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USING DIGRAPHS TO COMPUTE DETERMINANT,
PERMANENT, AND DRAZIN INVERSE OF CIRCULANT

MATRICES WITH TWO PARAMETERS

ANDRÉS M. ENCINAS, DANIEL A. JAUME, CRISTIAN PANELO, AND DENIS E. VIDELA

Abstract. This work presents closed formulas for the determinant, perma-
nent, inverse, and Drazin inverse of circulant matrices with two non-zero co-
efficients.

1. Introduction

Circulant matrices appear in many applications, for example, to approximate the
finite difference of elliptic equations with periodic boundary, and to approximate
periodic functions with splines. Circulant matrices play an important role in coding
theory and statistics. The standard reference for this topic is [9].

Among the main problems associated with circulant matrices are those of de-
termining invertibility conditions and computing their Drazin inverse. These prob-
lems have been widely treated in the literature by using the primitive n-th root of
unity and some polynomial associated with circulant matrices, see [9], [8], and [21].
There exist some classical and well-known results that enable us to solve almost
everything we would raise about the inverse or Drazin inverse of circulant ma-
trices. However, when dealing with specific families of circulant matrices, these
classical results yield unwieldy formulas. Thus, it is interesting to seek alternative
descriptions, and indeed, many papers have been devoted to this question. Direct
computation for the inverse of some circulant matrices has been proposed in many
works, see for example [11], [21], [25], [14], [8], and [17] (in chronological order).

Besides, the combinatorial structure of circulant matrices also has deserved at-
tention. Graphs whose adjacency matrix is circulant, specially those with integral
spectrum, have been studied in many works; see, for example, [22], [4], [12], [16],
and [20].
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In this work, we delve into the combinatorial structure of circulating matrices
with only two non-null generators, by considering the digraphs associated with this
kind of matrices. Therefore, we complete a previous work of some of the authors,
see [10], where only a specific class of these matrices was considered.

We use digraphs in the present work; for all the graph-theoretic notions not
explicitly defined here, the reader is referred to [2].

We warn the reader that, as is usual in circulant matrices, our matrix indexes
and permutations start at zero. Hence, permutations in this work are bijections
over t0, . . . , n´ 1u, and if

A “

„

1 2
3 4



,

then the set of indexes of A is t0, 1u. So A0 0 “ 1 and A1 0 “ 3. This is also why
in the present work rns denotes the set t0, . . . , n´ 1u instead of t1, . . . , nu.

For permutations, we use the cyclic notation: p0 2 1 4qp5 6q is the permutation
(in row notation) p2 4 1 3 0 6 5q, see [18]. Given a permutation α of rns,
we denote by Pα the n ˆ n matrix defined by pPαqαpjq j “ 1 and 0 otherwise.
The matrix Pα is known as the permutation matrix associated to α. It is well-
known that P´1

α “ PTα . The assignation α ÞÑ Pα from the symmetric group Sn to
the general lineal group GLpnq is a representation of Sn, i.e., Pαβ “ PαPβ where
product is composition. The cycle type of a permutation α is an expression of the
form

p1m1 , 2m2 , . . . , nmnq ,

where mk is the number of cycles of length k in α. It is well-known that the
conjugacy classes of Sn are determined by the cycle type, see [19, p. 3]. Thus, α
and β are conjugated (i.e., there exists a permutation σ such that σασ´1 “ β) if
and only if α and β have the same cycle type.

We use the matrix associated to the permutation
τn “ pn´ 1 n´ 2 ¨ ¨ ¨ 2 1 0q

many times along this work, so instead of Pτn
we just write Pn.

Notice that, for k P Z, we have that P 0
n “ In, P kn “ P kmodn

n “ Pτk
n

, detpPnq “
p´1qn´1, and

`

P kn
˘´1

“ Pn´kn . Moreover, τknpiq “ i´ kmodn.
A matrix C “ pci jq is called circulant with parameters c0, c1, . . . , cn´1 if

C “

»

—

—

—

–

c0 c1 . . . cn´1
cn´1 c0 . . . cn´2

...
...

. . .
...

c1 c2 . . . c0

fi

ffi

ffi

ffi

fl

“ Circpc0, . . . , cn´1q

or, equivalently,
ci j “ cj´imodn.

We have that
Circpc0, . . . , cn´1q “ c0In ` ¨ ¨ ¨ ` cn´1P

n´1
n .

Let A be an m ˆ n matrix and let S Ď rms, T Ď rns. The submatrix of A
obtained by deleting the rows in S and the columns in T is denoted by ApS|T q.
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The paper is organized as follows. In Section 2, we present our main idea
about how to work with circulant matrices with just two non-zero parameters:
untangling the associated digraphs. In Section 3, we explicitly find the matrices
that untangle the digraphs associated with our matrices. In Section 4, we find
explicit formulas for the determinant and permanent of circulant matrices with
two non-zero parameters. In Section 5, we give an explicit formula for the inverse
of non-singular circulant matrices with two non-zero coefficients. In Section 6, we
give an explicit formula for the Drazin inverse of singular circulant matrices with
two non-zero parameters. Finally, in Sections 7, 8, and 9 we generalize the previous
results for block circulant matrices.

