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BROWNIAN MOTION ON INVOLUTIVE BRAIDED SPACES

UWE FRANZ, MICHAEL SCHÜRMANN, AND MONIKA VARŠO

Abstract. We study (quantum) stochastic processes with independent and
stationary increments (i.e., Lévy processes), and in particular Brownian mo-
tions in braided monoidal categories. The notion of increments is based on a
bialgebra or Hopf algebra structure, and positivity is taken w.r.t. an involution.
We show that involutive bialgebras and Hopf algebras in the Yetter–Drinfeld
categories of a quasi- or coquasi-triangular ∗-bialgebra admit a symmetrization
(or bosonization) and that their Lévy processes are in one-to-one correspon-
dence with a certain class of Lévy processes on their symmetrization. We
classify Lévy processes with quadratic generators, i.e., Brownian motions, on
several braided Hopf-∗-algebras that are generated by their primitive elements
(also called braided ∗-spaces), and on the braided SU(2)-quantum groups.

Introduction

The study of random variables and stochastic processes with values in algebraic
structures has a long and rich history; see, e.g., the monograph [9]. In quantum
probability [24], the commutative algebras of functions on the underlying proba-
bility space and the state space of a stochastic process are replaced by possibly
noncommutative algebras, typically realized as algebras of operators on a Hilbert
space. Quantum (or noncommutative) probability was initially motivated by the
wish to have a common framework for classical probability and quantum physics,
but it also opened the stage for many new interactions between probability and
algebraic structures. In [1, 27], Lévy processes on involutive bialgebras were in-
troduced and studied as a common generalization of Lévy processes with values
in groups and semigroups, and of factorizable representations of groups and Lie
algebras.

In this paper we will study quantum stochastic processes and in particular Brow-
nian motions in braided categories. In quantum probability, Brownian motion is
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defined as a Lévy process with quadratic generator, cf. [27, Section 5.1]. This gen-
eralizes Brownian motions in Euclidean spaces, Lie groups, and Riemannian mani-
folds, which are fundamental examples of stochastic processes, and which have been
the guiding examples in the development of the stochastic calculus and potential
theory. The generator of the Markov semigroup of classical Brownian motion is
a Laplace or Laplace–Beltrami operator and contains valuable information about
the geometry of the underlying space.

In this paper we will develop the theory of Brownian motions and Lévy processes
on braided involutive bialgebras, i.e., involutive bialgebras which are objects of a
braided monoidal category, cf. [19, 10]. Our main examples will be such algebras,
also called braided spaces, which are generated by a finite number of primitive
elements satisfying certain quadratic commutative relations coming from an R-
matrix. This article builds on ideas and results from [16, 17, 2, 4, 6].

Our paper introduces several interesting new classes of quantum stochastic pro-
cesses. In dimension one (i.e., with one self-adjoint primitive generator) there is
only one R-matrix which leads to a braided involutive space in our setting, the
1× 1 matrix R = (q) with q ∈ R\{0}. In this case the braiding can be defined via
a group, and we obtain, e.g., the Azéma process, whose surprising properties have
been studied in [3, 23, 26]. But in higher dimension there are many possibilities
to choose an R-matrix with a compatible involution, and most of them cannot be
obtained from groups. As an example, we will classify the Brownian motions (i.e.,
Lévy processes with quadratic generator) on the braided spaces associated to the
sl2- and sl3-R-matrix in Section 6.

Let us outline the structure of this paper.
In Section 1, we give the basic definitions and several fundamental results needed

to define and study braided Lévy processes.
In Section 2, we show how braided categories can be constructed from a Hopf

algebra, a coquasi-triangular or a quasi-triangular bialgebra. Our particular setting
has been chosen since it will be convenient when we consider Lévy processes on
braided ∗-bialgebras in these categories. We consider three cases. In the first case
we have a Hopf-∗-algebra A and the objects of the category are Yetter–Drinfeld
modules carrying an involution, which has to satisfy some compatibility conditions.
In the second case A is a coquasi-triangular bialgebra equipped with an involution.
We show that if the r-form satisfies a compatibility condition with respect to the
involution, then we can build a braided category from the comodules. In the last
case, A is a quasi-triangular bialgebra with an involution. If the R-matrix satisfies
a certain compatibility condition w.r.t. the involution, then we can again build a
braided category, this time from the modules.

In Section 3 we show that for every braided ∗-bialgebra B in either of the three
types of category we can construct a symmetrization (or bosonization), i.e., we can
embed it into a bigger ∗-bialgebra H as an algebra in a way that allows us to “lift”
Lévy processes on B to Lévy processes on H. This generalizes the symmetrization
in [27, Ch. 3], where the braiding was defined via actions and coactions of a group.
For more general braidings this kind of construction was introduced by Majid (see
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[19, Section 9.4]) but without the involution, which is crucial for defining and
studying quantum stochastic processes. We show that the symmetrization reduces
the construction and classification of Lévy processes on braided ∗-bialgebras to
usual involutive bialgebras.

In Section 4, we explicitly construct a family of braided ∗-spaces and their sym-
metrization. The construction starts from a bi-invertible R-matrix of real type I
and it yields a braided ∗-space in the category of comodules of the quasi-triangular
∗-bialgebra associated to theR-matrix by the Faddeev–Reshetikhin–Takhtajan con-
struction (cf. [25]). Furthermore, these braided ∗-spaces always come with a canon-
ical quadratic generator that gives rise to a standard Brownian motion on these
spaces.

In Section 5, we prove the existence of these invariant, conditionally positive,
quadratic functionals on our braided ∗-spaces and study the associated Brownian
motions. These processes can be considered as multi-dimensional analogues of the
Azéma martingale.

Section 6 contains the explicit quantum stochastic differential equations defining
the standard Brownian motion on the braided line and the braided plane as well
as the classification of all quadratic generators for the braided ∗-spaces associated
to the 1 × 1 R-matrix (q), and the standard sl2- and sl3-R-matrices, and for the
braided SU(2)-quantum groups.

1. Preliminaries

1.1. Lévy processes on braided Hopf-∗-algebras. In this section we intro-
duce braided Hopf-∗-algebras, braided ∗-bialgebras, and Lévy processes on braided
∗-bialgebras in order to recall some of their elementary theory, in particular the one-
to-one correspondence between these processes and their generators. See [19, 10]
and the references therein for information on braided tensor categories and Hopf
algebras, and [27, 7] for the theory of quantum Lévy processes.

A tensor category or monoidal category is a category C equipped with a bifunctor
⊗ : C×C → C satisfying certain conditions (see, for example, [15]). A braiding Ψ in
a tensor category is a natural isomorphism between the functors ⊗ : (A,B) 7→ A⊗B
and ⊗◦ τ : (A,B) 7→ B⊗A satisfying the so-called Hexagon Axioms. It is called a
symmetry if it is involutive, i.e., if ΨB,A ◦ΨA,B = idA⊗B for all objects A,B of C.
A braided tensor category or braided monoidal category is a pair (C,Ψ) consisting
of a tensor category C and a braiding Ψ of C. It is called symmetric tensor category
if the braiding is a symmetry (cf. [15]).

In this paper we always assume that the objects of our braided tensor categories
(C,Ψ) are complex vector spaces and that the morphisms are linear maps. We call
a linear map L : V →W Ψ-invariant if (idX ⊗L)◦ΨV,X = ΨW,X ◦ (L⊗ idX) holds
for any X. Note that due to the naturality of Ψ, morphisms of the category (C,Ψ)
always have to satisfy both conditions (idX ⊗ L) ◦ΨX,V = ΨX,W ◦ (L⊗ idX) and
(L⊗ idX)◦ΨX,V = ΨX,W ◦ (idX ⊗L), i.e., they are Ψ-invariant and Ψ−1-invariant.
The notions of bialgebras and Hopf algebras can also be defined in a braided tensor
category, this leads to braided bialgebras and braided Hopf algebras. The product,
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coproduct, unit, counit and antipode now have to be morphisms of the braided
tensor category and satisfy similar axioms as in the usual case, cf. [19]. Bialgebras
and Hopf algebras are special cases of braided bialgebras and braided Hopf algebras
where the flip automorphism τ : A⊗B → B ⊗A, τ(u⊗ v) = v⊗ u is the braiding.

Since the axioms proposed by Majid in [18, 19] do not guarantee that the braided
coproduct is a ∗-algebra homomorphism, we follow the ones in [5].

We want the ∗-structure ∗B⊗B on B ⊗ B to be an anti-homomorphism and the
canonical inclusions B ι1−→ B ⊗ B ι2←− B to be ∗-homomorphisms. Thus we get for
a, b ∈ B

∗B⊗B(a⊗ b) = (∗B⊗B ◦mB⊗B)(a⊗ 1⊗ 1⊗ b)
= (mB⊗B ◦ (∗B⊗B ⊗ ∗B⊗B) ◦ τB⊗B,B⊗B)(a⊗ 1⊗ 1⊗ b)
= ((m⊗m) ◦ (id⊗Ψ⊗ id))(1⊗ b∗ ⊗ a∗ ⊗ 1)
=

((
(m ◦ (1⊗ id))⊗ (m ◦ (id⊗ 1))

)
◦Ψ

)
(b∗ ⊗ a∗)

= (Ψ ◦ (∗ ⊗ ∗) ◦ τ)(a⊗ b).
Hence we get the following definition.

Definition 1.1. A braided ∗-bialgebra is a braided bialgebra (B,m,1,∆, ε,Ψ) over
C with an anti-linear map ∗ : B → B, such that (B,m,1, ∗) is a ∗-algebra and
∗B⊗B := Ψ ◦ (∗ ⊗ ∗) ◦ τ is a self-inverse map turning the coproduct ∆ into a
∗-algebra homomorphism for ∗B⊗B.

Remark 1.2.
• This definition is equivalent to the one given in [5, Def. 3.8.2].
• One can show that ∗B⊗B is indeed an anti-homomorphism and that the

canonical inclusions are ∗-algebra-homomorphisms.
• In general, the convolution of two positive functionals on a braided
∗-bialgebra is not again positive. But if we have two positive functionals
ϕ and θ on a braided ∗-bialgebra A such that ϕ is Ψ−1-invariant or θ is
Ψ-invariant, then the convolution ϕ ⋆ θ = (ϕ ⊗ θ) ◦ ∆ is positive (cf. [5,
Lemma 4.2.2]).

We briefly recall the definition of Lévy processes on braided ∗-bialgebras (see also
[5, Ch. 4]). A quantum probability space is a pair (A,Φ) consisting of a ∗-algebra
and a state (i.e., a normalized positive linear functional) Φ on A. A quantum
random variable j over a quantum probability space (A,Φ) on a ∗-algebra B is a
∗-algebra homomorphism j : B → A. A quantum stochastic process is a family
of quantum random variables over the same quantum probability space, indexed
by some set, and defined on the same algebra. Two quantum stochastic processes
(jt)t∈I and (kt)t∈I , indexed by the same set I, on the same ∗-algebra B over the
quantum probability spaces (Aj ,Φj) and (Ak,Φk) are called equivalent if all their
finite-dimensional distributions agree, i.e., if

Φj

(
jt1(b1) . . . jtn

(bn)
)

= Φk

(
kt1(b1) . . . ktn

(bn)
)

for all n ∈ N, t1, . . . , tn ∈ I, b1, . . . , bn ∈ B.
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Definition 1.3 ([5, Def. 4.2.1]). Let (A,Φ) be a quantum probability space, B a
∗-algebra, and Ψ : B⊗B → B⊗B a linear map. An n-tuple (j1, . . . , jn) of quantum
random variables ji : B → A, i = 1, . . . , n, over (A,Φ) on B is called Ψ-independent
or braided independent if

(i) Φ
(
jσ(1)(b1) . . . jσ(n)(bn)

)
= Φ(jσ(1)(b1)) . . .Φ(jσ(n)(bn)) for all permuta-

tions σ ∈ S(n) and all b1, . . . , bn ∈ B, and
(ii) mA ◦ (jl ⊗ jk) = mA ◦ (jk ⊗ jl) ◦Ψ for all 1 ≤ k < l ≤ n.

Definition 1.4 ([5, Def. 4.3.1]). Let B be a braided ∗-bialgebra. A quantum
stochastic process (jst)0≤s≤t on B over some quantum probability space (A,Φ) is
called a Lévy process if the following conditions are satisfied.

(1) (Increment property)
jrs ⋆ jst = jrt for all 0 ≤ r ≤ s ≤ t,

jtt = 1 ◦ ε for all 0 ≤ t,
where jrs ⋆ jst = mA ◦ (jrs ⊗ jst) ◦∆B denotes the convolution of jrs and
jst.

(2) (Independence of increments) The family (jst)0≤s≤t is Ψ-independent, i.e.,
(js1t1 , . . . , jsntn) is Ψ-independent for all n ∈ N and all 0 ≤ s1 ≤ t1 ≤ s2 ≤
. . . ≤ tn.

(3) (Stationarity of increments) The distribution φst = Φ ◦ jst of jst depends
only on the difference t− s,

(4) (Weak continuity) jst converges to jss ( = 1 ◦ ε) in distribution for t ↘ s,
i.e., we have limt↘s Φ

(
jst(b)

)
= ε(b) for all b ∈ B.

