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THE AFFINE LOG-ALEKSANDROV-FENCHEL INEQUALITY

CHANG-JIAN ZHAO

ABSTRACT. We establish a new affine log-Aleksandrov—Fenchel inequality for
mixed affine quermassintegrals by introducing new concepts of affine and mul-
tiple affine measures, and using the newly established Aleksandrov—Fenchel
inequality for multiple mixed affine quermassintegrals. Our new inequality
yields as special cases the classical Aleksandrov—Fenchel inequality and the
Lp-affine log-Aleksandrov—Fenchel inequality. The affine log-Minkowski and
log-Aleksandrov—Fenchel inequalities are also derived.

1. INTRODUCTION
In 2016, Stancu [16] established the following logarithmic Minkowski inequality:

The log-Minkowski inequality. If K and L are convex bodies in R™ containing
the origin in their interior, then

[ ()i > b (1), n

with equality if and only if K and L are homothetic, where dvy is the mized volume

measure, dvy = %thS(L,u), and dv; = mdvl is its normalization, and

Vi(L, K) denotes the usual mized volume of L and K, defined by (see [2])
1
Vl(L,K):—/ hix dS(L,u).
n Jgn-1
The functions hx and hy are support functions of the convex bodies K and L,
respectively, and dS(L,u) is the surface area measure of L. If K is a nonempty
closed (not necessarily bounded) convex set in R™, then (see [19])

hg(z) =max{x-y:y € K},

for x € R™, defines the support function hi(x) of K, and defines the support
function hi (u) on the sphere by restriction to unit vectors u and it is simply written
as hg.
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Associated with the convex bodies K1,...,K,_1 in R", there exists a unique
positive Borel measure on S~ !, S(K,..., K, _1;-), called the mizved area measure
of Kq,...,K,_1, with the property that for any convex body K, one has the
integral representation for the mixed volume (see e.g. [2, p. 354]):

1
V(Kh,Kn):*/ hKndS(Kh...,Kn,l;U).
n Jgn-1
The integration is with respect to the mixed area measure S(K,...,K,_1;:) on
S"~1. The mixed area measure S(Kj, ..., K,_1;-) is symmetric in its (first n — 1)

arguments. The log-Minkowski inequality is a special case of the following log-
Aleksandrov—Fenchel inequality established by Zhao [20].

The log-Aleksandrov—Fenchel inequality. If L+,..., L,, K, are convex bodies
in R™ containing the origin in their interior and 1 < r < n, then

hy _ L V(Liy oy Lis Loty ooy Lp)Y™
In(—=)dV(Ly,...,L,) >1 i= ,
/S n( Kn> (L1, sn) 2 n( V(Ly,...,Ln-1,Kn)

(1.2)
where dV (L1, ..., Ly) denotes the multiple mized volume probability measure of the
convez bodies Ly, ..., Ly, defined by

_ 1
dV(Ly,...,Ly) = ——————h(L,,u)dS(Ly,...,Ly_1;u).
(L1, L) nV(Ly,....Ly) ( u) dS(Lq 15 u)

Lutwak [9] proposed to define the affine quermassintegrals for a convex body K,
Oy(K),P1(K),...,P2,(K), by taking ®o(K) := V(K), ®,(K) := w, and, for 0 <
J<mn,

—1/n

®,_;(K) :=w, l/GW_ (VO]JOS{Q) h dﬂj(f)] :

where G, ; denotes the Grassmann manifold of j-dimensional subspaces in R",
p; denotes the gauge Haar measure on G,, ;, vol; (K1) denotes the j-dimensional
volume of the positive projection of K on j-dimensional subspace £ C R™ and w;
denotes the volume of a j-dimensional ball. The mized affine quermassintegrals of
J convex bodies K1, ..., K, denoted by ®,_;(K; ... Kj), is defined by (see [24])