2. Untangling the skein: two key permutations

Let n, s1, s2, and s be non-negative integers such that 0 ď s1 ă s2 ă n and
0 ă s ă n. Let a, b be non-zero complex numbers. We are going to work with the
following type of nˆ n circulant matrices:

aP s1
n ` bP s2

n .

We call it a circulant matrix with two parameters.
There are

`

n
2
˘

forms of circulant matrices with two parameters. Since aP s1
n `

bP s2
n “ P s1

n paIn ` bP
s2´s1
n q and aIn ` bPn´s1

n “ paIn ` bP
s1
n q

T , it looks like we
only need to understand pn´ 1q{2 of them. As we will see later, it is enough with
just one of them: aIn ` bPn.

As usual in number theory, the greatest common divisor of two integers n and s
is denoted by pn, sq. We find the following notation useful:

nzs :“ n
pn,sq .

We read it “n without s”. Notice that s pnzsq “ n psznq “ rn, ss, where rn, ss is
the lowest common multiple of n and s. The remainder of the integer division of x
by n is denoted by xmodn.

Let A “ pai jq be a matrix of order n. It is usual to associate a digraph of order n
to A, denoted by DpAq (see [6]). The vertices of DpAq are labeled by the integers
t0, 1, . . . , n´ 1u. If ai j ‰ 0, there is an arc from the vertex i to the vertex j of
weight ai j . When σ is a permutation, we just write Dpσq instead of D pPσq, and
we talk about digraphs and permutations associated.

In this section, we show that aP s1
n ` bP s2

n is associated with a digraph that has
pn, s2 ´ s1q main cycles of length nzps2 ´ s1q each, and we give two permutations
that allow us to untangle this digraph, in a sense that will be clear later.

The first untangle is given by the permutation associated with the matrix P s1
n ,

because aP s1
n ` bP s2

n “ P s1
n paIn ` bP

s2´s1
n q. Therefore, we only need to study

digraphs associated to matrices of the form aIn ` bP sn. In Figures 1 and 2 it can
be seen how this permutation untangles these digraphs.

Notice that D paIn ` bP snq has pn, sq connected components of order nzs, and
each of them has a main spanning cycle. Notice that for u, v P rns, in D paIn ` bP snq
we have a directed arc from u to v if and only if v ´ u “ smodn.
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Figure 1. On the left D
`

aP8 ` bP
7
8
˘

, and on the right D
`

aI8 ` bP
6
8
˘
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Figure 2. On the left D
`

aP 2
9 ` bP

5
9
˘

(b–arcs in blue and a–arcs
in red), and on the right D

`

aI9 ` bP
3
9
˘

.

Given n and s positive integers such that 0 ă s ă n, the pn, sq-canonical per-
mutation is

νn,s :“
pn,sq
ź

i“1
νn,s,i,

where

νn,s,i :“ pi pnzsq´1 i pnzsq´2 ¨ ¨ ¨ i pnzsq´ppnzsq´1q i pnzsq´pnzsqq.

The permutation νn,s has pn, sq cycles of length nzs in the natural-cyclic-order. For
instance, if we consider n “ 8 and s “ 6, we have that ν8,6 “ p3 2 1 0qp7 6 5 4q.
Notice that

Pνn,s
“ Ipn,sq b Pnzs,

where b denotes the usual Kronecker product between matrices, see [23].
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The permutations τsn and νn,s have the same cycle type. Therefore, for each
pair n, s with 0 ă s ă n, there exists a permutation σ such that στsnσ´1 “ νn,s.
The digraph Dpν8,6q can be seen in Figure 3. Notice that Dpν8,6q is an untangling
version of D

`

aI8 ` bP
6
8
˘

, up to loops. The untangling versions of digraphs of the
form D paP s1

n ` bP s2
n q are digraphs of the form D

`

aIn ` bPνn,s2´s1

˘

, see Figures 4
and 5.

Let n, s1, and s2 be integers such that 0 ă s1 ă s2 ă n. If nzs1 “ nzs2, then
νn,s1 “ νn,s2 , thus D pνn,s1q “ D pνn,s2q.

The permutations τs1
n and σ give us a block diagonal form of aP s1

n ` bP s2
n :

PσP
7
9
`

aP 2
9 ` bP

5
9
˘

PTσ “ aI9 ` bPν9,3

“

»

—

—

—

—

—

—

—

—

—

—

—

—

–

a b 0 0 0 0 0 0 0
0 a b 0 0 0 0 0 0
b 0 a 0 0 0 0 0 0
0 0 0 a b 0 0 0 0
0 0 0 0 a b 0 0 0
0 0 0 b 0 a 0 0 0
0 0 0 0 0 0 a b 0
0 0 0 0 0 0 0 a b
0 0 0 0 0 0 b 0 a

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ I3 b paI3 ` bP3q .

i %8,6piqmod p8, 6q `8,6piq
0 0 0
1 0 3
2 0 2
3 0 1
4 1 0
5 1 3
6 1 2
7 1 1

0 1

2

3

45

6

7

Figure 3. Dpν8,6q “ Dpν8,2q. Note that p8, 6q “ p8, 2q “ 2 and
8z6 “ 8z2 “ 4.