Let (jst) be a Lévy process on some ∗-bialgebra. The states on B defined by
φt = Φ ◦ j0t are called marginal distributions of (jst) and uniquely determine a
Lévy process (up to equivalence). The marginal distributions form a convolution
semigroup. Using the fundamental theorem of coalgebras one can show that there
exists a unique, conditionally positive (i.e., positive on the kernel of ε) hermitian,
linear functional L : B → C with L(1) = 0 such that φt = exp⋆ tL. The functional
L is called the generator of the process (jst). Using Schoenberg correspondence, we
see that the convolution semigroup generated by a conditionally positive, hermit-
ian linear functional L with L(1) = 0 consists of states, i.e., normalized positive
functionals. Due to Remark 1.2 and the braided version of the Schoenberg corre-
spondence for Ψ-invariant functionals (see [8]), these results remain true for Lévy
processes on braided ∗-bialgebras. This is summarized in the following proposition.

Proposition 1.5 ([5, Prop. 4.3.2]). Let B be a ∗-bialgebra over C in a braided cate-
gory (C,Ψ). Then there is a one-to-one correspondence between (equivalence classes
of) Lévy processes (jst), the set of convolution semigroups (φt)t of Ψ-invariant
states on B, and the set of Ψ-invariant, hermitian, conditionally positive linear
functionals L : B → C.

1.2. Quasi-triangular and coquasi-triangular bialgebras. We will now recall
some definitions (see, e.g., [14]) which allow us later on to “symmetrize” braided
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∗-bialgebras. Let B be a bialgebra and R ∈ B⊗B. For R =
∑

i xi⊗ yi, define R12,
R13 and R23 ∈ B ⊗ B ⊗ B by

R12 :=
∑

i

xi ⊗ yi ⊗ 1, R13 :=
∑

i

xi ⊗ 1⊗ yi, R23 :=
∑

i

1⊗ xi ⊗ yi.

Definition 1.6. A quasi-triangular bialgebra B is a bialgebra B equipped with an
invertible element R ∈ B ⊗ B, called universal R-matrix, such that the equations

∆op(a) = R ·∆(a) ·R−1,

(∆⊗ id)(R) = R13R23,

(id⊗∆)(R) = R13R12

(1.1)

hold.

Note that the universal R-matrix of a quasi-triangular bialgebra satisfies the
quantum Yang–Baxter equation (QYBE)

R12R13R23 = R23R13R12; (1.2)
see, e.g., [14, Ch. 8.1.1, Prop. 2], [13, Theorem VIII.2.4].

A coquasi-triangular bialgebra is a bialgebra A equipped with a universal r-form
on A, i.e., a linear functional r : A⊗A → C that is invertible w.r.t. the convolution
product (i.e., there exists another functional r̄ : A⊗A → C such that r⋆r̄ = r̄⋆r =
ε⊗ ε) that satisfies

mop = r ⋆ m ⋆ r̄,

r13 ⋆ r23 = r ◦ (m⊗ id),
r13 ⋆ r12 = r ◦ (id⊗m),

(1.3)

where r12, r23, r13 : A⊗A⊗A → C are defined by r12 := r⊗ ε, r23 := ε⊗ r and
r13 := (r ⊗ ε) ◦ (id⊗ τ). Furthermore we have

r ◦ (1⊗ id) = ε = r ◦ (id⊗ 1) (1.4)
and, if A has an antipode S, then the antipode is invertible and satisfies

r ◦ (S ⊗ id) = r̄ = r ◦ (id⊗ S−1).
The inverse r̄ satisfies similar conditions, i.e.,

r̄12 ⋆ r̄13 ⋆ r̄23 = r̄23 ⋆ r̄13 ⋆ r̄12,

r̄23 ⋆ r̄13 = r̄ ◦ (m⊗ id),
r̄12 ⋆ r̄13 = r̄ ◦ (id⊗m),

r̄ ◦ (1⊗ id) = r̄ ◦ (id⊗ 1) = ε.

(1.5)

2. Construction of braided categories

We will now study the special case of tensor categories whose objects are Yetter–
Drinfeld modules of some given bialgebra A. Our main goal is to construct such
categories with objects that are equipped with an involution which is compatible
with the braiding in the sense of Definition 1.1. Let A be a bialgebra. A C-vector
space V is called (left) Yetter–Drinfeld module (over A) if it is both a left A-module
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with action α : A⊗V → V and a left A-comodule with left coaction γ : V → A⊗V ,
such that the (left) Yetter–Drinfeld equation∑

a(1)v
(1) ⊗ a(2).v

(2) =
∑

(a(1).v)(1)a(2) ⊗ (a(1).v)(2),

or equivalently
(m⊗ α)◦(id⊗ τ ⊗ id) ◦ (∆⊗ γ)

= (m⊗ id) ◦ (id⊗ τ) ◦ (γ ⊗ id) ◦ (α⊗ id) ◦ (id⊗ τ) ◦ (∆⊗ id),
(2.1)

is satisfied for all a ∈ A, v ∈ V , where a.b := α(a⊗ b) and γ(v) = v(1) ⊗ v(2). The
category A

AYD of (left) Yetter–Drinfeld modules is well studied (see for example [29]
or [22, Ch. 10]). It is a braided tensor category with braiding Ψ = (α⊗ id) ◦ (id⊗
τ) ◦ (γ ⊗ id). For actions αV , αW on a bialgebra A, a linear map Φ : V → W is
called (left) module map, if Φ ◦ αV = αW ◦ (id ⊗ Φ) and (left) comodule map for
coactions γV , γW , if γW ◦ Φ = (id⊗ Φ) ◦ γV .

2.1. The category (A
AYD∗, Ψ) of Yetter–Drinfeld modules with an involu-

tion. Now we want to equip the objects in the category A
AYD with an involution

and construct a new category A
AYD∗.

Lemma 2.1. Let A be a Hopf-∗-algebra with antipode S and V ∈ Obj(A
AYD) with

action α and coaction γ. Suppose that there exists a ∗-structure on V such that α
and γ satisfy

∗ ◦ α = α ◦ (∗ ⊗ ∗) ◦ (S ⊗ id), (2.2)
γ ◦ ∗ = (∗ ⊗ ∗) ◦ γ. (2.3)

Then ∗V ⊗V = (α⊗ id) ◦ (τ ⊗ id) ◦ (id⊗ γ) ◦ (∗ ⊗ ∗) is an involution on V ⊗ V .

Proof. Recall that the inverse of Ψ = (α⊗ id) ◦ (id⊗ τ) ◦ (γ ⊗ id) is given by
Ψ−1 = (id⊗ α) ◦ (τ ⊗ id) ◦ (S−1 ⊗ id⊗ id) ◦ (γ ⊗ id) ◦ τ

(see [29, Theorem 7.2]). We have

(∗ ⊗ ∗) ◦Ψ ◦ (∗ ⊗ ∗) (2.2) and (2.3)= (α⊗ id) ◦ (∗ ⊗ ∗ ⊗ ∗) ◦ (S ⊗ τ)
◦ (∗ ⊗ ∗ ⊗ ∗) ◦ (γ ⊗ id)

= τ ◦Ψ−1 ◦ τ,

since ∗◦S ◦∗ = S−1. This proves that ∗V ⊗V = Ψ◦ (∗⊗∗)◦τ is its own inverse. □

Theorem 2.2. Let A be a Hopf-∗-algebra. Then we can define a braided category
A
AYD∗ as follows. The objects (V, α, γ, ∗) are Yetter–Drinfeld modules equipped with
an involution ∗, such that equations (2.2) and (2.3) are satisfied. The morphisms
are the linear maps that are module and comodule maps. The tensor product of
objects is given by

(V, αV , γV , ∗V )⊗ (W,αW , γW , ∗W ) := (V ⊗W,αV ⊗W , γV ⊗W , ∗V ⊗W ),
where

αV ⊗W := (αV ⊗ αW ) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗ id⊗ id),
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γV ⊗W := (m⊗ id⊗ id) ◦ (id⊗ τ ⊗ id) ◦ (γV ⊗ γW ),
∗V ⊗W := ΨW,V ◦ (∗W ⊗ ∗V ) ◦ τV,W .

The braiding is again given by Ψ = (α⊗ id) ◦ (id⊗ τ) ◦ (γ ⊗ id).

Proof. To show that this is again a braided category it only remains to show that
(V ⊗W,αV ⊗W , γV ⊗W , ∗V ⊗W ) is again an object in the category A

AYD∗. First we
show that ∗V ⊗W satisfies equation (2.2). We have

∗V ⊗W ◦ αV ⊗W = Ψ ◦ (∗ ⊗ ∗) ◦ τ ◦ (α⊗ α) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗ id⊗ id)
(2.2)= Ψ ◦ (α⊗ α) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗ id⊗ id) ◦ (id⊗ τ) ◦ (∗ ⊗ ∗ ⊗ ∗)

◦ (S ⊗ id⊗ id)
= (α⊗ α) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗ id⊗ id) ◦ (id⊗Ψ) ◦ (∗ ⊗ ∗ ⊗ ∗) ◦ (S ⊗ τ)
= αV ⊗W ◦ (∗A ⊗ ∗V ⊗W ) ◦ (S ⊗ id),

because Ψ is a module map, since it has to be a morphism in the category. Now
we show that it also satisfies equation (2.3):

(∗A ⊗ ∗V ⊗W ) ◦ γV ⊗W

= (id⊗Ψ) ◦ (m⊗ id) ◦ (τ ⊗ τ) ◦ (id⊗ τ ⊗ id) ◦ (∗ ⊗ ∗ ⊗ ∗ ⊗ ∗) ◦ (γ ⊗ γ)
= γV ⊗W ◦ ∗V ⊗W . □

2.2. The category (AC∗, Ψ) of comodules over a coquasi-triangular
∗-bialgebra. We start by considering the category AC of A-comodules over a
coquasi-triangular bialgebra A.

Lemma 2.3. Let A be a coquasi-triangular bialgebra. If γ is a coaction of A on V ,
then

αγ = (r̄ ⊗ id) ◦ (id⊗ γV )
defines an action of A on V and (V, αγ , γ) is a Yetter–Drinfeld module. Further-
more, if a linear map f : V →W between two comodules V,W is γ-invariant (i.e.,
a comodule map), then it is also αγ-invariant.

Proof. First we show that αγ is an action. We have

αγ ◦ (m⊗ id) = (r̄ ⊗ id) ◦ (m⊗ id⊗ id) ◦ (id⊗ id⊗ γ)
(1.5)=

(
(r̄23 ⋆ r̄13)⊗ id

)
◦ (id⊗ id⊗ γ)

=
(((

(ε⊗ r̄)⊗
(
(r̄ ⊗ ε) ◦ (id⊗ τ)

))
◦∆A⊗A⊗A

)
⊗ id

)
◦ (id⊗ id⊗ γ)

= (r̄ ⊗ id) ◦ (id⊗ γ) ◦
(
id⊗

(
(r̄ ⊗ id) ◦ (id⊗ γ)

))
= αγ ◦ (id⊗ αγ)

as well as

αγ ◦ (1⊗ id) =
(
(r̄ ◦ (1⊗ id))⊗ id

)
◦ γ (1.4)= (ε⊗ id) ◦ γ = id.

Now we want to show that γ and αγ satisfies the Yetter–Drinfeld equation (2.1):
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(m⊗ αγ) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗ γ)
= (m⊗ r̄ ⊗ id) ◦ (id⊗ τ ⊗ id⊗ id) ◦ (∆⊗∆⊗ id) ◦ (id⊗ γ)
=

(
(m ⋆ r̄)⊗ id

)
◦ (id⊗ γ)

(1.3)=
(
(r̄ ⋆ mop)⊗ id

)
◦ (id⊗ γ)

= (r̄ ⊗m⊗ id) ◦ (id⊗ id⊗ id⊗ τ) ◦ (id⊗ id⊗ γ ⊗ id) ◦ (id⊗ γ ⊗ id)
◦ (id⊗ τ) ◦ (∆⊗ id)

= (m⊗ id) ◦ (id⊗ τ) ◦ (γ ⊗ id) ◦ (αγ ⊗ id) ◦ (id⊗ τ) ◦ (∆⊗ id).

It remains to show that αγ is a module map. We have

αW ◦ (id⊗ f) = (r̄ ⊗ id) ◦ (id⊗ id⊗ f) ◦ (id⊗ γW ). □

Note that, for the braiding Ψ = (αγ ⊗ id) ◦ (id⊗ τ) ◦ (γ⊗ id) defined in this way
between two A-comodules V and W , we have

Ψ(v ⊗ w) = r̄(v(1) ⊗ w(1))w(2) ⊗ v(2)

for v ∈ V , w ∈ W , and where γV (v) = v(1) ⊗ v(2), γ(w) = w(1) ⊗ w(2). Up to a
conjugation by the flip and the use of r̄ instead of r, this is the same as the definition
of the braiding associated to a universal r-form in [13, Equation (VIII.5.9)].

One can show as in [13] that the category of A-comodules becomes a braided
category (AC,Ψ) in this way. Unlike for the construction for Yetter–Drinfeld mod-
ules in Theorem 2.2, this does not require A to be a Hopf algebra, because the
invertibility of Ψ follows from that of the universal r-form.

Now we want to extend the objects in the category AC by an involution ∗ and
define the category AC∗.

A coquasi-triangular ∗-bialgebra (resp., Hopf-∗-algebra) is a coquasi-triangular
bialgebra (resp., Hopf-algebra) which is also a ∗-bialgebra (resp., Hopf-∗-algebra)
such that the universal r-form r satisfies the equation

¯ ◦ r = r̄ ◦ (∗ ⊗ ∗), (2.4)

where ¯ denotes the complex conjugation on C. A universal r-form that satisfies
equation (2.4) is called an involutive r-form.

