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PARALLEL SKEW-SYMMETRIC TENSORS
ON 4-DIMENSIONAL METRIC LIE ALGEBRAS

ANDREA C. HERRERA

Abstract. We give a complete classification, up to isometric isomorphism
and scaling, of 4-dimensional metric Lie algebras (g, 〈·, ·〉) that admit a non-
zero parallel skew-symmetric endomorphism. In particular, we distinguish
those metric Lie algebras that admit such an endomorphism which is not a
multiple of a complex structure, and for each of them we obtain the de Rham
decomposition of the associated simply connected Lie group with the corre-
sponding left invariant metric. On the other hand, we find that the associated
simply connected Lie group is irreducible as a Riemannian manifold for those
metric Lie algebras where each parallel skew-symmetric endomorphism is a
multiple of a complex structure.

1. Introduction

Let (M, g) be a Riemannian manifold. A skew-symmetric (1, 1)-tensor H :
TM → TM is said to be parallel if (∇XH)Y = 0 for all vector fields X,Y ∈ X(M),
where∇ denotes the Levi-Civita connection associated to g. If in addition H2 = −I
(where I denotes the identity map), then H is a complex structure and (M, g,H)
is called a Kähler manifold, an object widely studied in the literature. Here, we
are interested in (connected) manifolds that admit parallel tensors H that are not
a multiple of a complex structure, that is, H2 6= −λ2I for any λ ∈ R.

We focus particularly on pairs (G, g), where G is a 4-dimensional non-abelian
Lie group and g is a left invariant metric on G, and we search for left invariant
parallel skew-symmetric (1, 1)-tensors on G. As usual, we work at the Lie algebra
level. Namely, we consider non-abelian 4-dimensional metric Lie algebras (g, 〈·, ·〉),
and look for non-zero skew-symmetric endomorphisms H : g→ g that are parallel
(see Section 2). If we add the condition H2 = −I, then this problem was com-
pletely settled by Ovando in [6], where 4-dimensional pseudo-Kähler Lie algebras
were classified up to equivalence. In the present paper, we classify up to isometric
isomorphism and scaling non-abelian 4-dimensional metric Lie algebras (g, 〈·, ·〉)
admitting a parallel endomorphism that is not a multiple of a complex structure.
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In addition, given such a pair (g, 〈·, ·〉), we classify all possible parallel endomor-
phisms. These results are included in Section 3; more precisely, in Theorem 3.3
and Proposition 3.8.

Finally, in Section 4, for each non-abelian 4-dimensional metric Lie algebra
(g, 〈·, ·〉) admitting a non-zero parallel skew-symmetric endomorphism, we study
the de Rham decomposition of the associated simply connected Riemannian Lie
group (G, g). We find that (G, g) is irreducible (as a Riemannian manifold) if and
only if the only parallel endomorphisms on (g, 〈·, ·〉) are multiple of complex struc-
tures. Note that the ‘only if’ part is a consequence of the following well-known
result: Let (M, g) be a complete simply connected irreducible Riemannian mani-
fold. Then every parallel skew-symmetric (1,1)-tensor is a multiple of a complex
structure [7, Theorem 10.3.2].

2. Preliminaries

In this section we recall the general definition of parallel skew-symmetric tensor
on a Riemannian manifold and then we adapt it to the case of a left invariant
parallel skew-symmetric tensor on a Lie group with a left invariant metric. This
enables us to work at the Lie algebra level. We also define a notion of equivalence
on parallel tensors on a metric Lie algebra.

2.1. Parallel tensors. Let (M, g) be a Riemannian manifold and let ∇ be the
associated Levi-Civita connection. A skew-symmetric tensor H : TM → TM is
said to be parallel if (∇XH)Y = 0 for all X,Y ∈ X(M), where ∇H denotes the
covariant derivative of H. Recall that

(∇XH)Y = ∇X (HY )−H (∇XY ) .

If in addition H2 = −I, then H is a complex structure and (M, g,H) is a Kähler
manifold, with the Kähler form given by ω(X,Y ) = g(HX,Y ).

2.2. Left invariant parallel tensors on Lie groups. Let G be a Lie group, and
let g be the Lie algebra of left invariant vector fields on G. We assume that g is
a left invariant metric, i.e., the left translation Lp : G→ G is an isometry for any
p ∈ G. Every left invariant metric g on G determines an inner product 〈·, ·〉 on g:
〈x, y〉 := ge(xe, ye) for x, y ∈ g; and conversely, any inner product on g determines
uniquely a left invariant metric on G.

We fix a left invariant metric g on G and denote as 〈·, ·〉 its induced inner product
on g. Let ∇ be the Levi-Civita connection associated to g. It is a fact that for
x, y ∈ g, ∇xy ∈ g, and it is given by the Koszul formula

2〈∇xy, z〉 = 〈[x, y], z〉 − 〈[y, z], x〉+ 〈[z, x], y〉. (2.1)

It is easy to see that ∇x : g → g is a skew-symmetric endomorphism with respect
to 〈·, ·〉 for any x ∈ g.

We consider skew-symmetric (1, 1)-tensors H : TG→ TG that are left invariant,
i.e., (dLp)qHq = Hpq(dLp)q for all p, q ∈ G. Every such tensor induces a skew-
symmetric endomorphism H : g → g (again denoted by H) and conversely any
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skew-symmetric endomorphism on g extends uniquely to a skew-symmetric left
invariant tensor on G.

It is easy to see that H : TG → TG as above is parallel if and only if the
associated endomorphism H : g → g is parallel, in the sense that H commutes
with ∇x : g→ g for all x ∈ g.

2.3. Parallel endomorphisms on metric Lie algebras. The previous discus-
sion enables us to work algebraically. Namely, we fix an abstract real Lie algebra g
endowed with an inner product 〈·, ·〉, and we search for skew-symmetric linear en-
domorphisms H : g→ g satisfying the condition ∇x(Hy) = H∇xy for all x, y ∈ g,
where ∇xy is defined via the Koszul formula (2.1).

