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SOME INEQUALITIES FOR LAGRANGIAN SUBMANIFOLDS
IN HOLOMORPHIC STATISTICAL MANIFOLDS
OF CONSTANT HOLOMORPHIC SECTIONAL CURVATURE

YAN JIANG, DANDAN CAI, AND LIANG ZHANG

ABSTRACT. We obtain two types of inequalities for Lagrangian submanifolds
in holomorphic statistical manifolds of constant holomorphic sectional curva-
ture. One relates the Oprea invariant to the mean curvature, the other relates
the Chen invariant to the mean curvature. Our results generalize the corre-
sponding inequalities for Lagrangian submanifolds in complex space forms.

1. INTRODUCTION

In the theory of submanifolds, geometric quantities have been classified into two
types: intrinsic invariants and extrinsic invariants. The classical intrinsic invari-
ants include the sectional curvature, the Ricci curvature, and the scalar curvature.
B. Y. Chen [4] introduced a new type of intrinsic invariant by combining the scalar
curvature and the sectional curvature in a specific way, nowadays called Chen in-
variant. Following this idea, T. Oprea [16] also introduced a new type of invariant,
nowadays called Oprea invariant. On the other hand, the classical extrinsic in-
variants mainly include the mean curvature, the normal scalar curvature and the
Casorati curvature. Establishing inequalities between the intrinsic invariants and
the extrinsic invariants has always been a fundamental problem in the theory of
submanifolds. In the early time, various inequalities were found for submanifolds in
real space forms [5}[8]. For complex space forms, some special types of submanifolds
can be explored, such as Lagrangian submanifolds. In [I7},[18], T. Oprea established
inequalities between the Oprea invariant and the mean curvature for this kind of
submanifolds by using the optimization method on Riemannian manifolds.
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Theorem 1.1 ([I7]). Let M™ be a Lagrangian submanifold in a complex space

form M?™(4¢), n > 3. Then
(n+1)(n—2)_ n?*2n-23) 9
< .
do (M) < 5 é+ 2020 +3) |1H|*, (1.1)

where d3(M) is the Oprea invariant of M and H is the mean curvature vector of M.

Theorem 1.2 ([18]). Let M™ be a Lagrangian submanifold in a complex space

form M?"(4¢), n > 3. Then

(n+1)(n— 2)6 (3n —1)(n — 2)n? | H|P?
2 2(3n+5)(n—1)

where d,(M) is the Oprea invariant of M and H is the mean curvature vector

of M.

In [7], B. Y. Chen and F. Dillen established an inequality between the Chen
invariant and the mean curvature for Lagrangian submanifolds in complex space
forms.

on (M) < (1.2)

)

Theorem 1.3 ([7]). Let M™ be a Lagrangian submanifold in a complex space form
M?"(4¢). Then

n? (n — Zle ng+3k—1-6 Zf:l 2+1m)

B, m) < . )
2(n- i mi+3k 4261 5Lo) L3)
1 k
+5 | —1) - ;ni(ni - 1)] Z,
where §(ny, ..., ny) is the Chen invariant and H is the mean curvature vector of M.

On the other hand, S. Amari in 1985 [I] introduced the notion of statistical man-
ifolds. From then on, the geometry of statistical manifolds has developed in close
relation with affine differential geometry [14] and Hessian geometry [19]. By defini-
tion, statistical structures can be considered as a generalization of the Riemannian
structures. Recently, the Casorati curvature inequality, the Ricci curvature inequal-
ity, and the DDVV inequality have been established for submanifolds in statistical
manifolds of constant curvature [I3] [2, B]. In 2009, H. Furuhata introduced the
concept of holomorphic statistical manifolds, and focused on holomorphic statisti-
cal manifolds of constant holomorphic sectional curvature, which can be viewed as
a generalization of complex space forms [9, [10].

The main purpose of this paper is to generalize Theorems [[.IHI.3|to Lagrangian
submanifolds in holomorphic statistical manifolds of constant holomorphic sec-
tional curvature. In Section 2, we review some basics of holomorphic statistical
manifolds and statistical submanifolds. In Section 3, we establish the inequalities
relating Oprea invariants §; (I = 2,...,n) to the mean curvature (see Theorem
and Theorem [3.2)). We remark that when the ambient space becomes the complex
space form and [ = 2 or [ = n, our results coincide with Theorem and Theo-
rem [I.2] respectively. In Section 4, we establish the inequality relating the Chen
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INEQUALITIES FOR LAGRANGIAN SUBMANIFOLDS 589

invariant d(nq,...,ng) to the mean curvature (see Theorem {4.1]). We remark that
when the ambient space becomes the complex space form, our results coincide with
Theorem [L.3l

2. PRELIMINARIES

Let (M, ) be a Riemannian manifold and V° be the Levi-Civita connection of
g on M. Throughout this paper, we denote the set of all smooth tangent vector

fields on M by C>®(TM).

We first review some knowledge of statistical manifolds.
Definition 2.1 ([I0]). Let v be an affine connection on a Riemannian manifold
(M, g). The affine connection V* is called the dual connection of V with respect
to g if 3 R
for any X,Y,Z € C®(TM).