Theorem 2.4. Let A be a coquasi-triangular ∗-bialgebra. Then we can construct a
braided category (AC∗,Ψ) as follows. The objects are triples (V, γV , ∗V ) consisting
of an A-comodule V with coaction γ and an involution ∗ such that equation (2.3) is
satisfied. The morphisms between two objects are the comodule maps. The tensor
product of objects is given by

(V, γV , ∗V )⊗ (W,γW , ∗W ) := (V ⊗W,γV ⊗W , ∗V ⊗W ),

where

γV ⊗W := (m⊗ id⊗ id) ◦ (id⊗ τ ⊗ id) ◦ (γV ⊗ γW )
∗V ⊗W := ΨW,V ◦ (∗W ⊗ ∗V ) ◦ τV,W .
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The braiding Ψ is given by

ΨV,W = (αγ ⊗ id) ◦ (id⊗ τ) ◦ (γ ⊗ id)
= τ ◦ (r̄ ⊗ id⊗ id) ◦ (id⊗ τ ⊗ id) ◦ (γV ⊗ γW ).

Proof. Let (V, γV , ∗V ), (W,γW , ∗W ) be two objects of (AC∗,Ψ), i.e., A-comodules
with a coaction and an involution that satisfy (2.3). We have to check that ∗V ⊗W

is an involution and that V ⊗W is again an object of (AC∗,Ψ). For v ∈ V , w ∈W
with γV (v) = v(1) ⊗ v(2), γ(w) = w(1) ⊗ w(2) we have

(v ⊗ w)∗ = Ψ(w∗ ⊗ v∗) = r̄
(

(w(1))∗ ⊗ (v(1))∗
) (

v(2)
)∗
⊗

(
w(2)

)∗

= r
(
w(1) ⊗ v(1)

) (
v(2)

)∗
⊗

(
w(2)

)∗

and (
(v ⊗ w)∗)∗ = r

(
v(1) ⊗ w(1)

) ((
v(2)

)∗
⊗

(
w(2)

)∗)∗

= r
(
w(1) ⊗ v(1)

)
Ψ

(
w(2) ⊗ v(2)

)
= r

(
w(1) ⊗ v(1)

)
r̄

(
w(2) ⊗ v(2)

)
v(3) ⊗ w(3)

= v ⊗ w,

since r ⋆ r̄ = ε⊗ ε. Furthermore,

γV ⊗W ◦ ∗V ⊗W (v ⊗ w) = γV ⊗W

(
r

(
w(1) ⊗ v(1)

) (
v(2)

)∗
⊗

(
w(2)

)∗)
=

(
r

(
w(1) ⊗ v(1)

)
w(2)v(2)

)∗ (
v(3)

)∗
⊗

(
w(3)

)∗

=
(
v(1)w(1)r

(
w(2) ⊗ v(2)

))∗ (
v(3)

)∗
⊗

(
w(3)

)∗

=
(
v(1)w(1)

)∗
⊗

(
r

(
w(2) ⊗ v(2)

) (
v(3)

)∗
⊗

(
w(3)

)∗)
=

(
γV ⊗W (v ⊗ w)

)∗⊗∗V ⊗W
,

since r⋆m = mop⋆r. I.e., γV ⊗W satisfies (2.3), and therefore (V ⊗W,γV ⊗W , ∗V ⊗W )
is an object of (AC∗,Ψ). □

Remark 2.5. In general, A does not have an antipode. Thus equation (2.2) is not
satisfied and (V, αγ , γ, ∗) is not an object in (A

AYD∗,Ψ), and therefore (AC∗,Ψ)
cannot be interpreted as a subcategory of (A

AYD∗,Ψ). But if A is a coquasi-
triangular Hopf-∗-algebra, then the antipode S is automatically invertible and we
have r̄ = r◦(S⊗ id), which, combined with equation (2.4), implies that αγ satisfies
equation (2.2). So if A is a coquasi-triangular Hopf-∗-algebra, then because of
Lemma 2.3, the category AC∗ can be viewed as a subcategory of A

AYD∗.
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2.3. The category (AC∗, Ψ) of modules over a quasi-triangular ∗-bialgebra.
We start with the category AC of A-modules over a quasi-triangular bialgebra A,
and then introduce the category AC∗, if A has an involution that is compatible
with the R-matrix, see below. Let A be a quasi-triangular bialgebra and define
R̃ : C→ A⊗A by R̃(c) = cR for all c ∈ C.

Lemma 2.6. If α is an action of A on V , then
γα = (id⊗ α) ◦ (τ ⊗ id) ◦ (R̃⊗ id)

defines a coaction of A on V and (V, α, γα) is a Yetter–Drinfeld module. Further-
more, if a linear map f : V →W between two modules V,W is α-invariant (i.e., a
module map), then it is also γα-invariant.

Proof. First we show that γα is a coaction. We have
(∆⊗ id) ◦ γα

= (id⊗ id⊗ α) ◦ (id⊗ τ ⊗ id) ◦ (τ ⊗ id⊗ id) ◦ (id⊗∆⊗ id) ◦ (R̃⊗ id)
(1.1)= (id⊗ id⊗ α) ◦ (id⊗ τ ⊗ id) ◦ (τ ⊗ id⊗ id) ◦ (m⊗ id⊗ id⊗ id)

◦ (id⊗ id⊗ τ ⊗ id) ◦ (id⊗ τ ⊗ id⊗ id) ◦ (R̃⊗ R̃⊗ id)
= (id⊗ γα) ◦ γα,

as well as
(ε⊗ id) ◦ γα = α ◦ (id⊗ ε⊗ id) ◦ (R̃⊗ id) = α ◦ (1⊗ id) = id.

Now we show that α and γα satisfy the Yetter–Drinfeld equation (2.1):
(m⊗ α) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗ γα)

= (m⊗ α) ◦ (id⊗ τ ⊗ α) ◦ (id⊗ id⊗ τ ⊗ id) ◦ (∆⊗ R̃⊗ id)

= (id⊗ α) ◦ (m⊗ id⊗ α) ◦ (id⊗ τ ⊗ id⊗ id) ◦ (τ ⊗ τ ⊗ id) ◦ (R̃⊗∆⊗ id)
= (m⊗ id) ◦ (id⊗ τ) ◦ (γα ⊗ id) ◦ (α⊗ id) ◦ (id⊗ τ) ◦ (∆⊗ id).

That γα is a comodule map follows directly. □

Define a quasi-triangular ∗-bialgebra as a quasi-triangular bialgebra which is also
a ∗-bialgebra such that (∗ ⊗ ∗)(R) = R−1.

Theorem 2.7. Let A be a quasi-triangular Hopf-∗-algebra with antipode S. Then
we can construct a braided category (AC∗,Ψ) as follows. The objects are triples
(V, α, ∗) consisting of an A-module V with action α and an involution ∗ such that
equation (2.2) is satisfied. The morphisms between two objects are the module maps.
The tensor product of objects is given by

(V, αV , ∗V )⊗ (W,αW , ∗W ) := (V ⊗W,αV ⊗W , ∗V ⊗W ),
where

αV ⊗W := (αV ⊗ αW ) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗ id⊗ id),
∗V ⊗W := ΨW,V ◦ (∗W ⊗ ∗V ) ◦ τV,W .
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The braiding Ψ is given by

ΨV,W = (α⊗ id) ◦ (id⊗ τ) ◦ (γα ⊗ id)

= (α⊗ α) ◦ (id⊗ τ ⊗ id) ◦ (τ ⊗ τ) ◦ (R̃⊗ id⊗ id).

Proof. This follows directly from Lemma 2.6 and Theorem 2.2. □

Lemma 2.8. Let A be a quasi-triangular Hopf-∗-algebra and let (V, α, ∗) be an
object in (AC∗,Ψ). Then γα satisfies equation (2.3).

Proof. Since (S ⊗ id) ◦ R̃ = R̃−1, we have

(∗ ⊗ ∗) ◦ γα = (∗ ⊗ ∗) ◦ (id⊗ α)⊗ (τ ⊗ id) ◦ (R̃⊗ id)
(2.2)= (id⊗ α) ◦ (∗ ⊗ ∗ ⊗ ∗) ◦ (id⊗ S ⊗ id) ◦ (τ ⊗ id) ◦ (R̃⊗ id)

= (id⊗ α) ◦ (τ ⊗ id) ◦ (∗ ⊗ ∗ ⊗ ∗) ◦ (R̃−1 ⊗ id)

= (id⊗ α) ◦ (R̃⊗ ∗) = γα ◦ ∗. □

Remark 2.9. It follows from Lemma 2.8 and Lemma 2.6 that (V, α, γα, ∗) ∈
Obj(A

AYD) and hence (AC∗,Ψ) is a subcategory of
(A

AYD∗,Ψ
)
.

2.3.1. Cocommutative bialgebras. If the bialgebra A is cocommutative (i.e., τ ◦∆ =
∆), then 1⊗1 defines an R-matrix. The corresponding braiding is simply the flip τ .

We show now that the construction in Theorem 2.2 includes as a special case
the construction given in [27]. Schürmann’s construction has as input the group
algebra A = CΓ of some group Γ, and actions and coactions of A on the objects V
that satisfy the compatibility condition

γ ◦ α = (ad⊗ α) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗ γ), (2.5)

(see [27, p. 14]), where ad = m ◦ (id⊗m) ◦ (id⊗ id⊗ S) ◦ (id⊗ τ) ◦ (∆⊗ id) is the
adjoint action of A on itself. The following lemma shows that our construction is
a generalisation of the one presented there.

Lemma 2.10. Let A be a cocommutative bialgebra. Let α and γ be an action and
a coaction of A on some vector space V . If α and γ satisfy (2.5), then (V, α, γ) is
a Yetter–Drinfeld module.

Proof. Substituting (2.5) into the right side of (2.1), we get after some simplifica-
tions

(m(4) ⊗ α) ◦ (id⊗ τ ⊗ τ ⊗ id) ◦ (id⊗ τA⊗A,A ◦ id) ◦ (idA ⊗ S ⊗ id) ◦ (∆(4) ⊗ γ),

where m(4) = m ◦ (m ⊗ id) ◦ (m ⊗ id ⊗ id), ∆(4) = (∆ ⊗ id ⊗ id) ◦ (∆ ⊗ id) ◦ ∆.
Using the cocommutativity, we can produce a term of the form m ◦ (S ⊗ id) ◦∆,
to which we can apply the antipode axiom. Using the unit and the counit axiom
to clean up the resulting expression, we get the desired result. □
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3. Symmetrization of braided ∗-bialgebras and their Lévy processes

3.1. Symmetrizing braided ∗-bialgebras. Now we will present a construction
that will allow us in Subsection 3.2 to associate with every Lévy process on a braided
∗-bialgebra B a Lévy process on a usual (i.e., symmetric or τ -braided) ∗-bialgebra.
The idea is to construct a bigger (symmetric) bialgebraH that contains the braided
bialgebra B as a subalgebra and whose coproduct is related to that of B in a “nice
way”. For the case where the braiding is defined through the action and coaction of
a group, this construction can be found in [27, Ch. 3]. For the general case a similar
construction, called bosonization, was introduced by Majid (see [19, Section 9.4]
and the references therein). But the role of the involution is not studied there. In
this section we study the left symmetrization of braided ∗-bialgebras. Note that
the whole theory works analogously for categories consisting of right modules and
comodules.

Theorem 3.1. Let A be a Hopf-∗-algebra and let B be a braided ∗-bialgebra in(A
AYD∗,Ψ

)
. Then H = B ⊗A (as a vector space) becomes a ∗-bialgebra with

mH = (mB ⊗mA) ◦ (id⊗ α⊗ id⊗ id) ◦ (id⊗ id⊗ τ ⊗ id) ◦ (id⊗∆⊗ id⊗ id),
1H = 1B ⊗ 1A,

∆H = (id⊗m⊗ id⊗ id) ◦ (id⊗ id⊗ τ ⊗ id) ◦ (id⊗ γ ⊗ id⊗ id) ◦ (∆B ⊗∆A),
εH = εB ⊗ εA,

∗H = (α⊗ id) ◦ (τ ⊗ id) ◦ (id⊗∆) ◦ (∗B ⊗ ∗A).

The map idB ⊗ 1A : B → B ⊗ A ∼= H defines an embedding, i.e., an injective
∗-algebra homomorphism. Furthermore we have the following commutative dia-
grams:

B H

B ⊗ B H ⊗ H

idB ⊗ 1A

∆B

idB ⊗ γ ⊗ 1A

∆H

B H

B ⊗ B H ⊗ H

idB ⊗ εA

∆B

idB ⊗ εA ⊗ idB ⊗ εA

∆H

Proof. For the proof that H is a bialgebra, see [19, Section 9.4]. To show that it
is even a ∗-bialgebra we first have to verify that ∗H is its own inverse. Using the
facts that ∆ is a ∗-algebra homomorphism and ∗ is self-inverse, as well as equation
(2.2) and the relation ∗ ◦ S ◦ ∗ = S−1, we get

∗H ◦ ∗H = (α⊗ id) ◦ (id⊗ α⊗ id) ◦ (τ ⊗ id⊗ id) ◦ (id⊗ τ ⊗ id)
◦ (id⊗ id⊗∆) ◦ (S−1 ⊗ id⊗ id) ◦ (τ ⊗ id) ◦ (id⊗∆).

