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DRAZIN INVERTIBILITY OF LINEAR OPERATORS ON
QUATERNIONIC BANACH SPACES

EL HASSAN BENABDI AND MOHAMED BARRAA

Abstract. The paper studies the Drazin inverse for right linear operators on
a quaternionic Banach space. Let A be a right linear operator on a two-sided
quaternionic Banach space. It is shown that if A is Drazin invertible then the
Drazin inverse of A is given by f(A), where f is 0 in an axially symmetric
neighborhood of 0 and f(q) = q−1 in an axially symmetric neighborhood of
the nonzero spherical spectrum of A. Some results analogous to the ones
concerning the Drazin inverse of operators on complex Banach spaces are
proved in the quaternionic context.

1. Introduction and preliminaries

We denote by H the algebra of quaternions, introduced by Hamilton in 1843.
An element q of H is of the form

q = a + bi + cj + dk, a, b, c, d ∈ R

where i, j and k are imaginary units. By definition, they satisfy

i2 = j2 = k2 = ijk = −1.

Given q = a + bi + cj + dk, we have:
• the conjugate quaternion of q is q̄ := a − bi − cj − dk;
• the norm of q is |q| :=

√
qq̄ =

√
a2 + b2 + c2 + d2;

• the real and the imaginary parts of q are respectively Re(q) := 1
2 (q + q̄) = a

and Im(q) := 1
2 (q − q̄) = bi + cj + dk.

The unit sphere of imaginary quaternions is given by

S := {q ∈ H : q2 = −1}.

Let p and q be two quaternions; p and q are said to be conjugated if there is
s ∈ H \ {0} such that p = sqs−1. The set of all quaternions conjugated with q is
equal to the 2-sphere

[q] = {Re(q) + | Im(q)|j : j ∈ S} = Re(q) + | Im(q)|S.
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For every j ∈ S, we denote by Cj the real subalgebra of H generated by j; that is,

Cj := {u + vj ∈ H : u, v ∈ R}.

We say that U ⊆ H is axially symmetric if [q] ⊂ U for every q ∈ U .
For a thorough treatment of the algebra of quaternions H, the reader is referred,

for instance, to [3].

Definition 1.1 ([1, Definition 2.3.1]). Let (X, +) be an abelian group. X is a two-
sided quaternionic vector space if it is endowed with left and right quaternionic
multiplications such that, for all u, v ∈ X and all p, q ∈ H,

u(p + q) = up + uq, (u + v)q = uq + vq, (up)q = u(pq), u1 = u,

(p + q)u = pu + qu, q(u + v) = qu + qv, q(pu) = (qp)u, 1u = u,

(pu)q = p(uq), ru = ur for all r ∈ R.

Definition 1.2. Let X be a two-sided quaternionic vector space. A function
∥ · ∥ : X → [0; +∞) is called a norm on X if it satisfies

(i) ∥u∥ = 0 if and only if u = 0;
(ii) ∥uq∥ = ∥qu∥ = ∥u∥|q| for all u ∈ X and all q ∈ H;
(iii) ∥u + v∥ ≤ ∥u∥ + ∥v∥ for all u, v ∈ X.

If X is complete with respect to the metric induced by ∥ · ∥, we call X a two-sided
quaternionic Banach space.

Definition 1.3. Let X be a two-sided quaternionic Banach space. A right linear
operator on X is a map T : X → X such that

T (up + v) = (Tu)p + Tv for all u, v ∈ X and all p ∈ H.

A right linear operator T on X is called bounded if

∥T∥ := sup{∥Tu∥ : u ∈ X, ∥u∥ = 1} < ∞.

The set of all right linear bounded operators on X is denoted by BR(X). The ring
BR(X) is viewed as a two-sided quaternionic vector space equipped with the metric
BR(X) × BR(X) ∋ (A, B) 7→ ∥A − B∥.

In a two-sided quaternionic Banach space X, we can define a left and a right
quaternionic multiplication on BR(X) by

(Tq)u = T (qu) and (qT )u = q(Tu) for all q ∈ H, u ∈ X and all T ∈ BR(X).

Definition 1.4. Let T ∈ BR(X). For q ∈ H, we set

Qq(T ) := T 2 − 2 Re(q)T + |q|2I,

where I is the identity operator on X. We define the S-resolvent set ρS(T ) of T as

ρS(T ) := {q ∈ H : Qq(T ) is invertible in BR(X)},

and we define the S-spectrum σS(T ) of T as

σS(T ) := H \ ρS(T ).
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Proposition 1.5 ([1, Proposition 3.1.8]). Let T ∈ BR(X). The sets σS(T ) and
ρS(T ) are axially symmetric.