The pair (g, 〈·, ·〉) is called a metric Lie algebra, and an endomorphism H as
above is called a parallel tensor. If in addition H2 = −I, then (g, 〈·, ·〉) is called a
Kähler Lie algebra.

We intend to classify triples (g, 〈·, ·〉, H), where H is a non-zero parallel skew-
symmetric endomorphism. Note that if H is a parallel skew-symmetric endomor-
phism on (g, 〈·, ·〉), then the same holds on (g, λ2〈·, ·〉) for any λ > 0. This implies
that we may consider the same parallel skew-symmetric endomorphism H on ho-
mothetic metrics. In addition, cH will be also parallel on (g, 〈·, ·〉) for any c ∈ R.

A natural notion of equivalence on the set of parallel skew-symmetric endomor-
phisms on (g, 〈·, ·〉) is given by the following definition:

Definition 2.1. H1 and H2 are said to be equivalent if there exists an isometric
isomorphism of Lie algebras φ : g→ g such that φH1 = H2φ.

We can now restate the classification problem as follows:

Problem. Classify 4-dimensional metric Lie algebras (g, 〈·, ·〉) (up to isometry and
homothety) that admit a non-zero parallel skew-symmetric endomorphism H, and
classify H up to equivalence.

3. Main results

In this section we determine all triples (g, 〈·, ·〉, H), where (g, 〈·, ·〉) is a non-
abelian 4-dimensional metric Lie algebra and H : g → g is a non-zero parallel
skew-symmetric endomorphism. The case where H2 = −I was done in [6] and we
start by recalling this.

3.1. 4-dimensional Kähler Lie algebras. We first list the non-abelian real solv-
able Lie algebras of dimension ≤ 3 with the notation used in [1]. These are:

aff(R) : [e1, e2] = e2,

h3 : [e1, e2] = e3,

r3,λ : [e1, e2] = e2, [e1, e3] = λe3, λ ∈ R,
r′3,λ : [e1, e2] = λe2 − e3, [e1, e3] = e2 + λe3, λ ∈ R,

(3.1)

where {e1, e2} is a basis of aff(R) and {e1, e2, e3} is a basis of h3, r3,λ and r′3,λ. They
are all pairwise non-isomorphic, except for r3,λ ∼= r3,1/λ if λ 6= 0, and r′3,λ

∼= r′3,−λ.
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As a side note, r3,−1 is the Lie algebra of the group of rigid motions on the
Minkowski plane, and it is usually denoted by e(1, 1). Note also that r3,0 = R ×
aff(R), and that r′3,0 is the Lie algebra of the group of rigid motions on the 2-
dimensional euclidean plane and is usually denoted by e(2).

We now list three families of 4-dimensional solvable Lie algebras expressed in
the basis {e1, e2, e3, e4} (we follow the notation given in [1]):
r′4,λ,0 : [e4, e1] = λe1, [e4, e2] = −e3, [e4, e3] = e2, λ > 0,

d4,λ : [e4, e1] = λe1, [e4, e2] = (1− λ)e2, [e4, e3] = e3, [e1, e2] = e3, λ ≥
1
2 ,

d′4,λ : [e4, e1] = λe1 − e2, [e4, e2] = e1 + λe2, [e4, e3] = 2λe3, [e1, e2] = e3, λ ≥ 0.
(3.2)

These are all pairwise non-isomorphic, according to [1, Theorem 1.5].
The content of the next theorem is included in [6, Proposition 3.3], where 4-

dimensional pseudo-Kähler Lie algebras were classified. Here we only consider
positive definite Kähler Lie algebras.

Theorem 3.1 ([6, Proposition 3.3]). Let (g, 〈·, ·〉, J) be a 4-dimensional Kähler
Lie algebra. Then there exists an orthonormal basis {e1, e2, e3, e4} where the Lie
brackets and J are as given in Table 1.

Lie algebra Lie bracket in an orthonormal basis Complex structure

R2 × aff(R) [e1, e2] = te2, t > 0 Je1 = e2, Je3 = e4

R× e(2) [e1, e2] = −te3, [e1, e3] = te2, t > 0 Je1 = e4, Je2 = e3

r′4,λ,0 [e4, e1] = te1, [e4, e2] = − t
λe3, J1e1 = −e4, J1e2 = e3

λ > 0 [e4, e3] = t
λe2, t > 0 J2e1 = −e4, J2e2 = −e3

aff(R)× aff(R) [e1, e2] = te2, [e3, e4] = se4, t, s > 0 Je1 = e2, Je3 = e4

d4, 1
2

[e1, e2] = te3, [e4, e3] = te3, Je1 = e2, Je4 = e3

[e4, e1] = t
2e1, [e4, e2] = t

2e2, t > 0

d4,2 [e1, e2] = te3, [e4, e3] = t
2e3, Je4 = −e1, Je2 = e3

[e4, e1] = te1, [e4, e2] = − t
2e2, t > 0

d′4, δ2
[e1, e2] = te3, [e4, e1] = t

2e1 − t
δ e2, J1e1 = e2, J1e4 = e3

δ > 0 [e4, e3] = te3, [e4, e2] = t
δ e1 + t

2e2, t > 0 J2e1 = −e2, J2e4 = −e3

Table 1. 4-dimensional Kähler Lie algebras
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3.2. Parallel endomorphisms that are not multiple of a complex struc-
ture. We now describe non-abelian 4-dimensional metric Lie algebras that admit
a parallel skew-symmetric endomorphism H which is not multiple of a complex
structure. We may assume that H is always non-zero in this subsection.

We will use the following lemma whose proof is straightforward.

Lemma 3.2. Let A,B ∈ R4×4 be two skew-symmetric matrices such that

B =


0 −s 0 0
s 0 0 0
0 0 0 −t
0 0 t 0

 with |s| 6= |t|.

If AB = BA, then A has also the form of B, that is, there exist s′, t′ ∈ R such that

A =


0 −s′ 0 0
s′ 0 0 0
0 0 0 −t′
0 0 t′ 0

 .
Theorem 3.3. Let (g, 〈·, ·〉) be a non-abelian 4-dimensional metric Lie algebra,
and let H : g → g be a parallel skew-symmetric endomorphism which is not a
multiple of a complex structure. Then there exists an orthogonal basis {e1, f1, e2, f2}
under which the Lie brackets, 〈·, ·〉 and H are as given in Table 2 with |a1| 6= |a2|.
Moreover, any endormophism appearing in Table 2 is parallel for the corresponding
metric Lie algebra.