Applying the module equation and the coassociativity, this expression transforms
into

(α⊗ id) ◦
(
(m ◦ (id⊗ S−1) ◦ τ ◦∆)⊗ id⊗ id

)
◦ (τ ⊗ id) ◦ (id⊗∆),
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and, using the antipode axiom, into
(α⊗ id) ◦ ((1 ◦ ε)⊗ τ) ◦ (∆⊗ id) ◦ τ = τ ◦ τ = id⊗ id,

which shows that ∗H is its own inverse. Next we want to show that ∗H is an
algebra antihomomorphism. After applying some basic transformations, as well as
equation (2.2) and the bialgebra equation

∆ ◦m = (m⊗m) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗∆)
twice, we get the expression
∗H ◦mH = (m⊗ id) ◦ (α⊗ α⊗ id) ◦ (id⊗ τ ⊗ τ) ◦ (m⊗m⊗ id⊗ id⊗ id)

◦ (id⊗ τ ⊗ id⊗ τ ⊗ id) ◦ (∆⊗∆⊗ id⊗ id⊗ id)
◦ (id⊗ id⊗m⊗ id⊗ id) ◦ (id⊗ τ ⊗ id⊗ id⊗ id)
◦ (∆⊗∆⊗ id⊗ id) ◦ τH⊗H ◦ (τ ⊗ τ) ◦ (id⊗ α⊗ id⊗ id)
◦ (id⊗ S−1 ⊗ τ ⊗ id) ◦ (id⊗∆⊗ id⊗ id) ◦ (∗ ⊗ ∗ ⊗ ∗ ⊗ ∗).

Again after using some basic transformations and reordering, we get the expression
(m⊗m) ◦ (id⊗ α⊗ id⊗ id) ◦ (id⊗ id⊗ τ ⊗ id) ◦ (id⊗∆⊗ id⊗ id)

◦ (α⊗ id⊗ α⊗ id) ◦ (id⊗ τ ⊗ id⊗ τ) ◦ (∆⊗ id⊗∆⊗ id) ◦ (τ ⊗ τ)
◦ (id⊗ τ ⊗ id) ◦ (τ ⊗ τ) ◦ (id⊗ α⊗ id⊗ id) ◦ (id⊗m⊗ τ ⊗ id)
◦ (id⊗ S ⊗ id⊗ S ⊗ id⊗ id) ◦ (id⊗∆⊗ id⊗ id⊗ id)
◦ (id⊗ τ ⊗ id⊗ id) ◦ (id⊗∆⊗ id⊗ id)
◦ (id⊗ S−1 ⊗ id⊗ id) ◦ (∗ ⊗ ∗ ⊗ ∗ ⊗ ∗).

After applying the antipode axiom and some simplifications, this becomes
(m⊗m) ◦ (id⊗ α⊗ id⊗ id) ◦ (id⊗ id⊗ τ ⊗ id) ◦ (id⊗∆⊗ id⊗ id)
◦ (α⊗ id⊗ α⊗ id) ◦ (τ ⊗ id⊗ τ ⊗ id) ◦ (id⊗∆⊗ id⊗∆) ◦ (∗ ⊗ ∗ ⊗ ∗ ⊗ ∗)
◦ (τ ⊗ τ) ◦ (id⊗ τ ⊗ id) = mH ◦ (∗H ⊗ ∗H) ◦ τH⊗H.

Thus we have shown that ∗H is an algebra homomorphism.
Now we want to show that ∆ is a ∗-algebra homomorphism. After using the

coassociativity twice and some reordering, we get the expression
∆H ◦ ∗H

=
(
id⊗

(
(m⊗ id) ◦ (id⊗ τ) ◦ (γ ⊗ id) ◦ (α⊗ id) ◦ (id⊗ τ) ◦ (∆⊗ id)

)
⊗ id

)
◦

((
(α⊗ id) ◦ (id⊗ τ) ◦ (∆⊗ id)

)
⊗ id⊗ id

)
◦ (τ ⊗ id⊗ id) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗∆) ◦ (∗ ⊗ ∗).

Using the Yetter–Drinfeld equation as well as the equations (2.2) and (2.3), this
transforms into
(∗ ⊗ ∗ ⊗ ∗ ⊗ ∗) ◦

(
id⊗

(
(m⊗ α) ◦ (τ ⊗ id⊗ id) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗ id⊗ id)

)
⊗ id

)
◦

((
(α⊗ id) ◦ (S−1 ⊗ τ) ◦ (∆⊗ id) ◦ τ

)
⊗ id⊗ id⊗ id

)
◦ (α⊗ τ ⊗ id⊗ id)

◦ (S−1 ⊗ id⊗ id⊗ τ ⊗ id) ◦ (τ ⊗ γ ⊗ id⊗ id) ◦ (id⊗ γ ⊗ id⊗ id) ◦ (∆⊗∆).
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After a few more basic transformations, this becomes

(∗ ⊗ ∗ ⊗ ∗ ⊗ ∗) ◦ (
(
(α ◦ (S−1 ⊗ id) ◦ τ)⊗ id⊗ (α ◦ (S−1 ⊗ id) ◦ τ)⊗ id

)
◦

(
id⊗

(
(m⊗m) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗∆)

)
⊗ id⊗ id

)
◦ (id⊗ id⊗ τ ⊗ id⊗ id) ◦ (id⊗ γ ⊗ id⊗∆) ◦ (∆⊗∆).

Using the bialgebra equation, we get(
((α⊗ id) ◦ (τ ⊗ id) ◦ (id⊗∆) ◦ (∗ ⊗ ∗))
⊗

(
(α⊗ id) ◦ (τ ⊗ id) ◦ (id⊗∆) ◦ (∗ ⊗ ∗))

)
◦

(
id⊗

(
(m⊗ id) ◦ (id⊗ τ) ◦ (γ ⊗ id)

)
⊗ id

)
◦ (∆⊗∆),

and thus we have shown that ∆ is a ∗-algebra homomorphism. It remains to
show that the inclusions are ∗-algebra homomorphisms and that both diagrams
commute. This can easily be verified by straightforward calculations. □

Due to the connection between the categories we get the following corollaries for
the categories

( AC∗,Ψ
)

and
(

AC∗,Ψ
)
.

Corollary 3.2. Let A be a coquasi-triangular ∗-bialgebra and B a braided ∗-
bialgebra in

( AC∗,Ψ
)
. Then H = B ⊗A (as a vector space) becomes a ∗-bialgebra

with 1H, ∆H and εH as in Theorem 3.1 and

mH = (mB ⊗mA) ◦ (id⊗ αγ ⊗ id⊗ id) ◦ (id⊗ id⊗ τ ⊗ id) ◦ (id⊗∆⊗ id⊗ id)
= (mB ⊗mA) ◦ (id⊗ r̄ ⊗ τ ⊗ id) ◦ (id⊗ id⊗ τ ⊗ id⊗ id) ◦ (id⊗∆⊗ γ ⊗ id),

∗H = (αγ ⊗ id) ◦ (τ ⊗ id) ◦ (id⊗∆) ◦ (∗B ⊗ ∗A)
= (r̄ ⊗ id⊗ id) ◦ (τ ⊗ id⊗ id) ◦ (id⊗ τ ⊗ id) ◦ (γ ⊗∆) ◦ (∗B ⊗ ∗A).

Corollary 3.3. Let A be a quasi-triangular ∗-bialgebra and B a braided ∗-bialgebra
in (AC∗,Ψ). Then H = B ⊗A (as a vector space) becomes a ∗-bialgebra with mH,
1H, εH and ∗H as in Theorem 3.1 and

∆H = (id⊗m⊗ id⊗ id) ◦ (id⊗ id⊗ τ ⊗ id) ◦ (id⊗ γα ⊗ id⊗ id) ◦ (∆B ⊗∆A)
= (id⊗m⊗ id⊗ id) ◦ (id⊗ id⊗ τ ⊗ id) ◦ (id⊗ id⊗ α⊗ id⊗ id)

◦ (id⊗ τ ⊗ id⊗ id⊗ id) ◦ (id⊗ R̃⊗ id⊗ id⊗ id) ◦ (∆⊗∆).

3.2. Symmetrizing braided Lévy processes. The following proposition is im-
portant for symmetrizing Lévy processes, i.e., for constructing a Lévy process on
H for a given Lévy process on B. In Theorem 3.5 below we shall show that the
process we construct on H allows us to recover a process on B which is equivalent
to the original process.

Proposition 3.4. The map F : B′ → H′, φ 7→ φ ⊗ εA is a unital injective alge-
bra homomorphism w.r.t. the convolution product. Furthermore, it maps positive
(resp., hermitian, conditionally positive) Ψ-invariant functionals φ ∈ B′ to positive
(resp., hermitian, conditionally positive) functionals F (φ) ∈ H′.
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Proof. The injectivity of F is clear, because F̃ : H′ → B′ ∼= (B ⊗ 1)′ defined by
F̃ (ψ) = ψ ◦ (id⊗1) is a left inverse of F . It is unital, since F (εB) = εB ⊗ εA = εH.
Furthermore it preserves the convolution product, because

F (φ1) ⋆ F (φ2) = (F (φ1)⊗ F (φ2)) ◦∆
= (φ1 ⊗ ε⊗ φ2 ⊗ ε) ◦ (id⊗m⊗ id⊗ id) ◦ (id⊗ id⊗ τ ⊗ id)
◦ (id⊗ γ ⊗ id⊗ id) ◦ (∆⊗∆)

= (φ1 ⊗ ε⊗ φ2 ⊗ ε⊗ ε) ◦ (id⊗ γ ⊗ id⊗ id) ◦ (∆⊗∆)
= ((φ1 ⊗ φ2) ◦∆)⊗ ε
= F ((φ1 ⊗ φ2) ◦∆)
= F (φ1 ⋆ φ2).

Assume now that φ is positive and Ψ-invariant. Let c =
∑

k bk ⊗ ak ∈ B ⊗A ∼= H.
We want to show that F (φ) is again positive. Because (bk⊗ ak)∗ = Ψ(a∗

k⊗ b∗
k), we

have

c∗c =
( ∑

k

bk ⊗ ak

)∗( ∑
k

bk ⊗ ak

)
= mH

( ∑
k,l

(bk ⊗ ak)∗ ⊗ (bl ⊗ al)
)

= mH

( ∑
k,l

Ψ(a∗
k ⊗ b∗

k)⊗ bl ⊗ al

)
.

Since m is a morphism and thus Ψ-invariant, we have

(m⊗m) ◦ (id⊗Ψ⊗ id) ◦ (Ψ⊗ id⊗ id) = (id⊗m) ◦ (Ψ⊗ id) ◦ (id⊗m⊗ id),

and therefore we get(
F (φ)

)
(c∗c)

= (φ⊗ ε) ◦mH

( ∑
k,l

Ψ(a∗
k ⊗ b∗

k)⊗ bl ⊗ al

)

= (φ⊗ ε ◦ (m⊗m) ◦ (id⊗Ψ⊗ id) ◦ (Ψ⊗ id⊗ id)
( ∑

k,l

a∗
k ⊗ b∗

k ⊗ bl ⊗ al

)

= (φ⊗ ε) ◦ (id⊗m) ◦ (Ψ⊗ id) ◦ (id⊗m⊗ id)
( ∑

k,l

a∗
k ⊗ b∗

k ⊗ bl ⊗ al

)

= ε ◦m ◦ (ΨA,C ⊗ id) ◦ (id⊗ φ⊗ id) ◦ (id⊗m⊗ id)
( ∑

k,l

a∗
k ⊗ b∗

k ⊗ bl ⊗ al

)

= (ε ◦m)
( ∑

k,l

φ(b∗
kbl)a∗

k ⊗ al

)
=

∑
k,l

φ(b∗
kbl)ε(a∗

kal).
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This is positive, since it is the Schur product of two positive definite matrices.
Conditional positivity can be shown similarly and hermitianity is a straightforward
calculation. □

Theorem 3.5. Let B be a braided ∗-bialgebra in one of the categories
( A

AYD∗
)
,( AC∗,Ψ

)
or

(
AC∗,Ψ

)
. Let (jst)0≤s≤t be a Lévy process on B with convolution

semigroup (φt)t≥0 and let
(
jH

st

)
0≤s≤t

be a Lévy process on H ∼= B ⊗A with convo-
lution semigroup (F (φt))t≥0. Then (ȷ̂st)0≤s≤t with

ȷ̂st := m ◦
(
jH

0s ⊗ jH
st

)
◦

(
1B ⊗ γ ⊗ 1A

)
defines a Lévy process on B. Furthermore (ȷ̂st)0≤s≤t is equivalent to (jst)0≤s≤t.

Remark 3.6. This theorem generalizes [27, Theorem 3.3.1].

