequality for convolutions completes the proof. O
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Because of A 23] we conclude that

1827 (> 20) | T (5, (o)) < (280)%7

In what follows, we put forward the proofs of Theorems [T.1] and accounting
for the fixed-coefficient setting.

4. MODES OF CONVERGENCE

In this section we detail the proofs of Theorems and

Proof of Theorem[I.1 Consider the sequence of operators (F},)nen defined as
Fu(M) = (F +75)(M)

for every n € N. Because of Proposition we infer that F), is a (A, A)-elliptic
operator for every n € N. Consider the sequence (up)nen C C(Bp) of viscosity
solutions to

F,(D?u,) =0 in By,

agreeing with u on 9B;. Due to the C1#o-regularity theory available for F,, = 0, we

conclude that the family (u,)nen is equibounded in Cllo’f °(By) for some universal

constant By € (0,1) not depending on n € N. Therefore, up to a subsequence if
necessary, we have

un, —u in CP(By) (4.1)
for every 8 € (0, 8p), where u € C(Bj) solves
F(D*u) =0 in B

in the viscosity sense.
Because F}, is a smooth operator, we resort to the partial regularity result to
conclude the existence of § > 0 and €2,, C B; such that

Up €C**(B1\Q,) and dimy Q, <d— 0.
By standard properties of the Hausdorff measure, we have

Jo

neN

dimy <d-—2o.

Hence,

Up € C2’a (Bl \ U Qn)

neN

for every n € N. Together with the convergence in (4.1f), the former computation
completes the proof. O
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Now we prove Theorem [I.2}
Proof of Theorem[I.3 As before, we notice that F, is of class C* for every n € N.

Set (un)nen to be the sequence of viscosity solutions to
F(D*u) =0 in B
agreeing with u on 0B7; there exists {2 C B; such that
(tn)nen C C>*(B1\ Q)
for every a € (0,1), where
dimy Q<d—9§
for some § > 0.

By combining Theorem [2.7 with Remark [3:3] we obtain the existence of C' > 0,
not depending on n, such that

Sup  |un () — up(xg) — Dup(xg) - (z — 20)] < Crilnr~!

z€By(x0)
for every zo € By and 0 < 7 < 1/2. Therefore, u, — u locally in Cllo"fog'Lip(Bl),
through a subsequence if necessary. This ends the proof. O

Remark 4.1 (Density in the weak-W?2? topology). In [23] the authors work under
A 273}A 222 and prove that solutions to

F(D*u)=f in By
are in Wi’f(Bl). In addition, estimates are available.
The proof of Theorem implies the approximating sequence (uy)nen is uni-
formly bounded in Wf)’p (By) for every p > d. Therefore,

C
up = in Wig?(By)

for every p > d.

The next section accounts for the case of nonhomogeneous equations, driven by
elliptic operators in the presence of variable coefficients.

5. NONHOMOGENEOUS PROBLEMS WITH VARIABLE COEFFICIENTS

In this section we consider (|1.2)) and require A A and A to hold

true. Here, the operator depends explicitly on the space variable. Moreover, the
equation has a source term f. Therefore, further conditions must be imposed on
the problem for the partial regularity result to hold.

As mentioned before, in [7] the authors prove that flat solutions to are of
class CHMo&-LiP in general. Under Hélder continuity conditions of F' and f with
respect to the spatial variable, this result is improved. In this case, flat solutions
are in CIQO’S‘(Bl), with the usual estimates. As a consequence, the authors generalize
the partial regularity result to the context of . Their requirement is Lipschitz
continuity of F' and f with respect to z; see [7, Corollary 5.2].

In what follows, we put forward the proof of Theorem [I.3}
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Proof of Theorem[I.3 Let us consider the sequence of operators (F, )n,men de-
fined in Section [3 as

Fom(M, ) = /B /Rd* F(M = Q,z —y)n1(Q)n(y)dQdy.
1
Moreover, consider the sequence of functions (f,,)men given by
fm=FfxnL = ; fl@=y)na(y)dy
1

for every m € N.

We already know that F,, ,, is a (A, A)-elliptic operator. Also, because of Propo-
sition the oscillation £, ,, is controlled by the oscillation of the operator
F(M,z). Let (tn,m)n.men C C(B1) be a sequence of viscosity solutions to

Fnﬁm(D2(un’m),x) = fm(z) in By,

agreeing with v on 0Bj.
In what follows, we re-enumerate the sequences (Un,m)n,men and (Fy m)n men
so as to write
Fj(DQUj,x) = fj(:v) in Bl,
where F;(M,z) == F; j(M,z) and uj = Uy, .
By standard regularity results, we have (u;);jen C cloho (B1), with suitable esti-

loc
mates; see [25]. Hence, through a subsequence if necessary, we have

u; = u in Cllo’f(Bl)

for every 8 € (0,5). Notice F; and f; are smooth in their respective domains.
Hence, for a € (0, 1), Theorem yields 6 > 0 and §2; C By such that

u; € Cz’a(Bl \Q]) and dlmH Qj <d-9.
Asin Section we set (1 := |J ;. Properties of the Hausdorff measure lead to

jEN
dimy Q <d—9§
and
u; € C** (B \ Q)
for every j € N, which completes the argument. O

Remark 5.1. If we impose F(-,zg) to be convex, Theorem can be refined.
In this case convergence takes place in the C1To&LiP_topology. As before, weak
convergence in W?2? also is found.
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