Proof. Let (g, 〈·, ·〉) be a non-abelian 4-dimensional metric Lie algebra, and let H
be any skew-symmetric endomorphism. Fix an orthonormal basis {e1, f1, e2, f2}
such that H(ei) = aifi, H(fi) = −aiei for i = 1, 2. Assume now that H is parallel,
which means that ∇xH = H∇x for all x ∈ g, and assume also that H is not a
multiple of a complex structure, which implies that |a1| 6= |a2|. Using Lemma 3.2,
∇x has the following form (with respect to the fixed basis):

∇x =


0 −α(x) 0 0

α(x) 0 0 0
0 0 0 −β(x)
0 0 β(x) 0


for some linear forms α and β on g that are not zero simultaneously. The Lie
brackets can be expressed in terms of α and β using that the Levi-Civita connection
is torsion-free:

[e1, f1] = −α(e1)e1 − α(f1)f1, [e1, e2] = β(e1)f2 − α(e2)f1,

[e1, f2] = −β(e1)e2 − α(f2)f1, [f1, e2] = β(f1)f2 + α(e2)e1,

[f1, f2] = −β(f1)e2 + α(f2)e1, [e2, f2] = −β(e2)e2 − β(f2)f2.

(3.3)
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Lie algebra Metric Parallel tensor

R× e(2) :
[e1, e2] = −f2,

[e1, f2] = e2

〈·, ·〉t =


t

t

t

t

, t > 0


0 −a1 0 0
a1 0 0 0
0 0 0 −a2

0 0 a2 0


R2 × aff(R) :
[e2, f2] = f2

〈·, ·〉t =


t

t

t

t

, t > 0


0 −a1 0 0
a1 0 0 0
0 0 0 −a2

0 0 a2 0


r′4,λ,0, λ > 0 :
[e1, f1] = λf1,

[e1, f2] = e2,

[e1, e2] = −f2

〈·, ·〉t =


t

t

t

t

, t > 0


0 −a1 0 0
a1 0 0 0
0 0 0 −a2

0 0 a2 0


aff(R)× aff(R) :

[e1, f1] = f1,

[e2, f2] = f2

〈·, ·〉t,s =


t

t

ts

ts

,
s, t > 0
s ≤ 1


0 −a1 0 0
a1 0 0 0
0 0 0 −a2

0 0 a2 0


Table 2. 4-dimensional metric Lie algebras that admit a parallel
tensor not multiple of a complex structure

Applying the Jacobi identity several times we obtain the following relations:

α(e1)β(e1) + α(f1)β(f1) = 0 (3.4)

α(e1)α(e2) + α(f2)β(f1) = 0 (3.5)

−α(e2)α(f1) + α(f2)β(e1) = 0 (3.6)

α(e1)α(f2)− α(e2)β(f1) = 0 (3.7)

α(f1)α(f2) + α(e2)β(e1) = 0 (3.8)

β(e2)α(e2) + β(f2)α(f2) = 0 (3.9)

β(e2)β(e1) + β(f1)α(f2) = 0 (3.10)

−β(e1)β(f2) + β(f1)α(e2) = 0 (3.11)

β(e2)β(f1)− β(e1)α(f2) = 0 (3.12)

β(f2)β(f1) + β(e1)α(e2) = 0. (3.13)

We first rewrite (3.4)–(3.13) as matrix products and computation of determi-
nants. Conditions (3.4) and (3.9) can be written as

det
(
α(e1) −β(f1)
α(f1) β(e1)

)
︸ ︷︷ ︸

=:U

= 0, det
(
β(e2) −α(f2)
β(f2) α(e2)

)
︸ ︷︷ ︸

=:V

= 0. (3.14)
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Conditions (3.5)–(3.8) can be written as(
α(e2) α(f2)
α(f2) −α(e2)

)
︸ ︷︷ ︸

=:A

(
α(e1) β(e1)
β(f1) α(f1)

)
︸ ︷︷ ︸

=:B

= 02×2, (3.15)

Similarly, (3.10)–(3.12) can be written as(
β(e1) β(f1)
β(f1) −β(e1)

)
︸ ︷︷ ︸

=:C

(
β(e2) α(e2)
α(f2) β(f2)

)
︸ ︷︷ ︸

=:D

= 02×2. (3.16)

Note that detA = −(α(e2)2 +α(f2)2) and detC = −(β(e1)2 +β(f1)2), from which
it follows that A is either zero or invertible, and similarly with C. For the rest of
the discussion we consider the inner product 〈·, ·〉 on g∗, where {e1, f1, e2, f2}, the
dual basis of {e1, f1, e2, f2}, is orthonormal.

If C 6= 0, then it is invertible and (3.16) implies thatD = 0, that is, α|Span{e2,f2} =
β|Span{e2,f2} = 0. From detU = 0 we obtain that (α(e1), α(f1)) = µ(−β(f1), β(e1))
for some µ. We consider a new orthonormal basis {e′1, f ′1, e2, f2} by setting e′1 :=
β(e1)e1+β(f1)f1

‖β‖ and f ′1 := −β(f1)e1+β(e1)f1
‖β‖ . One readily checks that the Lie brack-

ets are given by [e′1, f ′1] = −µ‖β‖f ′1, [e′1, f2] = −‖β‖e2, [e′1, e2] = ‖β‖f2, and that
He′1 = a1f

′
1 and Hf ′1 = −a1e

′
1. We now analyze the following two cases:

(i) Case µ = 0: We redefine {e1, f1, e2, f2} as
{
− e′1
‖β‖ ,−

f ′1
‖β‖ ,

e2
‖β‖ ,

f2
‖β‖

}
. The Lie

brackets are now given by [e1, e2] = −f2 and [e1, f2] = e2, and Hei = aifi,
Hfi = −aiei for i = 1, 2. Note that this metric Lie algebra is listed in the
first row of Table 2 with t = 1