Theorem 1.6 (Compactness of the S-spectrum, [1, Theorem 3.1.13]). Let T ∈
BR(X). The S-spectrum σS(T ) of T is a nonempty compact set contained in the
closed ball {q ∈ H : |q| ≤ ∥T∥}.

The spectral theory over quaternionic Hilbert spaces has been developed in [3]
and [6].

2. Generalized and Drazin inverses

Let X be a two-sided quaternionic Banach space. In this section, we study the
generalized and Drazin invertibility of right linear operators on X.

Definition 2.1. An operator B ∈ BR(X) is called a generalized inverse of A ∈
BR(X) if ABA = A and BAB = B.

The range and the kernel of an operator T ∈ BR(X) are denoted by R(T ) and
N (T ), respectively.

Theorem 2.2. Suppose A ∈ BR(X) with generalized inverse B such that AB =
BA. Then

σS(B) \ {0} = {q−1 : q ∈ σS(A) \ {0}}.

Proof. By [4, Theorem XI. 6.1], X = R(A) ⊕ N (A). Then A = T ⊕ 0 on R(A) ⊕
N (A) and B = T −1 ⊕ 0. We have Qq(B) = Qq(T −1) ⊕ Qq(0) for all q ∈ H. Then
we have σS(B) = σS(T −1) ∪ σS(0), since Qq(0) = |q|2I is always invertible (when
q ̸= 0), where I is the identity operator on N (A), and so

σS(B) \ {0} = σS(T −1) \ {0}.

The function f : H \ {0} ∋ q 7→ q−1 is intrinsic slice hyperholomorphic (because
q−1 = q̄

|q|2 ); then by [1, Theorem 4.2.1], σS(T −1) = σS(f(T )) = {q−1 : q ∈ σS(T )}.
Thus

σS(B) \ {0} = {q−1 : q ∈ σS(A) \ {0}}. □

Now, we study the Drazin invertibility of right linear operators acting on a
two-sided quaternionic Banach space.

Definition 2.3 ([2]). Let A ∈ BR(X). An element B ∈ BR(X) is a Drazin inverse
of A, written B = Ad, if

AB = BA, AB2 = B, Ak+1B = Ak (2.1)

for some nonnegative integer k. The least nonnegative integer k for which these
equations hold is the Drazin index i(A) of A.

Definition 2.4. An element A of BR(X) is called quasinilpotent if σS(A) = {0}.
The set of all quasinilpotent elements in BR(X) will be denoted by QN(BR(X)).
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Proposition 2.5. An element A of BR(X) is quasinilpotent if and only if, for
every T commuting with A, we have that I − TA is invertible.

Proof. Let A ∈ BR(X). Assume that for every T ∈ BR(X) commuting with A, we
have that I − TA is invertible. Let T = −1

|q|2 A + 2 Re(q)
|q|2 I with q ∈ H \ {0}; clearly

T commutes with A and I − TA = 1
|q|2 [A2 − 2 Re(q)A + |q|2I] is invertible, hence

σS(A) = {0}.
Conversely, if σS(A) = {0}, let T ∈ BR(X) commuting with A; then by [1,

Theorem 4.2.3], rS(TA) ≤ rS(T )rS(A) = 0 and hence σS(TA) = {0}. Then by [1,
Theorem 4.2.1], σS(I − TA) = {1} and hence I − TA is invertible. □

An operator A ∈ BR(X) is said to be nilpotent if there exists k ∈ N such that
Ak = 0. The least nonnegative integer k for which Ak = 0 is called the nilpotency
index of A and the set of all nilpotent elements in BR(X) is denoted by N(BR(X)).

Koliha [5, Definition 2.3] generalized the notion of Drazin invertibility in a com-
plex Banach algebra. According to this definition one can generalize the notion of
Drazin invertibility in BR(X).

Definition 2.6. Let A ∈ BR(X). An element B ∈ BR(X) is a generalized Drazin
inverse of A, written B = AD, if

AB = BA, AB2 = B, A − A2B ∈ QN(BR(X)). (2.2)

Theorem 2.7 ([1, Theorem 4.1.5]). Let A ∈ BR(X) and assume that σS(A) =
σ1 ∪ σ2 with

dist(σ1, σ2) > 0.

We choose an open axially symmetric set O with σ1 ⊂ O and O ∩ σ2 = ∅, and
define a function χσ1 on H by χσ1(s) = 1 for s ∈ O and χσ1(s) = 0 for s /∈ O.
Then χσ1 ∈ N (σS(A)), and for an arbitrary imaginary unit j in S and an arbitrary
bounded slice Cauchy domain U ⊂ H such that σ1 ⊂ U ⊂ U ⊂ O, we have

Pσ1 := χσ1(A) = 1
2π

∫
∂(U∩Cj)

S−1
L (s, A) dsj

is a continuous projection that commutes with A. Hence Pσ1(X) is a right linear
subspace of X that is invariant under A.