Obviously, (V*)* = V. Moreover, if V and V* are both torsion-free, then [I4]

V+V*=2V°, (2.2)

where V? is the Levi-Civita connection of § on M.

Definition 2.2 ([I4]). Let (Mlg) be a Riemannian manifold and V be an affine
connection on M. The pair (V,g) is called a statistical structure or a Codazzi
structure if V is torsion-free and the Codazzi equation

(Vx)(Y, Z) = (Vy§)(X, Z)

holds for any X,Y,Z € C(TM). In this case, (M, V, ) is said to be a statistical
manifold or a Codazzi manifold.

By definition, a Riemannian structure (@O, g) is a special statistical structure,
which is called a Riemannian statistical structure or a trivial statistical structure [9].
In fact, the Levi-Civita connection V° is self-dual with respect to the Riemannian
metric §. Besides, if (V, §) is a statistical structure on M, so is (V*,§).

Proposition 2.3 ([11]). Let (M,V,§) be a statistical manifold and VO be the Levi-
Civita connection of g on M. For any X,Y,Z € C>®(TM), the tensor field K of
type (1,2) defined by K :=V — V° satisfies

KxY = KyX, §(KxY.Z)=q§(KxZY). (2.3)
Conversely, if a (1,2)-tensor field K on M satisfies (2.3)), then (M,V° + K, §) is

a statistical manifold.

Definition 2.4 ([I1]). Let (M, V,§) be a statistical manifold and V* be the dual
connection of V with respect to g. Denote the curvature tensor field of V (resp.,
V*) by R (resp., R*), i.e., for any X,Y,Z € C(TM),

R(X, Y)Z = @X@yZ - @y@xz - @[X,Y]Za
R(X,Y)Z =V5V3yZ = Vi Vi Z = Vi y 2.

Rev. Un. Mat. Argentina, Vol. 65, No. 2 (2023)
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Define

1 - _
S(X,Y)Z = H{R(X,Y)Z + R (X,Y)Z); (2.4)
then we call S the statistical curvature tensor field of (M, V, ).

Obviously, the statistical curvature tensor field corresponding to the Levi-Civita
connection is the Riemannian curvature tensor field.

Next, we review some basics of holomorphic statistical manifolds. Firstly, we
recall the definition of K&hler manifolds.

Definition 2.5 ([22]). Let (M, §) be an even dimensional Riemannian manifold,
V0 be the Levi-Civita connection of §, and J be a (1, 1)-tensor field on M. If

J2=—I, §g(JX,JY)=3(X,Y), V&JY =JV}Y (2.5)
for any X,Y € C(TM), then (M, J,§,V°) is called a Kdihler manifold.

Definition 2.6 ([22]). Let (M, J. g, Vo) be a Kahler manifold, and R be the cur-
vature tensor field of V9. Then (M, J, §, V?) is said to be of constant holomorphic
sectional curvature ¢ € R if

R'(X,Y)Z = {5(Y.2)X — §(X, 2)Y +§(JY, 2)JX
—§(JX,Z)JY —2§(JX,Y)JZ}
for any X,Y,Z € C>(TM).

(2.6)

A Kaéhler manifold of constant holomorphic sectional curvature is usually called
a complez space form.

T. Kurose [12] introduced the notion of a holomorphic statistical manifold by
endowing a Kéhler manifold with a suitable statistical structure.
Definition 2.7 ([12]). Let (M,.J,§,V°) be a Kihler manifold and (V,§) be a
statistical structure on M. Then (M, J,§,V) is called a holomorphic statistical
manifold if the difference tensor field K satisfies

KX, JY)+JK(X,Y)=0 (2.7)
for any X,Y € C°(TM).
Definition 2.8 ([I0]). A holomorphic statistical manifold (M, .J, §, V) is said to be

of constant holomorphic sectional curvature ¢ € R if its statistical curvature tensor
field satisfies

S(X,Y)Z = g{g(y, X - §(X,2)Y +§(JY,Z)JX
—§(JX,2)JY —25(JX,Y)JZ}

for any X,Y,Z € C>(TM).

(2.8)

A holomorphic statistical manifold of constant holomorphic sectional curvature
can be viewed as a generalization of a complex space form.
Now we review some basics of statistical submanifolds.
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Definition 2.9 ([I5]). Let (M,V,§) be a statistical manifold and f : M — M be
an immersion. Denote the tangent mapping and the pullback mapping of f by f.
and f*, respectively. Define g and V on M by

9=r19 9(VxY.2) =3 (Vx /.Y, [.Z).

Then the pair (V,g) is a statistical structure on M, which is called the induced
statistical structure by f from (V,g).

Definition 2.10 ([I5]). Let (M,V,g) and (M, V,§) be two statistical manifolds.
An immersion f : M — M is called a statistical immersion if (V,g) coincides
with the induced statistical structure by f from (V,§). Also, (M, V,g) is called a
statistical submanifold of (M,V,§).