Proof. We will use Sweedler’s notation ∆B(b) =
∑
b(1) ⊗ b(2) ∈ B ⊗ B and γ(b) =∑

b(1) ⊗ b(2) ∈ B ⊗ A for the coproduct and coaction on an element b ∈ B. We
have
ȷ̂st(b) = m ◦

(
jH

0s ⊗ jH
st

)
◦

(
1B ⊗ γ ⊗ 1A

)(
b
)

= jH
0s

(
1⊗ b(1)) · jH

st

(
b(2) ⊗ 1

)
(3.1)

as well as
jH

0s

(
1⊗ a

)
=

(
jH

0r ⋆ j
H
rs

)(
1⊗ a

)
= m ◦

(
jH

0r ⊗ jH
rs

)
◦∆H

(
1⊗ a

)
= jH

0r

(
1⊗ a(1)

)
· jH

rs

(
1⊗ a(2)

) (3.2)

and
∆H

(
b(2) ⊗ 1

)
= b

(2)
(1) ⊗ b

(2) (1)
(2) ⊗ b(2) (2)

(2) ⊗ 1. (3.3)
Let 0 ≤ r ≤ s ≤ t. Then we have

(ȷ̂rs ⋆ ȷ̂st)(b) = m ◦ (ȷ̂rs ⊗ ȷ̂st) ◦∆(b)
= ȷ̂rs(b(1)) · ȷ̂st(b(2))

(3.1)= jH
0r(1⊗ b (1)

(1) ) · jH
rs(b (2)

(1) ⊗ 1) · jH
0s(1⊗ b (1)

(2) ) · jH
st(b (2)

(2) ⊗ 1)
(3.2)= jH

0r(1⊗ b (1)
(1) ) · jH

0r(1⊗ b (1)
(2) (1)) · j

H
rs(b (2)

(1) ⊗ 1)

· jH
rs(1⊗ b (1)

(2) (2)) · j
H
st(b (2)

(2) ⊗ 1)

= jH
0r(1⊗ b (1)

(1) · b (1)
(2) (1)) · j

H
rs(b (2)

(1) ⊗ b (1)
(2) (2)) · j

H
st(b (2)

(2) ⊗ 1)

= m ◦ (m⊗ id) ◦ (jH
0r ⊗ jH

rs ⊗ jH
st)

◦ (id⊗ id⊗ id⊗ γ ⊗ id) ◦ (id⊗m⊗ id⊗ id⊗ id)
◦ (id⊗ id⊗ τ ⊗ id⊗ id) ◦ (id⊗ γ ⊗ γ ⊗ id) ◦ (1B ⊗∆⊗ 1A)(b)

= jH
0r(1⊗ b(1)) · jH

rs(b(2)
(1) ⊗ b

(2) (1)
(2) ) · jH

st(b(2) (2)
(2) ⊗ 1)

(3.3)= jH
0r(1⊗ b(1)) ·

(
m ◦ (jH

rs ⊗ jH
st) ◦∆H(b(2) ⊗ 1)

)
= jH

0r(1⊗ b(1)) · (jH
rs ⋆ j

H
st)(b(2) ⊗ 1) = jH

0r(1⊗ b(1)) · jH
rt(b(2) ⊗ 1)

= m ◦ (jH
0r ⊗ jH

rt) ◦ (1B ⊗ γ ⊗ 1A)(b) = ȷ̂rt(b).
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Thus we have shown that (ȷ̂st)0≤s≤t satisfies the increment property. Furthermore,
because of the independence of increments, it follows that

Φ ◦ ȷ̂st =
(
(Φ ◦ jH

0s)⊗ (Φ ◦ jH
st)

)
◦ (1B ⊗ γ ⊗ 1A)

=
(
F (φs)⊗ F (φt−s)

)
◦ (1B ⊗ γ ⊗ 1A)

= (φs ⊗ εA ⊗ φt−s ⊗ εA) ◦ (1B ⊗ γ ⊗ 1A)
= φt−s,

i.e., the processes (jst)0≤s≤t and (ȷ̂st)0≤s≤t have the same marginal distributions.
This implies the stationarity and the weak continuity of the increments of (ȷ̂st)0≤s≤t

and completes the proof that (ȷ̂st)0≤s≤t is a Lévy process. Furthermore it estab-
lishes the equivalence of the two processes and completes the proof of the theo-
rem. □

Lévy processes on symmetric ∗-bialgebras can be realized on Bose–Fock spaces
using quantum stochastic differential calculus [11, 24, 21]. The necessary input is
a triple (ρ, η, L), where ρ is a ∗-representation of A on some pre-Hilbert space P ,
η : A → P is a ρ-cocycle (i.e.,

η(ab) = ρ(a)η(b)− η(a)ε(b)
for a, b ∈ A), and L : A → C is a hermitian linear functional such that

⟨η(a∗), η(b)⟩ = ε(a)L(b) + L(ab)− L(a)ε(b)
for a, b,∈ A. Such triples are called Schürmann triples in [21, Ch. VII] and [7].

Let us recall the GNS-type construction of the triple (ρ, η, L) from the func-
tional L (see [27, Section 2.3]). Let B be a ∗-algebra with a unital, hermitian char-
acter ε : B → C (i.e., ε(1) = 1, ε(b∗) = ε(b), and ε(ab) = ε(a)ε(b) for all a, b in B)
and let L : B → C be a generator. We define an inner product ⟨·, ·⟩B0 : B0×B0 → C
on B0 := ker ε by (a, b) 7→ L(a∗b). This inner product is positive semi-definite, since
L is conditionally positive. We define the null space by N0 := {b ∈ B0 | ⟨b, b⟩ = 0}.
The quotient space P := B0/N0 with inner product

⟨a+N0, b+N0⟩P := ⟨a, b⟩B0

becomes a pre-Hilbert space. The (left) action α : B × B0 → B0 with (a, b) 7→ a · b
induces an action α̃ on P , since α(N0) ⊆ N0. Now we define ρ(a) ∈ L(P, P ) by

ρ(a)(b+N0) := α̃(a, b+N0)
for a ∈ B and b+N0 ∈ P , as well as

η : B → P

b 7→ (b− ε(b) · 1B) +N0,

where

η(b) =
{
b+N0 for all b ∈ B0,

0 +N0 for all b ∈ ⟨1B⟩.
The equations

η(a · b) = ρ(a)η(b) + η(a)ε(b)
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and
⟨η(a), η(b)⟩ = L(a∗b)− ε(a∗)L(b)− L(a∗)ε(b)

hold. Thus (ρ, η, L) is a surjective triple, i.e., a triple whose cocycle η is surjective.
If we know the triple for a generator L on a braided ∗-bialgebra B, then the

following proposition tells us how to extend it to a triple for LH = F (L).

Theorem 3.7. Let (jst)0≤s≤t be a Lévy process on a braided ∗-bialgebra B in( A
AYD∗

)
,

(
AC∗,Ψ

)
or

( AC∗,Ψ
)

with α-invariant generator L and triple (ρ, η, L).
Furthermore let

(
jH

st

)
0≤s≤t

be the Lévy process on the symmetrization H ∼= B ⊗ A
from Theorem 3.5 with triple

(
ρH, ηH, LH)

. Then we have:
• The pre-Hilbert spaces P and PH belonging to the triples are isometrically

isomorphic, i.e., there exists a linear, bijective map Ť : PH → P such that
⟨a, b⟩P H = ⟨Ť (a), Ť (b)⟩P .

• Ť ◦ ηH(b⊗ a) = εA(a)η(b), and Ť ◦ ηH vanishes on 1B ⊗A.
• ρH is determined by

Ť
(
ρH(1B ⊗ a)ηH(b′

0 ⊗ 1A)
)

= η(α(a⊗ b′
0))

Ť
(
ρH(b⊗ 1A)ηH(b′

0 ⊗ 1A)
)

= η(bb′
0)

for a ∈ A, b ∈ B, b′
0 ∈ B0.

Proof. Using the construction above we know that the triple (ρ, η, L) belonging to
(jst)0≤s≤t is defined on the pre-Hilbert-space P := B0/N0 with inner product

⟨a+N0, b+N0⟩P := ⟨a, b⟩B0 = L(a∗b),
where N0 = {G ∈ B0|⟨G,G⟩B0 = 0}. The representation ρ is given by ρ(a)(b +
N0) := (a · b+N0) and the ρ-cocycle by

η(a) = (a− ε(a) · 1B) +N0.

Analogously, the triple
(
ρH, ηH, LH)

of the process
(
jH

st

)
0≤s≤t

on the (left) symme-
trization H of B, with LH = F (L), is defined on the pre-Hilbert space PH :=
H0/NH

0 with inner product
⟨a+NH

0 , b+NH
0 ⟩P H := ⟨a, b⟩H0 = LH(a∗b), (3.4)

where H0 := ker εH. The representation ρH is defined by ρH(a)(b + NH
0 ) :=

(a · b) +NH
0 and the ρ-cocycle ηH is given by

ηH(b⊗ a) =
(
b⊗ a− εH(b⊗ a) · 1H

)
+NH

0 . (3.5)

First we want to show that the pre-Hilbert spaces P and PH are isometrically
isomorphic, i.e., there exists a linear bijective map T̃ : PH → P with

⟨a, b⟩P H = ⟨T̃ (a), T̃ (b)⟩P
for all a, b ∈ PH. Let b⊗ a, d⊗ c ∈ H0 = ker(εB ⊗ εA), b, d ∈ B and a, c ∈ A. We
have

(L⊗ εA)((b⊗ a)∗(d⊗ c)) = εA(a∗c)L(b∗d),
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since
LH ◦mH ◦ (∗H ⊗ idH)

= (L⊗ ε) ◦ (m⊗m) ◦ (id⊗ α⊗ id⊗ id) ◦ (id⊗ id⊗ τ ⊗ id) ◦ (id⊗∆⊗ id⊗ id)

◦
((

(α⊗ id) ◦ (τ ⊗ id) ◦ (id⊗∆) ◦ (∗ ⊗ ∗)
)
⊗ id⊗ id

)
= (L⊗ ε⊗ ε) ◦ (m⊗ id⊗ id) ◦ (α⊗ α⊗ id⊗ id) ◦ (τ ⊗ id⊗ τ ⊗ id)
◦ (id⊗ ((∆⊗ id) ◦∆)⊗ id⊗ id) ◦ (∗ ⊗ ∗ ⊗ id⊗ id)

= (L⊗ ε) ◦ (m⊗ id) ◦ (α⊗ α⊗ id) ◦ (id⊗ τ ⊗ id⊗ id) ◦ (∆⊗ id⊗ id⊗ id)
◦ (τ ⊗ id⊗ id) ◦ (∗ ⊗ ∗ ⊗ id⊗ id)

= (L⊗ ε) ◦ (α⊗ id) ◦ (id⊗m⊗ id) ◦ (τ ⊗ id⊗ id) ◦ (∗ ⊗ ∗ ⊗ id⊗ id)
= (ε⊗ ε) ◦ (id⊗ id⊗m) ◦ (id⊗ τ ⊗ id) ◦ (τ ⊗ τ) ◦ (∗ ⊗ ∗ ⊗ id⊗ id)
= (ε⊗ L) ◦ (m⊗m) ◦ (id⊗ τ ⊗ id) ◦ (τ ⊗ τ) ◦ (∗ ⊗ ∗ ⊗ id⊗ id),

and thus
LH

(
(b⊗ a)∗(d⊗ c)

)
= LH ◦mH ◦ (∗H ⊗ idH)(b⊗ a⊗ d⊗ c)
= (εA ⊗ L) ◦ (m⊗m) ◦ (id⊗ τ ⊗ id) ◦ (τ ⊗ τ) ◦ (∗ ⊗ ∗ ⊗ id⊗ id)(b⊗ a⊗ d⊗ c)
= εA(a∗c)L(b∗d).

From this it follows that
⟨b⊗ a, d⊗ c⟩H0 = LH((b⊗ a)∗(d⊗ c)) = (L⊗ εA)((b⊗ a)∗(d⊗ c))

= εA(a∗c)L(b∗d) = εA(a∗c)⟨b, d⟩B0 .
(3.6)

That (ρ, η, L) is the triple of the generator L means that
L(b∗d) = ⟨η(b), η(d)⟩P + ε(b∗)L(d) + L(b∗)ε(d).

Thus from equation (3.6) it follows that
εA(a∗c)L(b∗d) = εA(a∗c)⟨η(b), η(d)⟩P

+ εA(a∗)εA(a)εB(b∗)L(d) + εA(a∗)εA(a)L(b∗)εB(d).
We have

ker εH = (ker εB ⊗ (ker εA ⊕ ⟨1A⟩))⊕ ((ker εB ⊗ ⟨1B)⟩)⊗ ker εA

= (ker εB ⊗ ker εB)⊕ (ker εB ⊗ ⟨1A⟩)⊕ (⟨1B⟩ ⊗ ker εA),
and the second and the third addend vanish. Hence we have

⟨η(b), η(d)⟩P = L(b∗d) = ⟨b, d⟩P , (3.7)
and with equations (3.6) and (3.7) it follows that

⟨b⊗ a, d⊗ c⟩H0 = εA(a∗c)L(b∗c)
= εA(a∗c)⟨η(b), η(d)⟩P
= ⟨εA(a)η(b), εA(c)η(d)⟩P .
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Now we define the map

T : H0 → P

b⊗ a 7→ εA(a)η(b).

Since T (b ⊗ a) = 0 for b ⊗ a ∈ NH
0 , we can lift the map to PH and we get the

isometric isomorphism

T̃ : PH → P

ηH 7→ εA(a)η(b),

where the injectivity follows from ker T̃ = {0} and the surjectivity of T̃ from the
surjectivity of η. Since we have

η(1B) = (1B − εB(1B) · 1B) +NH
0 = 0 +NH

0 , (3.8)

it follows that

T̃ ◦ ηH(b⊗ a) (3.5)= T̃
(

(b⊗ a− εH(b⊗ a) · 1H) +NH
0

)
= T̃

(
b⊗ a+NH

0

)
− T̃

(
εB(b)εA(a) · (1B ⊗ 1A) +NH

0

)
= εA(a)η(b)− εB(b)εA(a)εA(1A)η(1B)

(3.8)= εA(a)η(b).