‖β‖2 .
(ii) Case µ 6= 0: We set λ = |µ| and ε = − sign(µ), and redefine {e1, f1, e2, f2}

as
{
ε
e′1
‖β‖ , ε

f ′1
‖β‖ , ε

e2
‖β‖ , ε

f2
‖β‖

}
. The Lie brackets are [e1, f1] = λf1, [e1, f2] = e2,

[e1, e2] = −f2, and Hei = aifi, Hfi = −aiei for i = 1, 2. Note that this is
the metric Lie algebra of the third row of Table 2 with t = 1

‖β‖2 .
If A 6= 0, we interchange (e1, f1, e2, f2, α, β, a1, a2) ↔ (e2, f2, e1, f1, β, α, a2, a1)

and the conclusion will be the same as in the case C 6= 0.
Assume finally that A = C = 0, that is, α|Span{e2,f2} = β|Span{e1,f1} = 0.

According to (3.3), the Lie brackets are given by [e1, f1] = −α(e1)e1−α(f1)f1 and
[e2, f2] = −β(e2)e2−β(f2)f2. We may assume that β 6= 0, otherwise we interchange
(e1, f1, e2, f2, α, β, a1, a2) ↔ (e2, f2, e1, f1, β, α, a2, a1) and arrive at this situation.
We consider two cases:

(i) Case α = 0: We consider a new orthonormal basis {e1, f1, e
′
2, f
′
2} by set-

ting e′2 := −β(f2)e2+β(e2)f2
‖β‖ and f ′2 := −β(e2)e2−β(f2)f2

‖β‖ . The Lie brackets are
given by [e′2, f ′2] = ‖β‖f ′2, and He′2 = a2f

′
2, Hf ′2 = −a2e

′
2. We redefine

{e1, f1, e2, f2} as
{
− e1
‖β‖ ,−

f1
‖β‖ ,

e2
‖β‖ ,

f2
‖β‖

}
. The Lie brackets are now given by

[e2, f2] = f2. This is the metric Lie algebra listed in the second row of Table 2
with t = 1

‖β‖2 .
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(ii) Case α 6= 0: We consider a new orthonormal basis {e′1, f ′1, e′2, f ′2} by set-
ting e′1 = α(f1)e1−α(e1)f1

‖α‖ , f ′1 = α(e1)e1+α(f1)f1
‖α‖ , e′2 = β(f2)e2−β(e2)f2

‖β‖ , f ′2 =
−β(e2)e2−β(f2)f2

‖β‖ . The Lie brackets are given by [e′1, f ′1] = ‖α‖f ′1, [e′2, f ′2] =
‖β‖f ′2, andHe′i = aif

′
i andHf ′i = −aie′i, i = 1, 2. We may assume that ‖α‖ ≤

‖β‖, otherwise we interchange (e1, f1, e2, f2, α, β) ↔ (e2, f2, e1, f1, β, α). We
now redefine {e1, f1, e2, f2} as

{
e′1
‖α‖ ,

f ′1
‖α‖ ,

e′2
‖β‖ ,

f ′2
‖β‖

}
. The Lie brackets are now

given by [e1, f1] = f1, [e2, f2] = f2. We obtain the metric Lie algebra listed in
the fourth row of Table 2, with t = 1

‖α‖2 and s = ‖α‖2

‖β‖2 . Note that Hei = aifi
and Hfi = −aiei.

We have completed all the rows of Table 2.
Finally, fix a metric Lie algebra of Table 2. Suppose T is any skew-symmetric

endomorphism given as in the third column of Table 2 for the respective metric Lie
algebra. Then computing ∇ei ,∇fi it is straightforward to check that T commutes
with ∇ei ,∇fi . Thus T is parallel. �

Remark 3.4. When |a1| = |a2| in each metric Lie algebra of Table 2, H is a
multiple of a complex structure. This case was studied in [6] as we said previously.
Furthermore, the metric Lie algebras of Table 2 are the same metric Lie algebras
of the first four rows of Table 1.

On a fixed metric Lie algebra (g, 〈·, ·〉), the set of parallel skew-symmetric endo-
morphisms form a vector space. As a consequence of Theorem 3.3 and Remark 3.4
we obtain the following corollary:

Corollary 3.5. The vector space of parallel skew-symmetric endomorphisms on
each metric Lie algebra of Table 2 has dimension 2.

From Theorem 3.3 and comparing Table 2 with Table 1, we have:

Corollary 3.6. Let g be one of the Lie algebras d4, 1
2
, d4,2, d

′
4, δ2

with δ > 0, and
let 〈·, ·〉 be one of the metrics of Table 1. Then the only parallel skew-symmetric
endomorphisms on (g, 〈·, ·〉) are multiple of complex structures. Thus the vector
space of parallel skew-symmetric endomorphisms on these metric Lie algebras is
1-dimensional.

We present the information of the above corollary in Table 3. We choose a
presentation so that the outputs of Table 2 and Table 3 look similar. Namely, we
fix the structure coefficients of the Lie algebras and vary the metric, and we also
write all the non-zero parallel tensors, not just the complex structures.

We now address the problem of distinguishing the metric Lie algebras and the
parallel tensors presented in Table 2 and Table 3. Two metric Lie algebras (g, 〈·, ·〉)
and (g′, 〈·, ·〉′) are said to be equivalent if there exists an isometric Lie algebra
isomorphism g ∼= g′. In notation, (g, 〈·, ·〉) ∼ (g′, 〈·, ·〉′). Proposition 3.8 below
shows that the metric Lie algebras of Table 2 and Table 3 are all pairwise non-
equivalent. In addition, for a fixed metric Lie algebra (g, 〈·, ·〉), it describes the
moduli space of the parallel endomorphisms according to Definition 2.1.
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Lie algebra Metric Parallel tensor

d4, 1
2

:
[e1, e2] = e3,

[e4, e1] = 1
2e1,

[e4, e2] = 1
2e2,

[e4, e3] = e3

〈·, ·〉t =


t 0 0 0
0 t 0 0
0 0 t 0
0 0 0 t

, t > 0 c


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

, c ∈ R∗

d4,2 :
[e1, e2] = e3,

[e4, e1] = e1

[e4, e2] = − 1
2e2,

[e4, e3] = 1
2e3,

〈·, ·〉t =


t 0 0 0
0 t 0 0
0 0 t 0
0 0 0 t

, t > 0 c


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

, c ∈ R∗

d′4, δ2
, δ > 0 :