Similarly to the theory of Riemannian submanifolds, the statistical submanifolds
also have the Gauss and Weingarten formulas [20]. Let (M, V,g) be a statistical
submanifold in (M,V, g), denote the set of all smooth tangent vector fields on M
by C>(T'M), and the set of all smooth normal vector fields on M by C°°(T+M);
then we have

VxY = V¥V +h(X,Y), ViV = Vi¥ + 1 (X,Y),
VxN = —-AxX + VN, ViN=-AyX + VN,
where X,Y € C®(TM), N € C=(T+M). In the above formulas, i and k™ are the
second fundamental forms with respect to V and V*, respectively; A and A* are
the shape operators with respect to V and V*, respectively; V+ and V** are the
normal connections with respect to V and V*, respectively. Besides, we have the
following [21]:
RX.Y) = h(Y.X), h*(X,Y) = h"(Y,X), (2.9)
In addition, the statistical submanifolds also have the Gauss equation.

Proposition 2.11 ([10]). Let (M,V,g) be a statistical submanifold in (M,V,§).

For any X,Y,Z € C*(TM), we have
~ T
2[S(X,Y)Z] =28(X.Y)Z+ Apx,2)Y — A,y X (2.11)
+A;‘L*(X,Z)Y - ATL*(Y,Z)X7

where [-]T is the tangent component of the vector field “-”.

Next, we introduce the knowledge of some special statistical submanifolds in
holomorphic statistical manifolds.

Definition 2.12 ([I0]). Let (M, V, g) be a statistical submanifold in a holomorphic
statistical manifold (M ,J, 9, @) If there exists a differentiable distribution ® on
M satisfying the following two conditions:
(i) @ is holomorphic, i.e., JO, =D, for each = € M;
(ii) the orthogonal complementary distribution ®+ is totally real, i.e., JOL C
T;-M for each = € M,
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then M is called a CR-submanifold in (M,.J,§,V). In particular, if © = TM,
M is called a holomorphic submanifold; if ®+ = TM, M is called a totally real
submanifold; and if ®+ = TM and JD+ = T+ M, then M is called a Lagrangian
submanifold.

Obviously, if M is a Lagrangian submanifold in a 2n-dimensional holomorphic
statistical manifold (M, J, g, V), then dim(M) = n.

Proposition 2.13 ([10]). Let (M,V,g) be a Lagrangian submanifold in a holo-
morphic statistical manifold (M J, 3, V). Then the following formulas hold:

forany X, Y € C*(TM).

Let M be a Lagrangian submanifold in a 2n-dimensional holomorphic statistical
manifold (M, J,§, V). We may choose a local orthonormal frame {ey, ..., e,, Jei,

., Jey} on M such that {e1,...,e,} are tangent to M. Denote the curvature
tensor field of VO by R°. Then the scalar curvature of M with respect to V9 is
given by

270 = Z g (R%(e;,¢5)es,€i) . (2.13)

ENZVASL

The Ricci curvature with respect to the statistical curvature tensor field S on M
is defined as

Ric(Y,Z) =tr {X — S(X,Y)Z} = En:g(S(ei,Y)Z, €i), (2.14)
i=1

where XY, Z € C*°(TM). In addition, the scalar curvature with respect to the
statistical curvature tensor field S on M is defined by

2T = ZRic(ei, e) = Z g (S(ei,ej)e;,e;). (2.15)
i=1 1<i£j<n
Write hk- = g(h(e;,ej), Jek),hmk = g(h*(ei, ej), Jeg). By using (2.12)), we have
hfj = hgk = h?cjv hZ}k = h?;i = Zé (2.16)
In fact, taking X = e;,Y = ¢ in (2.12)) and applying (2.10), we obtain
hi = G(hlei,e;), Jer) = §(A7,, e, e5) = §(AGe en,e5) = G(hlex, e5), Jei) = hi.

In the same way, we can get h;»‘]’? = h:,‘z = h’”
In addition, the mean curvature vectors of M with respect to V and V* are
defined as

Z (Zh ) Jex, %Zn: (Zn: h;‘f) Je.

kl k=1
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The squared norms of the mean curvature vectors H and H* are respectively given
by

| = QZ<Z’”L>7 ”H*”QZ;é@hﬁy

Finally we recall the optimization technique on Riemannian manifolds as follows.
Let M be a submanifold in a Riemannian manifold (M, §) and f : M — R be a
differentiable function. Consider the constrained extremum problem

min f(x). (2.17)

zeM
Lemma 2.14 ([I8]). If zo € M is the solution of the problem (2.17), then
(i) (gradf)(wo) € Ty M;
(ii) the bilinear form
o Ty M x Ty M — R,
a(X,Y) =Hessy(X,Y) + g (h(X,Y), (grad f)(zo))

is positive semidefinite, where h is the second fundamental form of M and
gradf is the gradient of f.