From equation (3.8) it also follows that

T̃ ◦ ηH(1B ⊗ a) = εA(a)η(1B)− εB(1B)εA(a)εA(1A)η(1B) = 0

for all a ∈ A, and thus T̃ ◦ ηH vanishes on 1B ⊗A. For the proof of the last part
let b = b0 + cb ·1B ∈ ker εB⊕C ·1B = B and a = a0 + ca ·1A ∈ ker εA⊕C ·1A = A.
We have

⟨b0 ⊗ a0, b0 ⊗ a0⟩H0

(3.4)= LH
(

(b0 ⊗ a0)∗(b0 ⊗ a0)
)

= εA
(
(a0)∗)

εA(a0)L
(
(b0)∗b0

)
= 0,

and hence we get

ηH(b⊗ a) = ηH(
b0 ⊗ a0

)
+ ηH(

b0 ⊗ ca · 1A
)

+ ηH(
cb · 1B ⊗ a0

)
+ ηH(

cb · 1B + ca · 1A
)

= ηH(
b0 ⊗ ca · 1A

)
.

Therefore it remains to show the assertion for b0 ⊗ ca · 1A ∈ ker εB ⊕ C · 1B. Let
b ∈ B, a ∈ A and b′

0 ∈ ker εB. We have mH(b⊗ a⊗ d⊗ c) = b ·α(a(1)⊗ d)⊗ a(2) · c.
Because of that we get

T̃
(
ρH(b⊗ a)ηH(b′

0 ⊗ 1A)
)

(3.5)= T̃
(
ρH(

b⊗ a)
(
(b′

0 ⊗ 1A − εH(b′
0 ⊗ 1A) · 1H +NH

0
))
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= T̃
(

(b⊗ a) ·H (b′
0 ⊗ 1A)

)
− T̃

(
εH(b′

0 ⊗ 1A)(b⊗ a)
)

= T̃
(
b · α(a(1) ⊗ b′

0)⊗ a(2)
)

= η
(
b · α(a⊗ b′

0)
)
.

Since ρH is an algebra homomorphism, we have

T̃
(
ρH(1B ⊗ a)ηH(b′

0 ⊗ 1A)
)

= η
(
α(a⊗ b′

0)
)

for b⊗ a = 1B ⊗ a,

and

T̃
(
ρH(b⊗ 1A)ηH(b′

0 ⊗ 1A)
)

= η
(
b · α(1B ⊗ b′

0
)

= η(bb′
0) for b⊗ a = b⊗ 1A.

This completes the proof of the theorem for triples constructed in the way described
above. But since the pre-Hilbert spaces belonging to two surjective triples which
come from the same generator L are isometrically isomorphic, this gives rise to an
isometric isomorphism Ť : PH → P with Ť ◦ ηH(b⊗ a) = εA(a)η(b) such that the
assertions hold for arbitrary triples belonging to the same generator. □

4. A construction of braided ∗-spaces

In this section we will construct a large class of braided ∗-spaces and their
symmetrizations.

Let R ∈ Cn×n⊗Cn×n be a universal R-matrix and thus R satisfies the quantum
Yang–Baxter equation (1.2). We suppose that R is of real type I, i.e.,

Rij
kl = Rlk

ji ,

and that R is bi-invertible, i.e., that there exist matrices R−1 and R̃ ∈ Cn×n⊗Cn×n

such that ∑
k,l

(R−1)ij
klR

kl
pq =

∑
k,l

Rij
kl(R

−1)kl
pq = δi

pδ
j
q ,∑

k,j

R̃ij
klR

kq
pj =

∑
k,j

Rij
klR̃

kq
pj = δi

pδ
q
l .

Note that if R is of real type I and bi-invertible, then R−1 and R̃ are also of real
type I.

4.1. The FRT-∗-bialgebra. We denote by A∗(R) the ∗-bialgebra generated by
the elements {ai

j}i,j=1,2,...,n and their adjoints {bk
l }k,l=1,2,...,n, where bk

l := (al
k)∗,

with the relations ∑
p,q

Rik
pqa

p
ja

q
l =

∑
p,q

ak
qa

i
pR

pq
jl ,∑

k,j

Rij
klb

k
qa

p
j =

∑
k,j

ak
l b

i
jR

jp
qk,∑

k

∆(ai
j) = ai

k ⊗ ak
j ,

ε(ai
j) = δi

j .
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The proof that these relations define indeed a ∗-bialgebra is similar to the con-
struction of the FRT-bialgebra in [25]; see also [20].

Lemma 4.1. Let V be a finite dimensional vector space and R ∈ End(V ⊗ V ) a
bi-invertible solution of the quantum Yang–Baxter equation (1.2). Then A∗(R) is
a coquasi-triangular ∗-bialgebra, with the unique involutive r-form

r : A∗(R)⊗A∗(R)→ C

such that

r(ai
j ⊗ ak

l ) = Rik
jl , r(ai

j ⊗ bk
l ) = Rki

lj ,

r(ai
j ⊗ 1) = r(1⊗ ai

j) = δi
j .

The inverse (w.r.t. the convolution) r : A∗(R)⊗A∗(R)→ C is defined by

r(ai
j ⊗ ak

l ) = (R−1)ik
jl , r(ai

j ⊗ bk
l ) = R̃ki

lj ,

r(ai
j ⊗ 1) = r(1⊗ ai

j) = δi
j .

Proof. The proof is similar to that of [14, Ch. 10.1.2, Thm. 7]. See [20] for a more
detailed treatment. □

4.2. The left symmetrization H = V(R) ⊗ A∗(R′). Consider the FRT-∗-bi-
algebra A∗(R′) for R′ := τ(R). From Lemma 4.1 it follows that A∗(R′) is coquasi-
triangular with the r-form r′ : A∗(R′)⊗A∗(R′)→ C, where

r′(ai
j ⊗ ak

l ) = Rki
lj , r′(ai

j ⊗ bk
l ) = Rik

jl ,

r′(bi
j ⊗ ak

l ) = R̃ki
lj , r′(bi

j ⊗ bk
l ) = (R−1)ik

jl ,

and the inverse r′ : A∗(R′)⊗A∗(R′)→ C with

r′(ai
j ⊗ ak

l ) = (R−1)ki
lj , r′(ai

j ⊗ bk
l ) = R̃ik

jl ,

r′(bi
j ⊗ ak

l ) = Rki
lj , r′(bi

j ⊗ bk
l ) = Rik

jl .

We extend r′ to general elements such that equations (1.3) are satisfied. Let
V(R) be the free algebra generated by the elements x1, . . . , xn and their adjoints
v1 = (x1)∗, . . . , vn = (xn)∗. The map γ : V(R)→ A∗(R′)⊗ V(R) with

γ(1) = 1⊗ 1, γ(xi) =
∑

j

bj
i ⊗ xj , γ(vi) =

∑
j

ai
j ⊗ vj

defines a left coaction on V(R). Thus the left action α = (r′ ⊗ id) ◦ (id ⊗ γ)
introduced in Lemma 2.3 is given by

α(ai
j ⊗ xk) =

∑
l

R̃il
jkxl, α(ai

j ⊗ vk) =
∑

l

(R−1)ki
lj v

l,

α(bi
j ⊗ xk) =

∑
l

Ril
jkxl, α(bi

j ⊗ vk) =
∑

l

Rki
lj v

l,

and the braiding Ψ is given by
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Ψ(xi ⊗ xj) =
∑
k,l

Rkl
ijxl ⊗ xk,

Ψ(xi ⊗ vj) =
∑
k,l

Rjk
li v

l ⊗ xk,

Ψ(vi ⊗ xj) =
∑
k,l

R̃il
kjxl ⊗ vk,

Ψ(vi ⊗ vj) =
∑
k,l

(R−1)ji
lkv

l ⊗ vk

on the generators and extended to arbitrary elements by

Ψ(1⊗ u) = u⊗ 1,
Ψ(u⊗ 1) = 1⊗ u,

Ψ ◦ (id⊗m) = (m⊗ id) ◦ (id⊗Ψ) ◦ (Ψ⊗ id),
Ψ ◦ (m⊗ id) = (id⊗m) ◦ (Ψ⊗ id) ◦ (id⊗Ψ),

such that the multiplication is Ψ-invariant. V(R) becomes a bialgebra with comulti-
plication ∆ and counit ε given by

∆(xi) = xi ⊗ 1 + 1⊗ xi, ∆(vi) = vi ⊗ 1 + 1⊗ vi,

ε(1) = 1, ε(xi) = ε(vi) = 0

on the generators and extended such that it is a homomorphism from V(R) to
V(R)⊗V(R), where the latter is equipped with the multiplication (m⊗m) ◦ (id⊗
Ψ⊗ id). Hence V(R) is a braided ∗-bialgebra in the braided category

( A∗(R′)C∗,Ψ
)

and we can give the relations of the (left) symmetrization H = V(R) ⊗ A(R′) of
V(R) (cf. Corollary 3.2). H is the ∗-bialgebra generated by the elements xi ⊗
1A∗(R′), v

i ⊗ 1A∗(R′) = (xi)∗ ⊗ 1A∗(R′),1V(R) ⊗ ai
j ,1V∗(R) ⊗ bj

i = 1V∗(R) ⊗ (ai
j)∗

with the relations ∑
p,q

Rik
pqa

p
ja

q
l =

∑
p,q

ak
qa

i
pR

pq
jl ,∑

k,j

Rij
klb

k
qa

p
j =

∑
k,j

ak
l b

i
jR

jp
qk,

aj
kxi =

∑
p,l

R̃jl
pixla

p
k,

bj
kxi =

∑
p,l

Rpl
kixlb

j
p,

aj
kvi =

∑
p,l

(R−1)ij
lpv

lap
k,

bj
kv

i =
∑
p,l

Rip
lkv

lbj
p,
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∆(ai
j) =

∑
k

ai
k ⊗ ak

j ,

∆(bi
j) =

∑
k

bk
j ⊗ bi

k,

∆(xi) = xi ⊗ 1 +
∑

j

bj
i ⊗ xj ,

∆(vi) = vi ⊗ 1 +
∑

j

ai
j ⊗ vj ,

ε(ai
j) = ε(bi

j) = δi
j ,

ε(xi) = ε(vi) = 0.

4.3. The right symmetrization HR = A∗(R) ⊗ V(R). For the second con-
struction we choose the coquasi-triangular ∗-bialgebra A∗(R) with universal r-form
r : A∗(R)⊗A∗(R)→ C from Lemma 4.1 given by

r(ai
j ⊗ ak

l ) = Rik
jl , r(ai

j ⊗ bk
l ) = Rki

lj ,

r(bi
j ⊗ ak

l ) = R̃ik
jl , r(bi

j ⊗ bk
l ) = (R−1)ki

lj ,

and inverse r : A∗(R)⊗A∗(R)→ C given by

r(ai
j ⊗ ak

l ) = (R−1)ik
jl , r(ai

j ⊗ bk
l ) = R̃ki

lj ,

r(bi
j ⊗ ak

l ) = Rik
jl , r(bi

j ⊗ bk
l ) = Rki

lj .

The map γ : V(R)→ V(R)⊗A∗(R) with

γ(1) = 1⊗ 1, γ(xi) =
∑

j

xj ⊗ aj
i , γ(vi) =

∑
j

vj ⊗ bi
j

defines a right coaction on V(R). Thus α = (id ⊗ r) ◦ (γ ⊗ id) gives us a right
action α : V(R)⊗A∗(R)→ V(R) as an analog of Lemma 2.3 which is given on the
generators by

α(xi ⊗ ak
j ) = Rlk

ijxl, α(xi ⊗ bk
j ) = Rkl

jixl,

α(vi ⊗ ak
j ) = R̃ik

lj v
l, α(vi ⊗ bk

j ) = (R−1)ki
jl v

l.

Furthermore, the braiding is defined by

Ψ(xi ⊗ xj) =
∑

l

Rlk
ijxk ⊗ xl,

Ψ(xi ⊗ vj) =
∑

l

Rjl
kiv

k ⊗ xl,

Ψ(vi ⊗ xj) =
∑

l

R̃ik
lj xk ⊗ vl,

Ψ(vi ⊗ vj) =
∑

k

(R−1)ji
klv

k ⊗ vl.
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Therefore we can define a braided category ((CA∗(R))∗,Ψ) whose objects are right
A∗(R)-comodules in the same way as we constructed (AC∗,Ψ) in Subsection 2.2,
and V(R) is a braided ∗-bialgebra in the category ((CA∗(R))∗,Ψ). Using a version
of Corollary 3.2 for this category, we get the right symmetrization HR = A∗(R)⊗
V(R). It is the ∗-bialgebra generated by the elements 1A∗(R)⊗xi,1A∗(R)⊗vi, ai

j⊗
1V(R), b

i
j ⊗ 1V(R) with the relations∑

p,q

Rik
pqa

p
ja

q
l =

∑
p,q

ak
qa

i
pR

pq
jl ,∑

k,j

Rij
klb

k
qa

p
j =

∑
k,j

aj
l b

i
kR

kp
qj ,

xia
j
k =

∑
p,l

Rlp
ika

j
pxl,

xib
j
k =

∑
p,l

Rjl
pixlb

j
p,

viaj
k =

∑
p,l

R̃ip
lkv

lap
k,

vibj
k =

∑
p,l

(R−1)ip
lkv

lbj
p,

∆(ai
j) =

∑
k

ai
k ⊗ ak

j ,

∆(bi
j) =

∑
k

bk
j ⊗ bi

k,

∆(xi) =
∑

j

xj ⊗ ai
j + 1⊗ xi,

∆(vi) =
∑

j

vj ⊗ bj
i + 1⊗ vj ,

ε(ai
j) = ε(bi

j) = δi
j ,

ε(xi) = ε(vi) = 0.

5. Realization of quantum Lévy processes on braided ∗-bialgebras

In this section we will show that there always exists a Lévy process on the
braided ∗-spaces constructed in the previous section that can be considered as a
standard Brownian motion on these spaces.