Remark 2.8. Let q ∈ H. If σ1 = {q}, we say that the projection Pσ1 is the Riesz
projection of A corresponding to q.

We denote by acc U (resp., iso U) the set of all accumulation (resp., isolated)
points of a set U ⊆ H.

Theorem 2.9. Let A ∈ BR(X). Then 0 /∈ acc σS(A) if and only if there is a
projection P ∈ BR(X) commuting with A such that

AP ∈ QN(BR(X)) and A + P is invertible in BR(X). (2.3)
Moreover, 0 ∈ iso σS(A) if and only if P ̸= 0, in which a case P is the Riesz
projection of A corresponding to q = 0.
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Proof. Clearly, 0 /∈ σS(A) if and only if (2.3) holds with P = 0.
Assume that 0 ∈ iso σS(A). Let P be the spectral projection of A corresponding

to q = 0; then P ̸= 0, commutes with A and AP = id(A)χ{0}(A) = (idχ{0})(A),
where id : H → H, q 7→ q. Hence σS(AP ) = idχ{0}(σS(A)) = {0}, thus AP ∈
QN(BR(X)). Similarly, A + P = id(A) + χ{0}(A) = (id + χ{0})(A); then 0 /∈
σS(A + P ) = (id + χ{0})σS(A), and therefore A + P is invertible.

Conversely, assume that there is a nonzero projection P commuting with A such
that (2.3) holds. For any q ∈ H, we have

A2 − 2 Re(q)A + |q|2I = P
(
(AP )2 − 2 Re(q)AP + |q|2I

)
+ (I − P )

(
(A + P )2 − 2 Re(q)(A + P ) + |q|2I

)
.

There is an r > 0 such that if |q| < r then (A + P )2 − 2 Re(q)(A + P ) + |q|2I is
invertible. Since AP ∈ QN(BR(X)), (AP )2 − 2 Re(q)AP + |q|2I is invertible for
all q ̸= 0. Hence, for all 0 < |q| < r, it is easy to check that A2 − 2 Re(q)A + |q|2I
is invertible and(

A2 − 2 Re(q)A + |q|2I
)−1 = P

(
(AP )2 − 2 Re(q)AP + |q|2I

)−1

+ (I − P )
(
(A + P )2 − 2 Re(q)(A + P ) + |q|2I

)−1
.

That is,
Qq(A)−1 = PQq(AP )−1 + (I − P )Qq(A + P )−1. (2.4)

Hence 0 ∈ iso σS(A).
Now, we show that P is the Riesz projection of A corresponding to q = 0. Since

S−1
L (q, A) = −Qq(A)−1(A − q̄I), because of (2.4) we have

S−1
L (q, A) = PS−1

L (q, AP ) + (I − P )S−1
L (q, A + P ). (2.5)

Let j and U be as in Theorem 2.7; then

χ{0}(A) = 1
2π

∫
∂(U∩Cj)

S−1
L (s, A) dsj .

If we take U = {q ∈ H : |q| < r
2 }, then by (2.5)

χ{0}(A) = 1
2π

∫
∂(U∩Cj)

S−1
L (s, A) dsj

= 1
2π

∫
∂(U∩Cj)

PS−1
L (s, AP ) + (I − P )S−1

L (s, A + P ) dsj

= 1
2π

∫
∂(U∩Cj)

PS−1
L (s, AP ) dsj + 1

2π

∫
∂(U∩Cj)

(I − P )S−1
L (s, A + P ) dsj

= P
1

2π

∫
∂(U∩Cj)

S−1
L (s, AP ) dsj + (I − P ) 1

2π

∫
∂(U∩Cj)

S−1
L (s, A + P ) dsj .

Since S−1
L (·, A+P ) is a right slice hyperholomorphic function on U (see [1, Lemma

3.1.11]), ∫
∂(U∩Cj)

S−1
L (s, A + P ) dsj = 0.
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On the other hand,
1

2π

∫
∂(U∩Cj)

S−1
L (s, AP ) dsj = I,

because σS(AP ) = {0} ⊂ U . Hence χ{0}(A) = P . This completes the proof. □

Theorem 2.10. Let A ∈ BR(X). If 0 ∈ iso σS(A), then

AD = f(A),

where f ∈ N
(
σS(A)

)
is such that f is 0 in an axially symmetric neighborhood of

0 and f(q) = q−1 in an axially symmetric neighborhood of σS(A) \ {0}, and

σS(AD) \ {0} =
{

q−1 : q ∈ σS(A) \ {0}
}

.

Proof. Let O1 be an axially symmetric open neighborhood of 0 and let O2 be an
axially symmetric open neighborhood of σS(A) \ {0} with O1 ∩ O2 = ∅. Define f
by f(q) = 0 if q ∈ O1 and f(q) = q−1 if q ∈ O2; clearly f ∈ N (σS(A)). By [1,
Theorems 4.1.3 and 4.2.1], it is easy to see that (2.2) holds for A and f(A).