3. INEQUALITIES FOR THE OPREA INVARIANT

Let M be a Lagrangian submanifold in a 2n-dimensional holomorphic statistical
manifold (M, .J,§, V) of constant holomorphic sectional curvature, and let (V,g)
be the induced statistical structure. Let z € M, L be an I-dimensional (I > 2)
subspace of T, M, and X € L be a unit tangent vector. Choose an orthonormal
basis {ey, ..., e, } of the tangent space T, M such that {eq,..., e } is an orthonormal
basis of L with e; = X. Then the Ricci curvature of L at X with respect to the
Levi-Civita connection V° is defined as

Ric (X Zg RY(X,e;)e;, X). (3.1
=2
For | =2,...,n, T. Oprea [17] defined an intrinsic invariant 67 of M with respect
to VY as follows: )
0 0_ : )
o (x)=r1 T Xeinu)r%& 1RlCL(X). (3.2)
LCTy

Nowadays such an invariant is called Oprea invariant.
Analogous with (3.1)), the Ricci curvature of L at X with respect to V is defined
as

Ricp (X Zg (X,e)e;, X). (3.3)
Further, we can define the Oprea 1nvar1ant 0; of M with respect to V as follows:
1 .
5l($) = 7'(.]3) - ﬁ Xe},n”X” L RICL(X). (34)

LCTy M
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Let KO be the sectional curvature of M with respect to the Levi-Civita connec-
tion V0. Write R ~ ~
a = max K%(n), b = min K(r), (3.5)
™ ™
where 7 represents any 2-dimensional sectional plane in T, M.

Theorem 3.1. Let M be a Lagrangian submanifold in a 2n-dimensional holomor-
phic statistical manifold (M J, g, V) of constant holomorphic sectional curvature
4¢, and 1 € {2,...,n —1}. Then

1400 — 26, < Qn(n—1)a—4b—(n+1)(n—2)6+a(l)(|\H||2+||H*||2), (3.6)

where
n?(9nl — 141 — 10n + 16)

2(9nl + 13l — 10n — 14) '
Remark 3.1. If we take V = V* = V°, then according to (2.8), and noting that

M is Lagrangian, we get @ = b= ¢, H = H* = H°, and §; = &Y. In this case, for
! = 2, Theorem [3.1] becomes Theorem

Proof. We first review the Gauss equation with respect to V°:
g(R*(X,Y)Z,W) = G(RO(X,Y)Z,W) + §(h°(X, W), h°(Y, Z))
— G(RO(X, 2), KO (Y, ).
From ((2.10)), is equivalent to
29(S(X,Y)Z, W) =25(S(X,Y)Z,W) + g(h(X,W),h* (Y, Z))
—g(h"(X, Z), h(Y,W)) + g(h" (X, W),n(Y, Z)) ~ (3.8)
—g(h(X, Z2), k" (Y, W)).

Taking X =W =e¢;, Y = Z = ¢; in (3.7) and (3.8), respectively, and summing
over 1 < i # j < n, we obtain

Z §<R0(ei,ej)ej,ei) +2zn: Z {h?ikh%“ - (h%’?)z} . (3.9)

1<i#j<n k=11<i<j<n

a(l) =

(3.7)

or =n(n—1ec+Y_ Y (hERE +hiFRE — 2k niF) . (3.10)

(2N 1))
k=11<i<j<n

Combining (3.9) and (3.10 -, and using 2h0k = hk + h:‘f, we get

470 — 21 =4 Z ( ez,ej)ej,el) —n(n—1)¢

1<i<jsn

n (3.11)
k=11<i<j<n
From (3.1 and (3.3)), we get
Ric? (ey) 1 - 1 &g Ok _ (p0ky?
1 l_l29(30(617€i)€i7€1)+mzz ThEF — (A9)?], (3.12)

=2 k=1 i=2
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n l
= Z hlflh;‘kik + hi’fh?ﬁ - 2h’1€zhﬂ€) : (3.13)
k=1 1i1=2

Ricy(e1)
-1

From and (3.13), and using 2h?k hk + hfjk,

Ric? (ey) Ricy (e1)
-1 -1

—4

B
Il
-
-
||
N

Combining (3.11]) and -, we have

470 — o7 — 4Rilcof(f1) + 2Rilci (fl)
l
=4 Z g (éo(ei,ej)ej,ei) — % Zg (éo(el,ei)ei,el) —(n?* —n —2)¢
1<i<j<n i=2
! l
NI MRS ST MRS
1<i<j<n =2 1<i<jsn =2
1 J
- Z{ > (k) (hzy’»“f] - > [(h)* + (ni)?] }
k=1 1<i<j<n =2
!
<4 Z ( e“ej ej,ez) —% g(]%o(el,ei)ei7el) —(n? —n—2)¢
1<i<j<n =2
!
LS ek T - St}
1<i<j<n = 1<i<j<n
l
S 3 [ 0D g [ () ()7 (1)
1<i£j<n i=2
!
=4 Z ( 61,63 6]361) - liil g (éo(elaei)eiael)
1<i<jsn i=2

—(n®>—=n—2)é+ P+ P,
(3.15)
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where

l (3.16)
1
- X ) ) )]
1<i£j<n =2
n l
1
Pr=% { Wiy == D hflfh;k}
k=1 \ 1<i<j<n = (3.17)