[e1, e2] = e3,

[e4, e1] = 1
2e1 − 1

δ e2,

[e4, e2] = 1
δ e1 + 1

2e2,

[e4, e3] = e3

〈·, ·〉t =


t 0 0 0
0 t 0 0
0 0 t 0
0 0 0 t

, t > 0 c


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

, c ∈ R∗

Table 3. Parallel tensors on (d4, 1
2
, 〈·, ·〉t), (d4,2, 〈·, ·〉t), (d′4, δ2 , 〈·, ·〉t)

Remark 3.7. During the proof of the following proposition we will use that if
φ : (g, 〈·, ·〉) → (g, 〈·, ·〉′) is an isometric Lie algebra automorphism, then the Ricci
operators satisfy the relation Ric〈·,·〉′ φ = φRic〈·,·〉; in particular:

(a) Ric〈·,·〉 and Ric〈·,·〉′ have the same characteristic polynomial.
(b) If in addition 〈·, ·〉 = 〈·, ·〉′, then φ preserves the eigenspaces of Ric〈·,·〉.

We will also use that if H1 and H2 are equivalent parallel endomorphisms on
(g, 〈·, ·〉), so that there exists an isometric Lie algebra automorphism φ : g → g
such that H2φ = φH1, then

(c) H1 and H2 have the same characteristic polynomial.
(d) H2

1 and H2
2 have the same eigenvalues and φ preserves the corresponding

eigenspaces.
(e) Moreover, if H1 preserves [g, g] then the same holds for H2, and the re-

strictions of H1 and H2 to [g, g] have the same characteristic polynomial.
An analogous conclusion holds if H1 preserves [g, [g, g]] or [[g, g], [g, g]], or
z(g), etc.

Proposition 3.8. The metric Lie algebras of Table 2 and Table 3 are pairwise non-
equivalent. Given one of these metric Lie algebras, any parallel skew-symmetric
endomorphism is equivalent to exactly one of the endomorphisms given in Table 4.
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Metric Lie algebra Parallel endomorphism

(R× e(2), 〈·, ·〉t)

 0 −a1 0 0

a1 0 0 0

0 0 0 −a2

0 0 a2 0

, a1, a2 ≥ 0

(R2 × aff(R), 〈·, ·〉t)


0 −a1 0 0

a1 0 0 0

0 0 0 −a2

0 0 a2 0

, a1, a2 ≥ 0

(r′4,λ,0, 〈·, ·〉t), λ > 0

 0 −a1 0 0

a1 0 0 0

0 0 0 −a2

0 0 a2 0

, a1 ≥ 0

(aff(R)× aff(R), 〈·, ·〉t,s), s, t > 0, s ≤ 1

 0 −a1 0 0

a1 0 0 0

0 0 0 −a2

0 0 a2 0

,

a1, a2 ≥ 0

if s < 1, or

a1 ≥ a2 ≥ 0

if s = 1

(d4, 1
2
, 〈·, ·〉t) c

0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

, c > 0

(d4,2, 〈·, ·〉t) c

0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

, c > 0

(d′4, δ2 , 〈·, ·〉t), δ > 0 c

0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

, c ∈ R∗

Table 4. Non-equivalent parallel tensors on non-equivalent 4-
dimensional metric Lie algebras

Proof. The Lie algebras of the first columns of Table 2 and Table 3 are all pairwise
non-isomorphic. We now proceed case by case.
Case g = R × e(2). Let φ : (g, 〈·, ·〉t) → (g, 〈·, ·〉t′) be an isometric Lie algebra
isomorphism. Since [g, g] = Span{e2, f2} and z(g) = Span{f1}, φ has the form

φ =


x1 0 0 0
0 x4 0 0
0 0 x9 −x10
0 0 x10 x9

 ,
with x2

1t
′ = x2

4t
′ = t and (x2

9 + x2
10)t′ = t. One readily checks that φ([e1, e2]) =

[φ(e1), φ(e2)], so that x1 = 1 and hence t = t′.
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Now fix t and suppose that Ha1,a2 is a skew-symmetric endomorphism as in
Table 2. It is possible to multiply the basis elements by ±1’s so that the Lie brackets
in the new basis are the same as before and the endomorphism has a1, a2 ≥ 0.
For instance, if a1 ≥ 0 and a2 < 0, then we do the change (e1, f1, e2, f2) 7→
(−e1,−f1,−e2, f2). It is only left to show that if Ha1,a2 and Ha′1,a

′
2

are equivalent,
with ai, a′i ≥ 0, then (a1, a2) = (a′1, a′2). By Remark 3.7 (c) we have (X2 +a2

1)(X2 +
a2

2) = (X2 + a′21 )(X2 + a′22 ); in particular a2
1 + a2

2 = a′21 + a′22 . Moreover, since
both Ha1,a2 and Ha′1,a

′
2

preserve [g, g] = Span{e2, f2}, Remark 3.7 (e) tells us that
X2 + a2

2 = X2 + a′22 . It follows that a2 = a′2, and hence a1 = a′1.
Case g = R2 × aff(R). One easily checks that the Ricci operator of (g, 〈·, ·〉t) with
respect to the orthonormal basis

{
e1√
t
, f1√

t
, e2√

t
, f2√

t

}
is given by

Rict =


0 0 0 0
0 0 0 0
0 0 − 1

t 0
0 0 0 − 1

t

 .
It follows from Remark 3.7 (a) that (g, 〈·, ·〉t) ∼ (g, 〈·, ·〉t′) if and only if t = t′.