Definition 5.1 ([27, Section 5.1]). Let B be a braided bialgebra. A linear func-
tional ϕ : B → C is called quadratic (or Gaussian) if it satisfies

ϕ(abc) = 0

for all a, b, c ∈ ker εB. A Lévy process whose generator is quadratic is called
Brownian motion.
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For the rest of this section R will denote a fixed bi-invertible R-matrix of real
type I, and V(R) the associated free braided ∗-space from the previous section. For
explicit calculations we will use the basis B consisting of the words in the generators
x1, . . . , xn, v

1, . . . , vn. Let L : V(R)→ C be the functional defined by L(xiv
j) = δj

i

on basis elements of the form xiv
j , and zero on all other basis elements.

Proposition 5.2. The functional L is quadratic, Ψ-invariant, hermitian, and con-
ditionally positive (i.e., positive on ker εB).

Proof. For the Ψ-invariance we have to show that (id⊗ L) ◦Ψ = Ψ ◦ (L⊗ id). We
have

(id⊗ L) ◦Ψ(xiv
j ⊗ xk) =

∑
r,s,p,q

R̃jq
pkR

rs
iq xs ⊗ L(xrv

p) =
∑

s

δj
i δ

s
kxs

= Ψ ◦ (L⊗ id)(xiv
j ⊗ xk).

Similarly, we get

(id⊗ L) ◦Ψ(xiv
j ⊗ vk) =

∑
r,s,p,q

(R−1)kj
pqR

ps
ri v

r ⊗ L(xsv
q) =

∑
r

δk
r δ

j
i v

r

= Ψ ◦ (L⊗ id)(xiv
j ⊗ vk).

A generator L is quadratic if and only if the associated representation is of the form
ρ = ε(·)id. This is the case, since we have ρ(xi) = ρ(vi) = 0 (see below). That L
is hermitian and conditionally positive are straightforward calculations. □

We can now carry out the construction described in [27, Ch. 2] to obtain quantum
stochastic differential equations for the symmetrization of the process (jst)0≤s≤t

associated to the generator L. Let

N := {b ∈ V(R) | L
(
(u− ε(u)1)∗(u− ε(u)1)

)
= 0}

and P := V(R)/N . P is a Hilbert space with the inner product induced by ⟨u, v⟩ =
L

(
u− ε(u)1)∗(v − ε(v)1)

)
. Furthermore, (η(vi))i∈{1,...,n}, with

η : V(R)→ P

b 7→ b+N ,

forms an orthonormal basis in P , and we have

η(y) =
{
vi +N if y = vi,

0 otherwise.

Therefore we have P ∼= Cn. Since η is a ρ-cocycle, we have

ρ(xi)η(vj) = η(xiv
j)− η(xi)ε(vj) = 0,

ρ(vi)η(vj) = η(vivj)− η(vi)ε(vj) = 0,

and thus ρ(xi) = ρ(vi) = 0. One verifies that L is α-invariant for the right ac-
tion α = (id ⊗ r) ◦ (γ ⊗ id) from Lemma 2.3, i.e., L(α(u ⊗ a)) = εA(a)L(u) for
all a ∈ A(R), u ∈ V(R). Therefore we can use Theorem 3.7 to get the triple
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(ρHR , ηHR , LHR) on the right symmetrization HR. The pre-Hilbert space is given
by PHR = (A(R)⊗ V(R))/NHR with

NHR :=
{
a⊗ b | LHR

(
a⊗ b− δHR

(a⊗ b)1HR

)∗(a⊗ b− δHR
(a⊗ b)1HR

) = 0
}
.

The ρ-cocycle ηHR : HR → PHR is given by

ηHR(1⊗ y) =
{
η(1⊗ y) = vi +N for y = vi,

0 otherwise,
(5.1)

and it follows that for the ∗-representation ρHR we have

ρHR(1A ⊗ b)ηHR(1A ⊗ vi) =
{
vi +N for b = 1B (the empty word),
0 otherwise,

and

ρHR(a⊗ 1B)ηHR(1A ⊗ vi) =
{
R̃ki

pjη
HR(1A ⊗ vp) for a = ai

j ,

(R−1)ik
jpη

HR(1A ⊗ vp) for a = bi
j .

The generator L is given by

LHR(a⊗ b) =
{
δijδkl for a = ai

j or bi
j and b = xkv

l,

0 otherwise.
(5.2)

Using the theory of Schürmann [27, Ch. 2] we get the following theorem.

Theorem 5.3. Let jH
st be the Lévy process in HR with triple (ηHR , ρHR , LHR)

given in equations (5.1)–(5.2). Then a realization of the right symmetrization jH
st

on the Fock space Γ(L2(R+,Cn)) is given by the unique solution of the quantum
stochastic differential equations

dXi =
∑

j

dXj · dΛ
(

(R̃kj
li − δ

j
i δ

k
l )1≤k,l≤n

)
+ dAi,

dX∗
i =

∑
j

dX∗
j · dΛ

((
(R−1)jk

ip − δ
j
i δ

k
p

)
1≤k,p≤n

)
+ dA∗

i ,

dAi
j =

∑
k

Ai
k · dΛ

(
(R̃lk

pj − δk
j δ

l
p)1≤l,p≤n

)
,

dBi
j =

∑
k

Ai
k · dΛ

((
(R−1)il

kp − δi
kδ

l
p

)
1≤l,p≤n

)
,

where

dXi := djHR
st (1⊗ xi),

dX∗
i := djHR

st (1⊗ vi),

dAi
j := djHR

st (ai
j ⊗ 1),

dBi
j := djHR

st (bi
j ⊗ 1).
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6. Examples

6.1. The one-dimensional R-matrix R = (q). Let us first consider the one-
dimensional R-matrix R1 = (q). For q ∈ R, q ̸= 0, this is a bi-invertible R-matrix
of real type I and defines therefore a braided ∗-space V(q). As an algebra, V(q) is
the free algebra generated by x and x∗ = v. We will use the words in x and v as a
basis for V(q). The braiding is given by

Ψ(x⊗ x) = qx⊗ x, Ψ(x⊗ v) = qv ⊗ x,
Ψ(v ⊗ x) = q−1x⊗ v, Ψ(v ⊗ v) = q−1v ⊗ v.

To be a generator of a Brownian motion a linear functional L : V(q) → C has to
be Ψ-invariant, i.e., it has to satisfy

L(x)x = Ψ ◦ (L⊗ id)(x⊗ x) = (id⊗ L) ◦Ψ(x⊗ x) = qL(x)x,
L(v)x = Ψ ◦ (L⊗ id)(v ⊗ x) = (id⊗ L) ◦Ψ(v ⊗ x) = qL(v)x,
L(xx)x = Ψ ◦ (L⊗ id)(xx⊗ x) = (id⊗ L) ◦Ψ(xx⊗ x) = q2L(xx)x,
L(xv)x = Ψ ◦ (L⊗ id)(xv ⊗ x) = (id⊗ L) ◦Ψ(xv ⊗ x) = L(xv)x,
L(vx)x = Ψ ◦ (L⊗ id)(vx⊗ x) = (id⊗ L) ◦Ψ(vx⊗ x) = qL(vx)x,
L(vv)x = Ψ ◦ (L⊗ id)(vv ⊗ x) = (id⊗ L) ◦Ψ(vv ⊗ x) = q−2L(vv)x,

and a similar set of equations for v. Thus, for q2 ̸= 1, a Ψ-invariant quadratic
functional can have non-zero values only on xv and vx. A quadratic functional on
V(q) is conditionally positive if and only if the matrix

L̂ :=
(
L(xv) L(xx)
L(vv) L(vx)

)
is positive semi-definite. It is also hermitian if we have L(v) = L(x). Thus we get
the following classification for the quadratic generators on V(q).

Theorem 6.1. A quadratic functional L : V(q) → C is a generator of a Lévy
process on V(q) if and only if

(1) for q = 1: L̂ is positive semi-definite and L(v) = L(x);
(2) for q = −1: L̂ is positive semi-definite and L(x) = L(v) = 0;
(3) for q2 ̸= 1: L(xv), L(vx) ≥ 0 and L vanishes on all other basis elements.

The symmetrization of this braided ∗-space gives for A(q) the free commutative
algebra with group-like generator a and its adjoint b. H is generated by a, x and
their adjoints b = a∗ and v = x∗. The algebraic relations are

ab = ba, xa = qax, bx = qxb,

and the coalgebraic relations are

∆(a) = a⊗ a, ∆(x) = x⊗ a+ 1⊗ x.

Let L now be the generator with L(xv) = 1 and L(u) = 0 on all other basis
elements. The construction of the triple gives the pre-Hilbert space DHR = C, the
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ρ-cocycle

ηHR(m) =
{

0 for m ∈ {x, a, b},
1 for m = v,

and the representation

ρHR(m) =
{
q−1 for m ∈ {a, b},
0 for m ∈ {x, v}.

Thus we get the stochastic differential equations
dX = X dΛ(q−1 − 1) + dA(1),
dV = V dΛ(q−1 − 1) + dA∗(1),
dA = AdΛ(q−1 − 1),
dB = B dΛ(q−1 − 1),

for the processes X(t) = jt(x), V (t) = jt(v), A(t) = jt(a), B(t) = jt(b). The
solution of this system of quantum stochastic differential equations is the quantum
Azéma martingale (see [23, 26]).

6.2. The sl2-R-matrix. Let R2 be the R-matrix of the standard two-dimensional
quantum plane, i.e.,

R2 =


q2 0 0 0
0 q q2 − 1 0
0 0 q 0
0 0 0 q2


(cf. [19, Example 10.2.2]). Then tR2 with q, t ∈ R, q, t ̸= 0 is bi-invertible and
of real type I, and we can therefore define a braided ∗-space V(tR2) for it. As an
algebra, this is the free algebra generated by x1, x2 and their adjoints x∗

1 = v1,
x∗

2 = v2. We will use the words in these four elements as a basis of V(tR2). It
turns out that the Ψ-invariance restricts very much the possible generators.

Proposition 6.2. Let L be a quadratic functional on V(tR2), q, t ̸= 0. Then L is
characterized by

A = (Aij) = (L(xixj)), B = (B j
i ) = (L(xiv

j)),
C = (Ci

j ) = (L(vixj)), D = (Dij) = (L(vivj)),
a = (ai) = (L(xi)), b = (bi) = (L(vi)).

The functional L is Ψ-invariant if and only if
(1) for q = 1 and

(a) t = 1: all functionals are Ψ-invariant;
(b) t = −1: a = b = 0 and A, B, C and D are arbitrary;
(c) t2 ̸= 1: A = D = 0 and a = b = 0 and B and C are arbitrary;

(2) for q = −1 and
(a) t2 = 1: A, B, C and D are diagonal and a, b vanish;
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(b) t2 ̸= 1: B, C are diagonal and A, D, a, b vanish;
(3) for q2 ̸= 1 and

(a) t2q3 = 1: qA12 +A21 = 0, B 1
1 = B 2

2 , C1
1 = q2C2

2 , D12 + qD21 = 0
and all other coefficients vanish;

(b) t2q3 ̸= 1: B 1
1 = B 2

2 , C1
1 = q2C2

2 and all other coefficients vanish.

Proof. Let L be an arbitrary quadratic functional. L is Ψ-invariant if and only if
the following equations are satisfied:

Aijδ
l
k =

∑
n1,n2,n3

t2An3n1R
n3 l

i n2
Rn1 n2

j k,

Aijδ
k
l =

∑
n1,n2,n3

t2An3n1R
n2 n3

l iR
k n1

n2 j ,

B j
i δ

l
k =

∑
n1,n2,n3

B n1
n3

Rn3 l
i n2

R̃j n2
n1 k,

B j
i δ

k
l =

∑
n1,n2,n3

B n1
n3

Rn2 n3
l i(R

−1)k j
n2 n1

,

Ci
j δ

l
k =

∑
n1,n2,n3

Cn3
n1
R̃i l

n3 n2
Rn1 n2

j k,

Ci
j δ

k
l =

∑
n1,n2,n3

Cn3
n1

(R−1)n2 i
l n3

Rk n1
n2 j ,

Dijδl
k =

∑
n1,n2,n3

t−2Dn3n1R̃i l
n3 n2

R̃j n2
n1 k,

Dijδk
l =

∑
n1,n2,n3

t−2Dn3n1(R−1)n2 i
l n3

(R−1)k j
n2 n1

,

aiδ
k
j =

∑
n1

tRn1 k
i jan1 , aiδ

j
k =

∑
n1

tRj n1
k ian1 ,

biδk
j =

∑
n1

t−1R̃i k
n1 jb

n1 biδj
k =

∑
n1

t−1(R−1)j i
k n1

bn1

for all i, j, k, l = 1, . . . , n. These equations follow directly from the invariance
condition. For the first equation, e.g., we apply Ψ ◦ (L ⊗ id) = (id ⊗ L) ◦ Ψ
to xixj ⊗ xk. Solving this system of linear equations (using, e.g., a computer
program for symbolic computation like Maple) one arrives at the results listed in
the proposition. □

The functional L is conditionally positive semi-definite if and only if the matrix

L̂ :=
(
L

(
xiv

j xixj

vivj vixj

))
=

(
B A
D C

)
is positive semi-definite. For L to be hermitian, we need to impose furthermore
ai = L(xi) = L(vi) = bi, for i = 1, . . . , n. This leads to the following classification.
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Theorem 6.3. Suppose q2 ̸= 1.
(a) If t2q3 = 1, then all Ψ-invariant generators on V(tR2) are of the form

L̂ =


b 0 0 −qa
0 b a 0
0 ā q2c 0
−qā 0 0 c

 ,

and L(xi) = L(vi) = 0 for i = 1, . . . , n, where b, c ≥ 0, bc ≥ q2|a|2, and
bc ≥ q−2|a|2.