For any r € {2,...,l},t € {{+1,...,n}, consider the quadratic forms fi, f,, f; :
R™ — R defined by

n l
fl(h%h'" nn - Z h’tlzhjl_] %Z _Z 2 %Z

1<i<j<n =2 =2 =2
: 1
r § TpT r r\2 r\2
f”‘( 117"'7 nn hnhj] llhii_ E (h“) + 1—1 ( 11) ’
1<i<j<n =2 £

l
ft(hilv"w nn - Z h’flh’g_] th ht Z hti)Qa

1<i<j<n i#£t
respectively; then

l n
P=fi+Y fr+ Y f

r=2 t=I+1

Firstly, consider the constrained extremum problem
max fi, subject to Fy : hiy +---+hli = ki, (3.18)

where k is a real constant. The partial derivatives of the function f; are

8f n 1 l
L § 1__- E L

3h1 - ‘ hzz 1—1 . h“, (3'19)
o a i=2

8fl - 1 1 1 1 2 1

St = E Wl — =gl = 2k + s h, (3.20)
22 i#£2

afl - 1 1 1 1 2 1

— = h;; — ——hy; — 2h —h 3.21

8hl1l ; it 1—1 11 ll+l_1 i ( )
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of1 -
Ohi41ya41) B Z s~ Py (3:22)
i£l+1
of =, 1
i = Z hl —2nk . (3.23)
nne =1

’ nn

the vector gradfi is normal at Fi, i.e., it is collinear with the vector (1,1,...,1).
From (3.19)—(3.23), it follows that a critical point of the considered problem has
the form

For an optimal solution (hh, hio, ..., h} ) of the problem max f;, by Lemma

(Riy,hdgs - hiy) = (2t1,t1, .. 1) (3.24)

) nn

As Y hl; = ki, by using (3.24) we have
i=1

2
n+1
We fix an arbitrary point x € F;. The bilinear form « : T, F; x T, F1 — R has the
expression

hip = 2hyy =+ = 2hy = 2h{ 1yq 0y = - = 2hg, = ky. (3.25)

a(X,Y) = Hessf1(X,Y) + (b (X, Y), (grad f1)(2)),
where A’ is the second fundamental form of F; in R™ and ( , ) is the standard inner
product on R™. In the standard frame of R™, the Hessian of f; has the matrix

=2 =2 =2
0 m m e m ]. e ].
-2 4-21
ﬁ ﬁ 1 1 1 ... 1
-2 4-21
m 1 l_il 1 1 .. 1
-2 4-21
=1 1 1 =1 1 1
1 1 1 1 -2 1
1 1 1 e 1 1 ... =2

As Fj is totally geodesic in R", considering a vector X tangent to F; at an arbitrary

n
point z on Fi, that is, satisfying the relation Y X; = 0, we have

=1
a(X,X)=—X12—%(X1X2+X1X3+...+X1Xl)
+%(X§+X§+...+Xf)_3(X;+1+X;+2+,,_+X5)
- 7% [(Xl F X))+ (X + X))+ (X Jer)Z]
_%(X§+X§+"'+X?)—3(Xz2+1+Xl2+2+--~+X3L)go.
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Consequently, the point (hi, hds, ..., kL) given by (3.25) is a global maximum
point; here we have used Lemma Substituting (3.25) into f; we have

n—2
< — K2
h 2(n+1)"*
In the same way, for the constants k, and k;, consider the constrained extremum
problems

(3.26)

max f., subject to F,.:hl,+---+h., =k,
max f;, subject to Fy : h’il NI hfzn — Ky,
respectively. Applying Lemma [2.14] we have
onl — 14l —Tn+6

< , 3.27
4 29l 4+ 13l —Tn —15) " (8:27)
Onl — 14l —10n+ 16 ,
< . 3.28
I 2(9nl + 131 — 10n — 14) (3.28)
The equality case of (3.27)) holds if and only if
T 2 T 2 T 2 T
11:§ 22:§ 33:"':§ l
_6(l—l)r _ _6(l—l)r _ 6(1—1) 1
91 —7 "D T gp 7 T T gnl 4131 —Tn — 15
and the equality case of (3.28)) holds if and only if
2(1-1) 2(1-1)
_6(l_1)ht _ _6(l_1) t
- 9[ —10 (l+1)(l+l) == 9l —10 (n—l)(n—l)
210-1) , 6(1—1)
= hnn = kt.
97 —10 9nl + 131 — 10n — 14
For l > 2,
n—2 o Onl —14] —Tn+6 < 9nl — 141 — 10n + 16
2(n+1) =~ 2(9nl+ 131 —Tn —15) ~ 2(9nl + 131 — 10n — 14)’
thus we have ol — 141 — 10 16
ni — — 10n + 2
s < 3.29
s S S 3= 10n = 14) (3.29)
for any s € {1,...,n}. Substituting (3.29) into (3.16]) yields
2(9nl — 141 — 10n + 16
<o D)) a (3.30)
2(9nl + 131 — 10n — 14)
In the same way, we have
2(9nl — 141 — 10 16
prg On nH16) 2, (3.31)

= 2(9nl + 131 — 10n — 14)
Substituting (3.30) and (3.31) into (3.15)), we get
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RicY (ey) Ricy(e1)
0o r(el r(el
477 — 21 —4 1 +2 1

1

(5 4
<4 Z g(RO(ei,ej)ej,ei)—ilZ (RO e, e 62,61)
1<i<j<n i=2
_ n*(9nl — 141 — 10n+16) .
—(n* —n—2)c+ (HHI” + 1127).