We now fix t > 0 and suppose that Ha1,a2 is a skew-symmetric endomorphism
as in Table 2. By multiplying f1 and/or f2 by ±1, which does not affect the
Lie brackets, we can take a1, a2 ≥ 0. Now suppose that Ha1,a2 and Ha′1,a

′
2

are
equivalent, with ai, a

′
i ≥ 0. By Remark 3.7 (c) (X2 + a2

1)(X2
2 + a2

2) = (X2 +
a′21 )(X2 + a′22 ); in particular a2

1 + a2
2 = a′21 + a′22 . Moreover, since both Ha1,a2 and

Ha′1,a
′
2

preserve z(g) = Span{e1, f1}, Remark 3.7 (e) tells us that X2+a2
1 = X2+a′21 .

It follows that a1 = a′1, and hence a2 = a′2.
Case g = r′4,λ,0, λ > 0. The Ricci operator of (g, 〈·, ·〉t) with respect to the
orthonormal basis

{
e1√
t
, f1√

t
, e2√

t
, f2√

t

}
is given by

Rict =


−λ

2

t 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
By Remark 3.7 (a) we obtain that (g, 〈·, ·〉t) ∼ (g, 〈·, ·〉t′) if and only if t = t′.

We now fix t > 0. Let Ha1,a2 be a skew-symmetric endomorphism as in Table 2.
After changing f1 by −f1 if necessary, which does not affect the Lie brackets, we can
take a1 ≥ 0. We now assume that Ha1,a2 and Ha′1,a

′
2

are equivalent, with a1, a
′
1 ≥ 0

and a2, a
′
2 ∈ R. By Remark 3.7 (c) (X2 + a2

1)(X2 + a2
2) = (X2 + a′21 )(X2 + a′22 ),

in particular a2
1 + a2

2 = a′21 + a′22 . Now let φ : g → g be an isometric isomorphism
such that φHa1,a2 = Ha′1,a

′
2
φ. Then φ preserves [[g, g], [g, g]] = Span{e2, f2}, hence

φ(e2) = ue2 + vf2 and φ(f2) = −ve2 + uf2 with u2 + v2 = 1. Now we have
φHa1,a2(e2) = a2φ(f2) = −a2ve2 + a2uf2 and Ha′1,a

′
2
φ(e2) = Ha′1,a

′
2
(ue2 + vf2) =

a′2uf2 − a′2ve2. From this we see that a2 = a′2, and hence a1 = a′1.
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Case g = aff(R)×aff(R). The Ricci operator with respect to the orthonormal basis{
e1√
t
, f1√

t
, e2√

ts
, f2√

ts

}
is given by

Rics,t =


− 1
t 0 0 0

0 − 1
t 0 0

0 0 − 1
st 0

0 0 0 − 1
st

 .
It follows from Remark 3.7 (a) that (g, 〈·, ·〉s,t) ∼ (g, 〈·, ·〉s′,t′) if and only if t = t′

s = s′ (here we are using the constraint 0 < s, s′ ≤ 1).
We now fix t > 0 and 0 < s ≤ 1. Let Ha1,a2 be a skew-symmetric endomorphism

as in Table 2. We can multiply f1 or f2 by −1 if necessary, without changing the
Lie brackets, and take a1, a2 ≥ 0. If s = 1, we can interchange {e1, f1} and {e2, f2}
if necessary and assume that a1 ≥ a2.

Now suppose that there exists an isometric isomorphism φ : g → g such that
Ha1,a2φ = Ha′1,a

′
2
φ, where ai, a′i ≥ 0 and also a1 ≥ a2 and a′1 ≥ a′2 in the case

s = 1. We have to show that a1 = a′1 and a2 = a′2. We consider two cases:
(i) s < 1: Since Span{e1, f1} and Span{e2, f2} are the eigenspaces of the Ricci

operator, they are preserved by φ according to Remark 3.7 (b). This clearly
implies that a1 = a′1 and a2 = a′2.

(ii) s = 1: In this case we have to assume that a1 ≥ a2 ≥ 0, a′1 ≥ a′2 ≥ 0. By
Remark 3.7 (c), (X2 + a2

1)(X2 + a2
2) = (X2 + a′21 )(X2 + a′22 ). From this we

deduce that a1 = a′1 and a2 = a′2.

Case g = d4, 1
2
. In the orthonormal basis

{
e1√
t
, e2√

t
, e3√

t
, e4√

t

}
, the Ricci operator is

Rict =


− 3

2t 0 0 0
0 − 3

2t 0 0
0 0 − 3

2t 0
0 0 0 − 3

2t

 .
It follows from Remark 3.7 (a) that (g, 〈·, ·〉t) ∼ (g, 〈·, ·〉t′) if and only if t = t′.
We now fix t. Given a skew-symmetric endomorphism Hc as in Table 3, we

can change (e1, e3) by (−e1,−e3) if necessary, without changing the Lie brackets,
and take c > 0. Using Remark 3.7 (d), we now easily see that if Hc and Hc′ are
equivalent, with c, c′ > 0, then c = c′.

Case g = d4,2. The Ricci operator in the orthonormal basis
{
e1√
t
, e2√

t
, e3√

t
, e4√

t

}
is

Rict =


− 3

2t 0 0 0
0 0 0 0
0 0 0 0
0 0 0 − 3

2t

 .
It follows from Remark 3.7 (a) that if (g, 〈·, ·〉t) ∼ (g, 〈·, ·〉t′), then t = t′.

We now fix t and let Hc be an endomorphism as in Table 3. By changing (e1, e2)
by (−e1,−e2) if necessary, we can take c > 0. Finally, if Hc and Hc′ are equivalent,
then by Remark 3.7 (d), we get c = c′.
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Case g = d′4, δ2
. We consider the orthonormal basis

{
e1√
t
, e2√

t
, e3√

t
, e4√

t

}
. The Ricci

operator is given by

Ric =


− 3

2t 0 0 0
0 − 3

2t 0 0
0 0 − 3

2t 0
0 0 0 − 3

2t

 .
It follows from Remark 3.7 (a) that if (g, 〈·, ·〉t) ∼ (g, 〈·, ·〉t′), then t = t′.