By (K. K;) im o VGW (volj(K1 . ..Kj§)>—n dyj(,g)] ~1/n

Wy
for 0 < j < n, where vol; (K ... K;|¢) stands for vol; (K¢, ..., K;|€), the j-dimen-
sional mixed volume of K1|¢, ..., K;|, and by letting
én(Kl . KJ) = Wp
and
Oo(Ky...K;) =V (Ky,...,K,).
Recently, the log-Minkowski inequality and the log-Aleksandrov—Fenchel in-

equality and its dual form have attracted extensive attention and research: see
references [T}, B, [, [6], [7, 8] T2, T3] T4, 18, 17, 19, 20, 21, 22], 23]. In this paper,
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we generalize the log-Minkowski inequality and the log-Aleksandrov—Fenchel
inequality to the mixed affine quermassintegrals. The following affine log-
Aleksandrov—Fenchel inequality is established by introducing the concepts of affine
and multiple mixed affine measures and using the newly established Aleksandrov—
Fenchel inequality for multiple mixed affine quermassintegrals.

Theorem 1.1 (The affine log-Aleksandrov-Fenchel inequality). If Ki,...,K; are
convex bodies containing the origin, L; is a convex body containing the origin in
its interior, 0 < 3 < n, and 0 <r < j, then

vol; (K ... Kj|€) -
: j - o " (K,...K,;L;
/Gn,j n<V01j(K1KJ1LJ|£) d n—]( 1 j ])

r (K . KT
> In (Hl—l Oy (Ko Kl - K) ) (1.3)
(I)nfj(Kl ...Kjfle)

where d®,,_; (K1 ... K;L;) denotes a new multiple mized affine probability measure
of Ki1,...,K;,L;, defined by (see Section 3)
——n 1 o
d®, _;(Ky...K;Lj) = —; d@nfj(Kl...Kij), (1.4)
K, ...K;L))

n—j(
where dp,,_; (K1...K;Lj) denotes the multiple mized affine measure, defined by
dp, " (Ki...K;Lj)

_ VOIJ(KlKJ|§) <an01j(K1Kj1LJ|§
VOlj(Kl . Kj—leK)

)>_ndug‘(€)7

and ®,_; (K1 ... K;Lj) is the multiple affine quermassintegral of K1,...,Kj, Lj,
defined by (see [24])

W

n

®," (K ... K;Lj)

n—j
_ vol; (K ... Kj[€) (wnvolj(Kl...Kj_le|§)>—" |
= L"’j Volj(Kl...KjflLﬂf) wj duj(ﬁ)

When j = n and K; = Lj, (1.3) becomes the following classical Aleksandrov—
Fenchel inequality for convex bodies.

Corollary 1.2 (The Aleksandrov—Fenchel inequality). If Ki,..., K, are convez
bodies in R™ containing the origin, 1 <i <r, and 0 <r <n, then

V(K. Kn) > [[VE, . K Ky, K) T
i=1

(see e.g. [19]).

A special case of (1.3) is the following affine log-Minkowski inequality for affine
quermassintegrals.
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Corollary 1.3 (The affine log-Minkowski inequality). If K is a convex body in R™
containing the origin, L is a convex body in R™ containing the origin in its interior,
and 0 < j < n, then

vol-(L...LKf)) _ 1 <<I>n(K)>

In | ——""""— 22 )dd " (L,K)> ~In | =22,

[ (M ) et = s (G40

with equality if and only if L and K are homothetic. Here vol;(L ... LK|) denotes

vol;(L...LK|§); d®,_;(L, K) denotes a new affine probability measure of convex
j—1

bodies L and K, defined by

d®," (LK) = do;" (LK),

where dpy,_;(L, K) denotes the affine measure, defined by

. ~ voly(L...LK[§) (wavol;(LIO\ ™"
d‘pn—j (Lv K) - JVOlj (L|§) < wjj > dﬂj (5)7

and ®,_;(L, K) is the mized affine quermassintegral of L and K, defined by

_ —1/n
B voly (L ... LK[€) (vol,(L|)\ ™"
(I)n—j (Lv K) = Wn l/G VOIJ‘ (L|§) ( w; > d:uj (f)]

Obviously, (1.2)) is also a special case of (|1.3)).

n,j

2. NOTATIONS AND PRELIMINARIES

The setting for this paper is n-dimensional Euclidean space R™. A body in R"
is a compact set with the usual open set topology and a convexr body in R™ is a
compact convex set with non-empty interior. Let K™ denote the set of convex
bodies in R”, let K7 be the class of members of K™ containing the origin, and let
K3, be those sets in K™ containing the origin in their interiors. We reserve the
letter u € S™~! for unit vectors, and the letter B for the unit ball centered at
the origin. The surface of B is S"~!. For a compact set K, we write V (K) for
the (n-dimensional) Lebesgue measure of K and call this the volume of K. Let d
denote the Hausdorff metric on K™, i.e., for K, L € K™,

d(K,L) = |hg — hp|oos

where | - |o denotes the sup-norm on the space of continuous functions C'(S™71).
Let K C R™ be a nonempty closed convex set. If £ is a subspace of R", then it is
easy to show that

hicle = hic.