(b) If t2q3 ̸= 1, then all Ψ-invariant generators on V(tR2) are of the form

L̂ =


b 0 0 0
0 b 0 0
0 0 q2c 0
0 0 0 c

 ,

and L(xi) = L(vi) = 0 for i = 1, . . . , n, where b, c ≥ 0.

Proof. (a) Proposition 6.2 (3) (a) implies that a Ψ-invariant functional
L : V(tR2)→ C

is of the form

L̂ =


b 0 0 −qa
0 b a 0
0 d q2c 0
−qd 0 0 c

 ,

and L(xi) = L(vi) = 0, where a = L(x2x1), b = L(x1v
1), c = L(v2x2) and

d = L(v1x2). Such an invariant functional L is a generator if and only if this matrix

is positive semi-definite. This is the case if and only if the matrices
(

b −qa
−qd c

)
and

(
b a
d q2c

)
are positive semi-definite, which leads immediately to the conditions

given in the theorem.
(b) Proposition 6.2 (3) (b) shows us that if t2q3 ̸= 1, then L is Ψ-invariant if and

only if we also have a = d = 0. □

6.3. The sl3-R-matrix. Let now

R3 =



q2 0 0 0 0 0 0 0 0
0 q 0 q2 − 1 0 0 0 0 0
0 0 q 0 0 0 q2 − 1 0 0
0 0 0 q 0 0 0 0 0
0 0 0 0 q2 0 0 0 0
0 0 0 0 0 q 0 q2 − 1 0
0 0 0 0 0 0 q 0 0
0 0 0 0 0 0 0 q 0
0 0 0 0 0 0 0 0 q2


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be the sl3-R-matrix. We get a similar classification for the generators on V(tR3)
as in the previous subsection, but there are no additional generators for the special
case t2q3 = 1 (as in Proposition 6.2).

Theorem 6.4. Suppose q2 ̸= 1. Then all Ψ-invariant generators on V(tR3) are
of the form

L̂ =


b 0 0 0 0 0
0 b 0 0 0 0
0 0 b 0 0 0
0 0 0 q4c 0 0
0 0 0 0 q2c 0
0 0 0 0 0 c


and L(xi) = L(vi) = 0 for i = 1, . . . , n, where b, c ≥ 0.

Proof. We first determine all invariant quadratic functionals and then we check
positivity, as in Proposition 6.2 and Theorem 6.3. □

6.4. The braided quantum SU(2) groups SUq(2), q ∈ C\{0}. Finally, let us
treat the braided Hopf-∗-algebra underlying the braided compact quantum groups
introduced and studied by Kasprzak, Meyer, Roy, and Woronowicz [12]. The braid-
ing is not actually defined in [12], instead the authors define a monoidal category
of C∗-algebras. Here we show how this example fits into the framework of braided
∗-bialgebras that we used in this paper.

Let CZ ∼= Pol(T) be the group algebra of Z. We will write [z] for the canonical
basis element of CZ associated to an integer z ∈ Z. Recall that CZ is a Hopf-∗-
algebra with the following operations: for z, z1, z2 ∈ Z, c ∈ C, we set

mCZ([z1]⊗ [z2]) = [z1 + z2],
1(c) = c[0],

∆([z]) = [z]⊗ [z],
ε([z]) = 1,
S([z]) = [−z] = [z]∗,

and extend mCZ,1,∆, δ as algebra homomorphisms, S as an algebra anti-homo-
morphism, and ∗ as an anti-linear algebra anti-homomorphism.

Let B be a CZ-graded ∗-bialgebra. In particular, we have deg(vw) = deg(v) +
deg(w) and deg(v∗) = −deg(v). Let ζ = q

q̄ for 0 < |q| < 1.
We can use the grading to define an action of CZ.
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Lemma 6.5.
ϑ̃ : CZ⊗ B → B,

[z]⊗ v 7→ ζ−z deg(v) · v
defines a left action and

ρ̃ : B → CZ⊗ B,
v 7→ [deg(v)]⊗ v

defines a left coaction.

Lemma 6.6. ϑ̃ and ρ̃ satisfy the Yetter–Drinfeld condition, i.e.,

(mCZ ⊗ ϑ̃) ◦ (id⊗ τ ⊗ id) ◦ (∆̃⊗ ρ̃)

= (mCZ ⊗ id) ◦ (id⊗ τ) ◦ (ρ̃⊗ id) ◦ (ϑ̃⊗ id) ◦ (id⊗ τ) ◦ (∆̃⊗ id).

Proof. For the left hand side we get
(mCZ ⊗ ϑ̃) ◦ (id⊗ τ ⊗ id) ◦ (∆̃⊗ ρ̃)([z]⊗ v)

= (mCZ ⊗ ϑ̃) ◦ (id⊗ τ ⊗ id)([z]⊗ [z]⊗ deg(v)⊗ v)
= (mCZ ⊗ ϑ̃)([z]⊗ [deg(v)]⊗ [z]⊗ v)

= ζ−z·deg(v)([z + deg(v)])⊗ v,
and the right hand side can be reduced to the same expression,

(mCZ ⊗ id) ◦ (id⊗ τ) ◦ (ρ̃⊗ id) ◦ (ϑ̃⊗ id) ◦ (id⊗ τ) ◦ (∆̃⊗ id)([z]⊗ v)
= (mCZ ⊗ id) ◦ (id⊗ τ) ◦ (ρ̃⊗ id) ◦ (ϑ̃⊗ id) ◦ (id⊗ τ)([z]⊗ [z]⊗ v)
= (mCZ ⊗ id) ◦ (id⊗ τ) ◦ (ρ̃⊗ id) ◦ (ϑ̃⊗ id)([z]⊗ v ⊗ [z])
= (mCZ ⊗ id) ◦ (id⊗ τ) ◦ (ρ̃⊗ id)(ζ−z·deg v · v ⊗ [z])
= (mCZ ⊗ id) ◦ (id⊗ τ)(ζ−z·deg v[deg(v)]⊗ v ⊗ [z])
= (mCZ ⊗ id)(ζ−z·deg v · [deg(v)]⊗ [z]⊗ v)
= ζ−z·deg v · (deg(v) + z)⊗ v. □

Lemma 6.7. The following equations hold:
∗ ◦ ϑ̃ = ϑ̃ ◦ (∗ ⊗ ∗) ◦ (S ⊗ id), ρ̃ ◦ ∗ = (∗ ⊗ ∗) ◦ ρ̃.

Proof. For the first equation:

∗ ◦ ϑ̃([z]⊗ v) = (ζ−z deg(v) · v)∗ = ζ−z deg(v) · v = ζ
−z deg(v) · v∗

= ζz·deg(v) · v∗ = ζ−z·deg(v∗) · v∗ = ϑ̃([z]⊗ v∗)
= ϑ̃ ◦ (∗ ⊗ ∗)([−z]⊗ v) = ϑ̃ ◦ (∗ ⊗ ∗)(S ⊗ id)([z]⊗ v).

For the second equation:
ρ̃ ◦ ∗(v) = ρ̃(v∗) = [deg(v∗)]⊗ v∗ = [−deg(v)]⊗ v∗

= [deg(v)]∗ ⊗ v∗ = (∗ ⊗ ∗)([deg(v)]⊗ v) = (∗ ⊗ ∗) ◦ ρ̃(v). □
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Corollary 6.8. (B, ϑ̃, ρ̃) is an involutive Yetter–Drinfeld module and thus an object
in the category CZ

CZYD∗.

The category CZ
CZYD∗ is braided with the braiding Ψ given by

Ψ(v ⊗ w) = (ϑ̃⊗ id) ◦ (id⊗ τ) ◦ (ρ̃⊗ id)(v ⊗ w) = ζ− deg(v) deg(w) · w ⊗ v.
Thus the multiplication on the tensor product is given by

mB⊗B(v1 ⊗ v2 ⊗ w1 ⊗ w2) = (m⊗m) ◦ (id⊗Ψ⊗ id)(v1 ⊗ v2 ⊗ w1 ⊗ w2)

= ζ− deg(v2) deg(w1)v1w1 ⊗ v2w2,

and the involution is given by
∗B⊗B(v ⊗ w) = Ψ ◦ (∗ ⊗ ∗) ◦ τ(v ⊗ w) = ζ− deg(w∗) deg(v∗)v∗ ⊗ w∗

= ζ− deg(w) deg(v)v∗ ⊗ w∗.

Let Ã := C⟨α, α∗, γ, γ∗⟩ be equipped with a CZ-graduation determined by
deg(α) = deg(α∗) = 0, deg(γ) = 1, deg(γ∗) = −1.

Lemma 6.9. ∆̃ : Ã → Ã ⊗ Ã given by
∆̃(α) = α⊗ α− qγ∗ ⊗ γ, ∆̃(γ) = γ ⊗ α+ α∗ ⊗ γ

is coassociative, and ε̃ : Ã → C with ε̃(α) = 1 and ε̃(γ) = 0 satisfies the counit
axiom.

Proof. First we show that (id⊗ ∆̃) ◦ ∆̃(α) = (∆̃⊗ id) ◦ ∆̃(α). We have

(id⊗ ∆̃) ◦ ∆̃(α) = (id⊗ ∆̃)(α⊗ α− qγ∗ ⊗ γ)

= α⊗ ∆̃(α)− qγ∗ ⊗ ∆̃(γ)
= α⊗ (α⊗ α− qγ∗ ⊗ γ)− qγ∗ ⊗ (γ ⊗ α+ α∗ ⊗ γ)
= α⊗ α⊗ α− qα⊗ γ∗ ⊗ γ − qγ∗ ⊗ γ ⊗ α+ qγ∗ ⊗ α∗ ⊗ γ
= α⊗ α⊗ α− qγ∗ ⊗ γ ⊗ α− q(γ∗ ⊗ α∗ + α⊗ γ∗)⊗ γ
= (α⊗ α− qγ∗ ⊗ γ)⊗ α− q(γ ⊗ α+ α∗ ⊗ γ)∗ ⊗ γ

= ∆̃(α)⊗ α− q∆̃(γ)∗ ⊗ γ

= (∆̃⊗ id)(α⊗ α− qγ∗ ⊗ γ) = (∆̃⊗ id) ◦ ∆̃(α).

Similarly, we can check that (id⊗ ∆̃) ◦ ∆̃(γ) = (∆̃⊗ id) ◦ ∆̃(γ).
The counit property for α is verified as follows:

(id⊗ ε̃) ◦ ∆̃(α) = (id⊗ ε̃)(α⊗ α− qγ∗ ⊗ γ)
= α⊗ δ̃(α)− qγ∗ ⊗ ε̃(γ)
= α

= ε̃(α)⊗ α− qε̃(γ∗)⊗ γ

= (ε̃⊗ id)(α⊗ α− qγ∗ ⊗ γ) = (ε̃⊗ id) ◦ ∆̃(α).
The counit property for γ can be verified in the same way. □
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It is also straightforward to check that ∆̃ preserves the grading.
Let I be the two-sided ∗-ideal in Ã generated by the relations

I1 := α∗α+ γ∗γ − 1,
I2 := αα∗ + |q|2γ∗γ − 1,
I3 := γγ∗ − γ∗γ,

I4 := αγ − q̄γα,
I5 := αγ∗ − qγ∗α,

and A := Ã/I the quotient algebra.

Lemma 6.10. I is a coideal in Ã.

Proof. One checks that

∆̃(I) ⊆ Ã ⊗ I + I ⊗ Ã,
ε̃(I) = {0}. □

Since I is a coideal in Ã and ∆̃ is coassociative, there exists a unique bialgebra-
structure ∆, δ on the quotient algebra A = Ã/Ĩ. We have deg I = 0, so A
inherits a grading, and we can lift the action and the coaction on A to an action
ϑ : CZ⊗A → A and a coaction ρ : A → CZ⊗A on A. It follows that (A, ϑ, ρ) is
again an object in CZ

CZYD∗. With these structures, A = Pol(SUq(2)) is the braided
Hopf-∗-algebra of the braided compact quantum groups SUq(2), 0 < |q| < 1, defined
and studied in [12].

Schürmann and Skeide described all generators on Pol(SUq(2)) for q ∈ R\{0},
i.e., in the unbraided case [28]. We extend the classification of the quadratic gen-
erators in [28, Corollary 3.3] to the braided SU(2) quantum groups.

Proposition 6.11. Let H be a Hilbert space. For any vector v ∈ H and real
number λ there exists a unique triple (ε, η, L) such that

η(γ) = η(γ∗) = 0,
η(α) = −η(α∗) = v,

L(γ) = L(γ∗) = 0,

L(α) = iλ− ∥v∥
2

2 ,

L(α∗) = −iλ− ∥v∥
2

2 .

Two such triples determined by pairs (v, λ) and (v′, λ′) have the same generator L
if and only if ∥v∥ = ∥v′∥ and λ = λ′. Furthermore, all quadratic generators on
Pol(SUq(2)) arise in this way.

Proof. Similar to [28]. □
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It turns out that all quadratic generators on Pol(SUq(2)) are invariant and there-
fore define Brownian motions. In fact, as in [28], ε, η, and L vanish on γ and γ∗,
which implies that the triple factorizes through the quotient map

A → A/Jγ
∼= CZ ∼= Pol(T),

where Jγ denotes the ∗-ideal generated by γ. This means that the Brownian
motions on SUq(2) are induced from Brownian motions of the undeformed subgroup
T ⊆ SUq(2).
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