2(9nl + 131 — 10n — 14)
From (3.5 we have

RicY (ey) Ricy(e1)
0 _ o _ ML
477 — 21 1 +2 1
<2n(n —1)a — 4b — (n? —n — 2)é
n?(9nl — 141 — 10n + 16)
H H*
o Tt (I + 1)
Using (3.2)) and (3.4)), we derive the desired inequality. O

For the Oprea invariant ¢,,, we can still express the corresponding combination
of the scalar curvature and the Ricci curvature in terms of the components of
the second fundamental form like by using the Gauss equation, and then
estimate the corresponding quadratic forms. Note that although the quadratic
forms are somehow different from the ones in the case [ = 2,...,n — 1, we can also
estimate them by using Oprea’s optimization method. Since the proof is exactly
similar to the proof of Theorem [3.1] we omit it here and only state the final result.

Theorem 3.2. Let M be a Lagrangian submanifold in a 2n-dimensional holomor-
phic statistical manifold (M J,3,V) of constant holomorphic sectional curvature
4¢, n > 3. Then

46% — 26, < 2n(n—1)a —4b— (n+ 1)(n — 2)é

(3n—1)(n—2n% o o (3.32)
2@+ 5)(n—1) (1H |+ | H*|]?).

Remark 3.2. If we take V = y* = VY, then according to (2.8)), and noting that
M is Lagrangian, we get @ = b = ¢, H = H* = HY, and 6,, = 6°. In this case,
Theorem [3.21 becomes Theorem [[.21

+

4. INEQUALITIES FOR THE CHEN INVARIANT

Let M be a Lagrangian submanifold in a 2n-dimensional holomorphic statistical
manifold (M, .J, §, V) of constant holomorphic sectional curvature 4¢, (V, g) be the
induced statistical structure from (@, J), and S be the statistical curvature tensor
field of M. Let # € M and L be an I-dimensional (I > 2) subspace of Ty M.
Choose an orthonormal basis {e1,...,e;} of L. The scalar curvature 79(L) of L
with respect to V is defined as

(L) = Z g (R°(ei,e5)e;,e:) . (4.1)

1<i<j<l
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For an integer k > 1, we denote by S(n, k) the finite set consisting of all k-tuples
(n1,n2,...,ng) of integers > 2 satisfying

ny<n, ny+ne+---+np<n.

Let S(n) = U S(n,k). For each (ny,na,...,n;) € S(n), the Chen invariant

k>1
§%(ny,na, ..., ng) with respect to V is defined as (see [7])
(50(711, no, ... ,nk) = 7'0 — inf {TO(Ll) + TO(LQ) + -+ TO(Lk)} , (42)
where Ly, Lo, ..., L; run over all £k mutually orthogonal subspaces of T, M such

that dlIIlL_7 = nj, j = 1,. . .,]{1.
Analogous with (4.1), the scalar curvature 7(L) of L with respect to the statis-
tical curvature tensor field S is defined as

(D)= > g(S(eiej)eje). (4.3)
1<i<j<l

Further, we can define the Chen invariant d(n1,ns,...,n,) with respect to V as
follows:

d(n1,no,...,ng) =7 —inf {7(L1) + 7(L2) + -+ 7(Lk)}- (4.4)

For a given (nq,...,n;) € S(n), let L1, Lo, ..., L be mutually orthogonal sub-
spaces of T, M with dimL; = n;, j = 1,...,k. We choose an orthonormal basis
{e1,...,en} of T, M such that

Lj = span{en, 4..in; 141> €nygoin; » J=1,..., k.

Put
Al = {1,...7711},

Ak :{n1+"'+nk—1+17"'7n1"'+nk}7
Appr={m+--+np+1,...,n}
For simplicity, write
N=ny+- -+ ng.
We shall make use of the following convention on the ranges of indices:
g, 5% IYZEAH Z,je{l?ak}7
ry 8, t € Agp1; u, vE{N+2,...,n};
A, B, Ce{l,...,n}.

B. Y. Chen [6] was the first to establish the inequality between the above in-
variant and the mean curvature for submanifolds in real space forms. After that,
B. Y. Chen and F. Dillen [7] also established a similar inequality for Lagrangian
submanifolds in complex space forms (see Theorem . In this section, we gener-

alize Theorem [I.3] to Lagrangian submanifolds in holomorphic statistical manifolds
of constant holomorphic sectional curvature.
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Theorem 4.1. Let M be a Lagrangian submanifold in a 2n-dimensional holo-
morphic statistical manifold (M J,3,V) of constant holomorphic sectional cur-
vature 4¢. Denote the sectional curvature of M with respect to VO by KO, Set
a= maxf(o(eA ANJegp) and b= minKO(eA AJeg). Then

26%(n, . i) < O(mas -y

2 (n_zizlni+3k—1—62f:1 )

2 .2
4(”_Zi:1”i+3k+2_62i:1 2+ni)

+

(4.5)

Moreover, the equality holds at a point © € M if and only if, with respect to a
sugtable orthonormal basis {e1,...,en} at x, the second fundamental forms h and

h* take the following forms:

hie = (2 + 1)l o 3hiw hit = 2 +ni)hi o, = 3hi,
he oy = hes, —h’” = h% =h, =0,
helar = ho,p = h’&faj =hg" =hg =0

for distinct i,5,1 € {1,...,k} and distinct r,s,t € Ag41.