Let ¢ : [0,00) — (0,00) be a convex and increasing function such that ¢(1) = 1
and ¢(0) = 0. Let ® denote the set of convex functions ¢ : [0,00) — [0,00) that
are increasing and satisfy ¢(0) =0 and ¢(1) = 1.
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2.1. Mixed volumes. If, fori =1,2,...,r, K; € K" and J\; is a nonnegative real
number, then of fundamental importance is the fact that the volume of _, \;K;
is a homogeneous polynomial in \; given by (see e.g. [10])

VK + o+ AKn) = > Ao A, Vi, (2.1)

n’

where the sum is taken over all n-tuples (iy,...,i,) of positive integers not ex-
ceeding r. The coefficient V;,  ,, depends only on the bodies K;,,...,K;, and
is uniquely determined by ([2.1); it is called the mized volume of K;, ..., K; ,

and is written as V(K;,,...,K; ). Let K3 = -+ = K,,_;, = K and K,,_;41 =
-+ = K,, = L; then the mixed volume V(Kj,...,K,) is written as V;(K,L). If
Ki=-=K,_;=K,then K,,_;;1 = -+ = K, = B. The mixed volume V;(K, B)

is written as W;(K) and called quermassintegrals (or ith mized quermassintegrals)

of K. We write W;(K, L) for the mixed volume V(K,...,K,B,...,B, L), called
\w—/

mized quermassintegrals, and

1
Wi(K,L):f/ hLdSZ(K,’LL)
n Jgn-1
Associated with K1, ..., K, € K" is a Borel measure S(K7,..., K, _1,-) on S"~1,
called the mized surface area measure of Ky,...,K,_1, which has the property

that for each K € K",

1
V(Kla"'aKn—vi):E/ 1thS(K1,...,Kn_17U).
Sn—

Let K1=---=K,_j.1=Kand K,,_; =--- = K,,_1 = L; then the mixed surface
area measure S(Ki,..., K,_1,-) is written as S(K[n — ], L[i],-). When L = B,
S(K[n—1i], L[i],-) is written as S;(K, ) and called ith mized surface area measure.

2.2. The multiple mixed affine quermassintegrals. In [24], as a special case
of Orlicz multiple mixed affine quermassintegrals, the multiple mixed affine quer-
massintegrals was introduced as follows:

Definition 2.1 (The multiple mixed affine quermassintegrals). If 0 < j < n,
Ki,...,K; € K}, and L; € K}, the multiple mized affine quermassintegral of

o 00"

Ki,...,Kj,Lj, denoted by ®,,_;(K1 ... K;Lj), is defined by
5n_j(K1 A K]LJ)

_w”[/aw vol; (K ... K;_1L;[€) Iy dpi; (€) :

When K; = L;j, ®,_;(K; ... K;L;) becomes the mixed affine quermassintegral
(I)n—j(Kl KJ) When Kl = = Kj = Lj = K, En—j(Kl K]LJ) becomes
the well-known affine quermassintegral ®,_;(K) of K. When K; = --- = K; =
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K and L; = L, ®,_;j(K;...K;L;) becomes the mixed affine quermassintegral
®,,_;(K,L) of K and L. Specifically, for j = n, we define

V(Ki,..., Ky)
V(K17 s 7K7L—17L

—1/n
(K ... K,Ly) = ( )) V(Ky,...,Kn_1,Ly).
In [24], Zhao proved also that the multiple affine quermassintegrals is a first order
variation of the mixed affine quermassintegral of j convex bodies. For K,...,K; €
Ky, L € Ky,,0<j<mn,and e >0,

6'n—j(]:{l cee KJLJ)in = q)n_J(Kl e Kj_le)7(1+n)
d

X £ (I)n,j(Kl...Kjfl(Lj +€KJ))

e=01

3. THE AFFINE LOG-ALEKSANDROV—FENCHEL INEQUALITY

In this section, in order to derive the affine log-Aleksandrov—Fenchel inequality,
we need to define some new mixed affine measures. From the definition of mixed
affine quermassintegrals, we introduce the following mixed affine measure of convex
bodies Ky, ..., Kj.