Fix t > 0. Given two skew-symmetric endomorphisms Hc and Hc′ as in Table 3,
with c, c′ ∈ R∗, by Remark 3.7 (d), we have |c| = |c′|. We claim that Hc and H−c
are non-equivalent. To show this we can assume that c = 1. Suppose that there
is an isometric isomorphism φ such that H1φ = φH−1. Observe that g′ := [g, g] =
Span{e1, e2, e3}, and that g′′ := [g′, g′] = Span{e3}. Since φ preserves g′ and is an
isometry, it also preserves the orthogonal complement, that is, φ(e4) = ke4 with
k = ±1. Since it also preserves g′′, φ(e3) = le3 with l = ±1. Now le3 = φ(e3) =
φ[e4, e3] = [φ(e4), φ(e3)] = kle3, from which k = 1. So φ can be written in the
basis {e1, e2, e3, e4} as

φ =


x1 −x2 0 0
x2 x1 0 0
0 0 l 0
0 0 0 1

 .
If we impose the condition that H1φ = φH−1, we get that x1 = x2 = 0, which
contradicts the fact that φ is invertible. Hence H1 and H−1 are not equivalent. �

4. The de Rham decomposition of the associated simply connected
Riemannian Lie groups

Given a Riemannian manifold (M, g), the holonomy group at a point p ∈ M ,
denoted by Holp(M, g), is the group formed by parallel translations Pγ around
loops γ : [a, b]→M at p, with the usual product of endomorphisms. This is a Lie
subgroup of the orthogonal group O(TpM), and if M is orientable, Holp(M, g) ⊆
SO(TpM). The restricted holonomy group Hol0p(M, g) is the connected normal
subgroup that results from using only contractible loops. This is a closed sub-
group of O(TpM) and hence its action on TpM is completely reducible. If M is
connected, then Holp(M, g) (resp., Hol0p(M, g)) is conjugate to Holq(M, g) (resp.,
Hol0q(M, g)) for all p, q ∈M ; therefore the holonomy group and the restricted holo-
nomy group do not depend on the base point, and they are denoted by Hol(M, g)
and Hol0(M, g), respectively. We say that (M, g) is irreducible if the action of the
restricted holonomy group on TpM is irreducible. If M is simply connected, then
one has Hol(M, g) = Hol0(M, g). If in addition M is complete, then according to
the de Rham theorem ([7, Theorem 10.3.1]), a decomposition of TpM into irre-
ducible subspaces under the action of Hol(M, g) corresponds to a decomposition of
M as a product of irreducible Riemannian manifolds. We refer to this as the de
Rham decomposition of (M, g).
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Given a metric Lie algebra (g, 〈·, ·〉), we denote by (G, g) the associated simply
connected Lie group G with the corresponding left invariant metric g. The pair
(G, g) is a complete Riemannian manifold.

We will see next that if (g, 〈·, ·〉) belongs to Table 3, then (G, g) is irreducible as a
Riemannian manifold. One way to show this is by identifying (G, g) with an already
known irreducible Riemannian manifold (see Remark 4.2). Another possibility is
by showing that g has no proper subspaces invariant under the action of Hol(G, g).
Since Hol(G, g) = Hol0(G, g) is connected; this is equivalent to showing that g
has no proper subspaces invariant by the elements of hol(G, g), the Lie algebra of
Hol(G, g). In order to know what hol(G, g) is, we use the Ambrose–Singer holonomy
theorem, which states that this algebra is the subalgebra of so(g, 〈·, ·〉) spanned by
the curvature operators and all their covariant derivatives. We begin by following
this approach.
Proposition 4.1. Let (g, 〈·, ·〉) be one of the metric Lie algebras of Table 3, and
let (G, g) be the associated simply connected Lie group with the corresponding left
invariant metric. Then (G, g) is irreducible as Riemannian manifold.
Proof. We do the proof only for (g, 〈·, ·〉) = (d4,2, 〈·, ·〉t), the other cases being
similar. Since all the metrics 〈·, ·〉t are homothetic, we can assume t = 1 and we
simply denote 〈·, ·〉 = 〈·, ·〉1. We can identify (g, 〈·, ·〉) with the Euclidean space R4

so that {e1, e2, e3, e4} is identified with the canonical basis.
As remarked previously, we first have to find hol(G, g), which is the Lie sub-

algebra of so(g, 〈·, ·〉) spanned as vector space by the curvature tensors and their
covariant derivatives. Then we have to show that g has no proper subrepresenta-
tions of hol(G, g).

First, one can check that ∇e4 = 0 and that

∇e1 =


0 0 0 −1
0 0 − 1

2 0
0 1

2 0 0
1 0 0 0

 , ∇e2 =


0 0 1

2 0
0 0 0 1

2
− 1

2 0 0 0
0 − 1

2 0 0

 , ∇e3 =


0 1

2 0 0
− 1

2 0 0 0
0 0 0 − 1

2
0 0 1

2 0

 .
Recall that R(x, y) = ∇x∇y−∇y∇x−∇[x,y] is the curvature tensor for all x, y ∈ g;
we now compute

R(e1, e2) = −1
2∇e3 , R(e1, e3) = −1

2∇e2 ,

R(e1, e4) = ∇e1 , R(e2, e3) =


0 0 0 − 1

2
0 0 1

2 0
0 − 1

2 0 0
1
2 0 0 0

 ,
R(e2, e4) = −1

2∇e2 , R(e3, e4) = 1
2∇e3 .