Remark 4.1. If we take V = V* = V°, then according to (2.8), and noting that M
is Lagrangian, weget a = b= ¢, H = H* = H°, and §(n1,...,ni) = 6°(n1,. .., ng).
In this case, Theorem [£.1] becomes Theorem [T.3]

Proof. By using (2.15)), (4.3) and the Gauss equation (2.11)), we calculate

o
=1
k
- 5{ n(n—1) = ni(n; - 1)] +Y 0N [h;“rhi‘;f + AR — zh:gh;:f]
=1 A r<s
+ZZ Z |: aaLhZ?aJ hZAalhéjaJ _thathAaJ}
A i< o,
+ZZZ [hﬁiaih;“‘ +hiA R —zhg‘sh;f“s]
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[ n—1) an n; ]
+Zz[hgh:§‘ h;:‘h;‘s] Y S [hfiaih(’;;‘ +hA BA %}

A r<s A i<j a0
DHND [ i+ i b + 305 [(h)* + ()]
i QS A r<s
F0D 3 | (k) ()] +ZZZ[ +(0h)"
A i< o, i Q.S
SOV PUCIED 3D SIS BTN }
r<s 1<j @i, i Qaq,s
25[ (n—1) an 1—1)]+22[h;‘iaihzf+h;§faihfs}
A 4,8
DM PUCIERIEZIED 3) DUV )
r<s 1<j i,
+ZZ{th (hiB) ]JFZZ[ hm)}
B#r T i,
—42[2 A+ 37 5T () 305 (%) } (4.6)
r<s 1<J Qi,Q i Q,S

The equality case of inequality (4.6)) holds if and only if

h o, = hely =Rl 0 = =Rl =0,

Qj Qg

h*a — h*a7 h*'r h:?7 — h*: =0

Qg

for distinct ¢,7,1 € {1,...,k} and distinct r, s,t € Agy.

For a given 7 € {1,...,k} and a given v; € A;, we have
& 2
0< ZZ(Zh —3h2i> +ZZ<Zh —3hji;“)

j=1r j=1 r

+3) (h] D243 (A — BT
r<s r<s

2 2

+sz(zhm, S, )+ (S - 0 )

Il<j ay <y ay o

=(n—N+3k-3) (ZhAA> —2(n — N + 3k)
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» [zhzThzs+zzha,aj Y S H b z<h:;;>2]

r<s Joag,T I1<j ai,o r

+(n—N+3k—3) <Zh ) —2(n — N + 3k)

’ [Z CUES I DI DD DA (h::ﬂ

r<s j ooay,r I<j ai,a r

(Som) « (3 |

S S A S Y hgu,haz%]

r<s Jj oag,r I<j ai,a

+2(n— N+ Sk){ SRR L) + > 0> (R, A+ B B

r<s J o oag,r

=(n—-N+3k-3)

—8(n— N + 3k)

S (i )+ X 05" 052

I<j op,0

:2(n—N+3k){M[<§h}‘A> <Zhw)}
_4[211% RO+ S TR h TN hE’JathZaJ]}

r<s i aj,r I<j ai,o
£ (e + i h2s) + 303 (W i i, )
r<s Joag,r
#3030 (i, + M) + 2 ()" + (2], (4.7)
I<j ai,oy

Thus we obtain

D (BRRT A BRE) + Yy (e, i+ b, b

r<s J oaj,r
+ZZ ST (hla, b, + BN BT ) +Z[hm h*%)}
<Jj ai,0
IDIETEES 3 SLNTES o) oY
r<s jooy,r I<j ap,a;
—~N+3k—3
i () s ()| as
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and the equality holds if and only if

Z hl o, = 3h, Z hiY, = 3hiT. (4.9)

Since the following inequalities hold (see [7]),

n—-N+3k—-3 n—-N+k—-1 n—N+3k—1-6%, 5
< < +nq
An—N+3k) 20— N+k+2) " o(n-N+3k+2- 650, 7o)
we get from (4.8) that
S (AR A+ ) + 0D (B, B+ Y B
r<s J oag,Tr
£33 (i, + 1) + 3 [(0)7 + 0527
I<j ay,aj
SRS INEES W I
r<s Jj ooy, 1<j ai,o

n—N+3k—1-6%" | 5

2 —N+3k+2-63" 1M)[(XA:WA) (Zh*%”’ (410

and the equality holds if and only if, for each i € {1,...,k},

Z hila, =3h1 =0, > hi =37 =0. (4.11)
Let us put
2 oo
=-|n—-N+3k+2-6 ) 4.12
. 3(n . 22+n> (1.12)
Since

b n; 2 n; b ;
22+ni_k_22+ni’ ZQJrjnj:k Z:?Jrnj 2+nl
i=1 i=1 e Jj=1

for each t € {N 4+ 1,...,n} we have

2
24 n; 3n;
0< L Bt . — "Rt

;TZ# 377/1 (a' e 2+nl TT)