Definition 3.1 (Mixed affine measure). For Ki,...,K; € K and 0 < j < n, the
mized affine measure of K1, ..., K;, denoted by dg,—;(K; ... Kj), is defined by

wpvol; (K7 ... Kj|€)
Wi

) . (3.1)

From Definition we find the following mixed affine probability measure:

1
9Ky LK)

From the definition of multiple mixed affine quermassintegrals, we introduce the
following multiple mixed affine measure of convex bodies.

Definition 3.2 (Multiple mixed affine measure). For Ki,...,K; € K}, L; €
Ky, and 0 < j < n, the multiple affine measure of Ki,...,K;, L;, denoted by

00’

d@n—j(Kl . Kij), is deﬁned by

d," (K, ... K L))
_ VOlj(Kl...Kﬂg) (anOIj(Kl...Kj_le|€
VOlj(Kl N K‘]flL]|§)

). 62

Wi
From Definition [3.2] the multiple mized affine probability measure is defined by

——n 1 o
d®," (K, ...K;Lj) = — dg," (Ky...K;L;).  (3.3)
o," (Ki...K;Lj)

nfj(
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Lemma 3.3 (The Aleksandrov—Fenchel inequality for multiple mixed affine quer-
massintegrals [24]). If Kq,...,K; € K}, L; € K3,, 0 < j < n, and 0 < r < j,
then

( O,_j(K1,...,K;, L) )” oI @K K K, KT
(I)n_j(Kl,...,Kj_l,Lj) - ¢n—j(Kl7"'aKj—laLj)

Theorem 3.4 (The affine log-Aleksandrov—Fenchel inequality). If K7 ... K; € K7,
L; €K}, 0<j<n,and0<r <j, then

VOI(K1K|§) > ——n
In J J do, . (Ky...K;L;
/Gn,j <V01j(K1--~Kj—1Lj|§) n-at ki)

>1In <H:—1 P (K- KK - Kj)l/r>
- (I)n—j(Kl---Kj—le)

where d®,,_;(K1 ... K;L;) is as in (1.4).
Proof. From (3.1)), (3.2]), and (3.3]), we obtain

vol; (K ... K; vol; (K ... K; .
/ : J( 1 : J‘g) hl( ‘ J( 1 : J‘g) )dsﬁn_](KlK]_lL])
Gn.j VOIJ(Kl...KjflLJ‘f) VOIJ(Kl...KjflLJ‘f)

’ VOlj(Kl...Kj_le|£
Note the following equality:

@, " (Kyi...K;Lj)
:/ VOlj(Kl...Kj|§) (anOIj(Kl...Klej|£)
G, VO]j(Kl KJ_lLJ|§) W

n,j

)n iy €).

From Lebesgue’s dominated convergence theorem, we obtain

q
VOlj(Kl...Kj‘g) a+n _ o
dp;" (K. Ky 1 Ly) = ®," (K ... KL
/G <volj(K1...Kj1ng) on (Ko Kjoa L) = @y (K- K L)

as ¢ — oo, and
VOlj(Kl...Kj|€) )‘Ii" ( VOlj(Kl...Kj‘g) ) _
In de, " (Ky...K; 1L;
/G P (VOlj(Kl .. KjfleE) VOlj(Kl .. KjflLJ‘g) gonij( ! i1 J)

4 ln( VOIJ(KlKJ|§)
Ghn.j VOIJ(KlK]_lLJK)