In order to facilitate the computation of the covariant derivatives of these tensors,
we will make use of the natural identification so(g, 〈·, ·〉) ∼= g∗ ∧ g∗. The tensor
R(ei, ej) is identified with the 2-form Rij defined by

Rij(x, y) = 〈R(ei, ej)x, y〉, x, y ∈ g.
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It follows that

R12 = 1
4
(
e12 − e34) , R13 = 1

4(e13 + e24), R14 = e14 + 1
2e

23,

R23 = 1
2
(
e14 − e23) , R24 = 1

4
(
e13 + e24) , R34 = −1

4(e12 − e34),

where {e1, e2, e3, e4} is the dual basis of {e1, e2, e3, e4} and eij denotes ei ∧ ej .
Using that ∇x (θ1 ∧ θ2) = ∇xθ1 ∧ θ2 + θ1 ∧ ∇xθ2 for θ1, θ2 1-forms, and that

∇xy∗(z) = 〈∇xy, z〉, where y∗ is the linear functional such that y∗(x) = 〈x, y〉, we
get the following relations:

∇e1R
12 = −1

8(e13 + e24), ∇e2R
12 = 1

4(e23 − e14),

∇e3R
12 = 0, ∇e1R

13 = −1
8(e12 − e34),

∇e2R
13 = 0, ∇e2R

13 = 1
4(e14 − e23),

∇e1R
14 = 0, ∇e2R

14 = 1
4(e12 − e34),

∇e3R
14 = −1

4(e24 + e13), ∇e1R
23 = 0,

∇e2R
23 = 1

2(e12 − e34), ∇e3R
23 = −1

2(e13 + e24).

We see that the linear space spanned by Rij and ∇ekRij for i, j, k = 1, 2, 3, 4 is
Span{e14 + 1

2e
23, e13 +e24, e12−e34, e14−e23} = Span{e14, e23, e13 +e24, e12−e34}.

We conclude that hol(G, g) is

Span


0 0 0 −1

0 0 0 0
0 0 0 0
1 0 0 0


︸ ︷︷ ︸

=:A

,

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


︸ ︷︷ ︸

=:B

,

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


︸ ︷︷ ︸

=:C

,

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


︸ ︷︷ ︸

=:D


.

We now have to show that there are no proper subspaces of g = R4×1 invariant
by A, B, C and D. Suppose W is a non-zero invariant subspace of g, and let
x = (a1, a2, a3, a4)T be a non-zero element of W . After multiplying by C, if
necessary, we can assume that (a1, a4) 6= (0, 0). Then Ax = (−a4, 0, 0, a1)T ∈ W ,
CAx = (0,−a1,−a4, 0)T ∈ W and DCAx = (a1, 0, 0, a4) ∈ W . Note that Ax and
DCAx are linearly independent, so we obtain that e1, e4 ∈ W . Similarly, we get
that e2, e3 ∈W , and therefore W = g. The proof is now complete. �

Remark 4.2. Proposition 4.1 can also be shown by identifying (G, g) with known
Riemannian manifolds. One can easily see that (d4, 1

2
, 〈·, ·〉t) is equivalent up to

scaling to the metric Lie algebra with parameter zero in the second family listed
in the main theorem of [5]. Analogously, (d′4, δ2 , 〈·, ·〉t) is equivalent up to scal-
ing to the metric Lie algebra with parameter 2

δ of the same family. In both
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cases (G, g) is isometric up to scaling to the Hermitian hyperbolic space H2(C) =
SU(2, 1)/S(U(2)×U(1)), according to [5, Proposition 2]. On the other hand, it is
well known that H2(C) is an irreducible symmetric space (see [2, p. 315]).

In the case of (d4,2, 〈·, ·〉t), it is not hard to see that (d4,2, 〈·, ·〉t) is isometric up
to scaling to the metric Lie algebra described in g4,9( 1

2 ), see [3, Theorem 2.2]. It
can be shown that (G, g) is isometric up to scaling to the unique irreducible proper
3-symmetric space of dimension four, according to [3, Corollary 3.1]. This space is
also viewed as the irreducible Kähler surface corresponding to F4-geometry, see [9]
and [8].

On the other hand, we will analyze the case when (g, 〈·, ·〉) belongs to Table 2.
First we recall the following theorem.

Theorem 4.3 ([7, Theorem 10.3.2]). Let (M, g) be an irreducible Riemannian
manifold, and let H be a parallel skew-symmetric (1, 1)-tensor which is nowhere
zero. Then H = λJ for a complex parallel structure J and λ ∈ R.

Proposition 4.4. Let (g, 〈·, ·〉) be one of the metric Lie algebras of Table 2, and
let (G, g) be the associated simply connected Lie group with the corresponding left
invariant metric. Then (G, g) is reducible as a Riemannian manifold, and after a
suitable scaling (G, g) is isometric to one of the following: R4, R2×H2, or H2×H2

(here the scaling is in each factor).

Proof. Clearly if (g, 〈·, ·〉) belongs to Table 2, then (G, g) is reducible. In the case
(R × e(2), 〈·, ·〉t), one can easily check that the curvature tensor R is zero. This
implies that hol(G, g) = 0, and hence any 1-dimensional subspace of g = TeG is
invariant under Hol(G, g) = {e}, where {e} is the trivial group. Consequently,
any decomposition of TeG as a direct sum of 1-dimensional subspaces leads to an
identification of G with R4 as Riemannian manifolds.

Before proceeding with the other cases, recall that the hyperbolic plane H2 =
{(x, y) : y > 0} is a simply connected Lie group with multiplication (x, y) ·(x′, y′) =
(x + yx′, yy′), and that the usual metric (ds)2 = (dx)2+(dy)2

y2 is left invariant. As
a Riemannian manifold, it is irreducible with negative curvature. The associated
metric Lie algebra is aff(R) = Span{e, f}, where {e, f} is an orthonormal basis on
which the Lie brackets are given by [e, f ] = f .

With the previous observation, it is straightforward to prove that the cases
(aff(R)×R2, 〈·, ·〉t) and (aff(R)× aff(R), 〈·, ·〉t,s) correspond to Riemannian mani-
folds H2 × R2 and H2 ×H2, respectively.

Finally, we consider the case (r′4,λ,0, 〈·, ·〉t). We can take the parameter t = 1 in
Table 2 since all the metrics are homothetic. The commutator [g, g] = Span{e2, f2}
is abelian, the subspace Span{e1, f1} with the induced metric is a metric Lie algebra
isomorphic to aff(R) with the usual metric, and r′4,λ,0 has the description aff(R) n
R2. Since the factors are orthogonal, we obtain a decomposition G = H2 n R2,
where H2 has the hyperbolic metric, R2 has the Euclidean metric and the factors
are orthogonal. In other words, the de Rham decomposition of the pair (G, g)
associated with (g, 〈·, ·〉) is, up to scaling, H2 × R2. �
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