+ZZ,%(h b))+ Y (B =B

/i aL </HL ’V‘T f;t

+Z w/2+n1n]Z \/2+nj nzz
i<j | V (24 nj)n; o R V(2 + n)n; o v
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1 ¢ t\2
+ g Z (htt - ghrr) +

2
n; ¢ 2+n; t
g + n; <htt n; ; haiaz‘>
24 3n; ’
T (St - )

i r#t
+2 Z - (he: — hEis,) S (- ngl)’
iy <[3Z :<¢St

2
+Z \/2+n1n32 \/2+n] nlz
V(2 +nj)n; o V(2 +n)n o aja]

2
+%Z(h?f—3h*t +ZQ+ (” 2:inizhiiim>

i<j

r#t o
1 k 6 2
=3 (n—N+3k—1—;2+ni> <;h§m>
k
T R P
P i=1 ¢ r#t

1 "6
+3 (n—N—i—?)k:—l—;M) (hit)2—2zi:(;htaiaihir
_22 Z h(XLCYz Qjg _22h37hfss

i<j Q;,Q r<s

41 an+3kf1fzk: 6 > n
3 _:124—’112‘ o

*

Q

) LT

_QZ Z ha athiaJ —Qthihx

1<j Q;,0 r<s

From (4.12)), this last inequality is equivalent to

wLnNJri%lcl Z‘l2+”’)<2h )—i—Z(ht

(n —N+3k+2 Zz 1 24n, r#t

Rev. Un. Mat. Argentina, Vol. 65, No. 2 (2023)



606 YAN JIANG, DANDAN CAI, AND LIANG ZHANG

+ZZ alal Zzhalal rr Z Z h’(xlozl ;o _th7his

i og,T 1<j @i, r<s

n—N+3k—-1-— 2112+m < et ) h*t
() ez

Jr
(n_N+3k+2_Zz 12+'n1 r#t

#3000 (i)’ = 30D halahi

=2 D it — Zhﬁhiil 0. (4.13)
1<j ag,Q; r<s

Noting that w > 0, we get from (4.13]) that

D2 (bl bl DR 4 303 (bl b+ Bl hl)

r<s i QT

30N (Mot R, )+ 3 [(h6)” + (i)’

i<j o, B#t

HPILEED B DLARLED D DR

r<s T QT 1<j Qi,Q

2 2
n—N+3k—1-627, -
21;1 24n; (Z hqu> —+ (Z hXA) ) (414)
2(n_N+3k+2—62¢:1ﬁ) A .

and the equality holds if and only if

ht, = (2+ ni)hg = 3nt

Tr?

Summing (4.10) and ( - 4.14)) yields
> |x (hfrh;‘? EUNED 3 ol (ISR Y

A r<s i oy,

B = (24 nohil,, = 3hEL. (4.15)

+;a§j (i, + i HE ) +Xt:l§t[( 5) (h%ﬂ
D [CHSIESY

42 SORSARIA TS TR B> TN T hdA, m,

r<s 1 QT 1<j @i,

2 2
n—N+3k—1-6%1 51 K ) (
- oy 2 | e ) (2o
. A A

2(n—N+3k+2-650, 7 ) B
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k
—4 [T“ =2 (L) = D §(R%(easen)en, ea)
i=1

A<B

+Z Z g (Ro(eaweﬁi)eﬁi’eai> + ZZ (hg?)2

i oo <Bi A r<s

Y Y () +222(hga)2]

A i<j ai,a i QLT

n—N+3k—1—6Zi 12? l( b )2 ( *3)21
_ + h .
2(n—N+3k+2- 6L 12%)%: EA: “ 2,4: M

(4.16)

Combining (4.6 and (4.16] - we have
k
[ Z 7( } [ n(n —1) Z n;(n; — ]
i=1

4[70 - ZTO(Li) = > 9(R(ea en)es ea)
i=1

A<B

P (e n)en )]

i oo <pBi

n? (0= N+3k—1-6%5, 5-)
2(n-N+3k+2-650, 5
According to and , we obtain

n(n—1) an i—l}

n(n—1) ni(n; — 1)
50(7’11’ cen ,’I’Lk) — TQ—F Z 2b‘|

%

(= + 1H*)1%).

20(ny,...,nk) = ¢

+4

n? (n—N+3k—1—62fﬂﬁ>
2(n-N+3k+2-650, 7
Simplifying (4.17)) yields inequality (4.5)).

Equality in (4.5) implies that the inequalities (4.6[), (4.10) and (4.14)) become
equalities. Thus, the second fundamental forms take the desired forms. O

(IH|? + (1= |1%).

(4.17)
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