)d@;fj(Kl...Kij)

as g — 00.
On the other hand, define the function gz, x(¢) : [1,00] = R by
1
gL,K(Q) E—
@, (Kyi...K;Lj)

vol;(Ky ... K;|&) \77
dp" (K1...K;_1L;). (3.4
></G <volj(K1...Kj_1Lj§) Pn 5 (K i—1Lj). (34)
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From , we obtain
dgr.x(q) _ n / ( Vol (K ... K |€) >+
dq (¢ +n)2®," (K ... K;L;) Ja,, \Volj(Ki... K;—1L;[§) (3.5)
X (volvj(zllj(‘(f.{.l..l.(f_{jfj)|g)> dey " (K- KjaLy).
and
lim gr,k(q) = 1. (3.6)

q—00

From (34), (3:5), and (3.6), we have

atn — _ 2 2IL, K\
o5, nlo k(@) = gt n)” i O D da
n

@, (K1 ... K;L))

vol; (K ... K;|§) i vol; (K;...K;|€) n 4 .
wa (m) In (M) dp, " (K ... Kj1Ly)

X lim
amree 9r.x(q)
n

3" (K, ... K;L;)

VOlj(Kl...Kj‘g) ( VO]j(Kl...KJ“f) > _
X In de " (Ky...K;_1L;).
/Gn,_7 volj(Ky ... Kj_1L;|§) — \volj(Ky...Kj_1L;|€) Pul (K 1L;)

-_n

Hence

exp _ n / VOlj(Kl...Kj‘g)
6;:3([(1 e Kij) Gn,j VOlj(Kl cee Kjfle‘g)

vol; (K ... K;[€) _
L ; / " (Ky...K;_1L;
X n(VOlj(Kl...Kj_lLﬂg) d(pnfj( 1 j—1 J)

q+n

= lim (gr k)
q— 00

. 1
= lim | =—;
170\, (Ky...K;Lj)

—J
= q+n
VOlj(Kl...Kj|f) atn _
de " (Ky...K;_1L; .
X\/C':mj (VOlj(Kl...Kj_le|§) wn—g( 1 j-1 ])
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From Hoélder’s inequality, we obtain

G (g¢+n)/q
VOlj(Kl--.Kj|€) q+n B
"(Ky...K;_1L;
</G7 <V°17(K1‘~Kj1Lj|§) diy "5 (Ka i-1L;)

-n/q
X (/ d(p;f](Kl .. .Kj_le)>
G, j

vol;(Ky ... K; —n
S/G j( 1 J|§) dspn_j(Kl...Kj—le)
n,j

VOlj(Kl NN Kj—leK)
=0," (K,...K;L;).

Hence

_q_ q+n
1 / ( VOlj(Kl...Kj|£) )q+" _
J—— dg0nf~(K1...K‘,1L‘)
<<I> (K ... K;Ly) JG,, \volj(Ki... K 1L;[¢) g T

n—j
n —n
<< n_j(Kl...Klej)>
"\ 9, (K. K L)

exp _ n / VO]j(K]...KjK)
®," (Ky...K;L;) Ja,, voli(Ki... Kj-1L;€)

n—j

VOlj(Kl...Kj‘f) n - .
xIn (volj(Kl L Kj1Lj6) doy " (K1 ... Kj1Lj)

- <<I);"‘7}(K1 . Kj_le)>_ |
o, " (Kyi...K;L;)

Therefore

Hence
N S
" (LK)

p.n—7j

VOIJ(KlKJK) ( VOIJ(KlKJ|€) > _
X In do " .(Ky...K;_1L,
/G YVOIj(Kl...Kj_leK) VOlj(Kl-”Kj—le‘g (pn_j( ! i1 J)

n,J
- P, (K1 ... K;L;)
- (I);Libj(Kl...KjflL]')

That is,
/ ln( vol; (K ... Kj|€) )d‘l’n-(Kl...K.L)
Ghn,j VOlj(Kl...Kj_le|£) n—j GL;

S " (Ky.. K;L;
> In _T:J( 1 iLi) .
o," (Ky...K;_1L;)
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Further, by using the Aleksandrov—Fenchel inequality for multiple mixed affine
quermassintegrals in Lemma [3.3] we obtain

/ 1n< vol; (K1 ... Kj[€) >d¢;"j(K1...Kij)
Gn,j

VOlj(Kl NN Kj_le|£)

>1In <H:—1 P (Ki .. KiKiqa -~Kj)1/r> .
- (I)n—j(Kl---Kj—le)

This completes the proof. O
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