By [1, Theorem 4.2.1], it follows that σS(AD) \ {0} = σS(f(A)) \ {0} = {f(q) :
q ∈ σS(A) \ {0}} = {q−1 : q ∈ σS(A) \ {0}}. □

Theorem 2.11. Let A ∈ BR(X). The following conditions are equivalent:
(i) A is generalized Drazin invertible;
(ii) 0 /∈ acc σS(A);
(iii) A = A1 ⊕ A2, where A1 is invertible on some closed subspace X1 of X and

A2 is quasinilpotent on some complemented subspace X1 of X.

Proof. (i)⇔(ii) Already proved in [5, Lemma 2.4] and Theorem 2.9.
(i)⇒(iii) Set the projection P := I − AAD; then AP is quasinilpotent and

AP = PA. Hence R(P ) and N (P ) are invariant under A, that is, AR(P ) ⊂ R(P )
and AN (P ) ⊂ N (P ). Let u ∈ N (P ); then u = AADu, thus the restriction of A to
the kernel of P is injective and surjective, and so invertible. If we write A = A1⊕A2
on X = N (P ) ⊕ R(P ), then A2 ∈ BR(X1) is quasinilpotent and A1 ∈ BR(X2) is
invertible.

(iii)⇒(i) It is easy to check that AD = A−1
1 ⊕ 0. □

Corollary 2.12. Let A ∈ BR(X). The following conditions are equivalent:
(i) A is Drazin invertible;

(iii) A = A1 ⊕ A2, where A1 is invertible on some closed subspace X1 of X, A2
is nilpotent on some complemented subspace X1 of X and the nilpotency
index of A2 is the Drazin index of A.

Proof. Assume that A is Drazin invertible; then by Theorem 2.11 (iii), A = A1 ⊕A2
and Ad = A−1

1 ⊕ 0. Hence, by (2.1), Ak+1Ad = Ak, then Ak
1 ⊕ 0 = Ak

1 ⊕ Ak
2 , thus

Ak
2 = 0, so that the nilpotency index of A2 is less than the Drazin index of A.
Conversely, let B = A−1

1 ⊕ 0, where A1 is invertible and A2 is nilpotent; then
(2.1) holds for A, B and the nilpotency index of A2. Hence A is Drazin invertible
and the Drazin index of A is less than the nilpotency index of A2. □
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Definition 2.13. A two-sided quaternionic Banach algebra is a two-sided quater-
nionic Banach space A that is endowed with a product A × A → A such that:

(i) The product is associative and distributive over the sum in A;
(ii) (qx)y = q(xy) and x(yq) = (xy)q for all x, y ∈ A and all q ∈ H;
(iii) ∥xy∥ ≤ ∥x∥∥y∥ for all x, y ∈ A.

If in addition there exists e ∈ A such that ex = xe = x for all x ∈ A, then A is
called a two-sided quaternionic Banach algebra with unit.

One can prove that BR(X) is a two-sided quaternionic Banach algebra with unit.

Definition 2.14. Let A be a two-sided quaternionic Banach algebra and a ∈ A.
An element b ∈ A is a Drazin inverse of a, written b = ad, if

ab = ba, ab2 = b, ak+1b = ak,

for some nonnegative integer k. The least nonnegative integer k for which these
equations hold is the Drazin index i(a) of a.

Let A be a two-sided quaternionic Banach algebra and a ∈ A. For any a ∈ A we
define the left multiplication of a by La(b) = ab, for all b ∈ A. Then La ∈ BR(A),
and we have ∥La∥ = ∥a∥.

Theorem 2.15. Let A be a two-sided quaternionic Banach algebra and let a ∈ A
with unit. Then a is Drazin invertible if and only if La is Drazin invertible. In
such a case, Ld

a = Lad and i(La) = i(a).

Proof. Let a ∈ A such that a is Drazin invertible. For every b ∈ A, we have
LaLb = Lab, hence it is easy to check that Lad = Ld

a and then i(La) ≤ i(a).
Conversely, assume that La is Drazin invertible and let b = Ld

a(e). Since
Lk+1

a Ld
a = Lk

a, ak+1b = ak. Hence Lk+1
a Lb = Lk

a = Ld
aLk+1

a , and then by [2, Theo-
rem 4] and its proof, Ld

a = Lk
aLk+1

b = Lakbk+1 . Let c = akbk+1; then LaLc = LcLa,
LaL2

c = Lc, Lk+1
a Lc = Lk

a, hence ac = ca, ac2 = c, ak+1c = ak. Thus a is Drazin
invertible and therefore i(a) ≤ i(La). □
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