3. Finding σn,s

In order to compute the Drazin (group) inverse of a matrix of the form aP s1
n `

bP s2
n (among other computations) we need to find one σ explicitly. This can be

done if we find which vertices are together in the same connected component of
DpaIn ` bP snq. Since this digraph appears many times in our work, we just write
Dn,spa, bq instead of D paIn ` bP snq.
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Figure 4. On the left D
`

aP8 ` bP
7
8
˘

, and on the right its untan-
gled version D

`

aI8 ` bPν8,6

˘

.
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Figure 5. On the left D
`

aP 2
9 ` bP

5
9
˘

(in blue b–arcs and in red
a–arcs), and on the right its untangled version D

`

aI9 ` bPν9,3

˘

.

Let n and s be non-negative integers such that 0 ă s ă n. For each i P Z, we
define

Rpn, s, iq :“ ti` k smodn : k P Zu.
This is the set of all reachable vertices from vertex i in Dn,spa, bq. Notice that the
following statements are all equivalent:

(1) Rpn, s, i1q “ Rpn, s, i2q,
(2) i2 modn P Rpn, s, i1q,
(3) Rpn, s, i1q XRpn, s, i2q ‰ H, and
(4) i1 ´ i2 “ 0 mod pn, sq.

In Figure 6, we can see Rp8, 6, 0q and Rp8, 6, 1q.
In order to obtain explicitly a σ, we introduce the following functions:
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Rp8, 6, 0q “ t0, 6, 4, 2u

Rp8, 6, 1q “ t1, 7, 5, 3u
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Figure 6. D8,6pa, bq. Note that p8, 6q “ 2 and 8z6 “ 4.

i cycle8,6piq pos8,6piq
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4 1 1
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Figure 7. D9,3pa, bq. Note that p9, 3q “ 9z3 “ 3.

(1) %n,s : rns ÝÑ rpn, sqs,

%n,spiq :“ maxtk P rpn, sqs : i ě k pnzsqu.

(2) `n,s : rns ÝÑ rnzss,

`n,spiq :“ i´ %n,spiq pnzsqmodnzs.

(3) cyclen,s : rns ÝÑ rpn, sqs; if i P Rpn, s, hq, then

cyclen,spiq :“ h.

(4) posn,s : rns ÝÑ rnzss; if i P Rpn, s, hq and i “ t s` h, then

posn,spiq “ t.
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The functions %n,s, and `n,s give us, essentially, the cycle and the position on the
cycle of a vertex of Dpνn,sq, respectively, while the functions cyclen,s and posn,s
give us the main cycle and the position on the main cycle in Dn,spa, bq, respectively.

We embed these digraphs in the cylinder rpn, sqsˆrnzss. The following functions
and their pullbacks are these embeddings:

(5) Jn,s : rns ÝÑ rpn, sqs ˆ rnzss,

Jn,spiq “ p%n,spiq, `n,spiqq.

(6) pJn,s : rpn, sqs ˆ rnzss ÝÑ rns,

pJn,spx, yq “ y ` x pnzsq.

(7) Fn,s : rns ÝÑ rpn, sqs ˆ rnzss,

Fn,spiq “ pcyclen,spiq,posn,spiqq.

(8) pFn,s : rpn, sqs ˆ rnzss ÝÑ rns,

F̂n,spx, yq “ s y ` xmodn.

The function Jn,s embeds Dpνn,sq in rpn, sqs ˆ rnzss “in the same way” that Fn,s
embeds Dn,spa, bq in rpn, sqs ˆ rnzss.

Let A be a set; we denote the identity map by idA : AÑ A. If n and s are two
integers such that 0 ă s ă n, then the following identities are direct:

pJn,s ˝ Jn,s “ idrns,

Jn,s ˝ pJn,s “ idrpn,sqsˆrnzss,
pFn,s ˝ Fn,s “ idrns,

Fn,s ˝ pFn,s “ idrpn,sqsˆrnzss.

These expressions give us the next lemma.

Lemma 3.1. Let n and s be integers such that 0 ă s ă n. Then, the function
σn,s : rns ÝÑ rns, defined by σn,s :“ pFn,s ˝ Jn,s, is a permutation of rns and
σ´1
n,s “

pJn,s ˝ Fn,s.

The function Shiftn,s : rpn, sqs ˆ rnzss ÝÑ rpn, sqs ˆ rnzss, defined by

Shiftn,spx, yq :“ px, y ´ 1 modnzsq,

allows us to express τsn in terms of Fn,s and pFn,s, and νn,s in terms of Jn,s and
pJn,s.

Lemma 3.2. Let n and s be integers such that 0 ă s ă n. Then

τsn “
pFn,s ˝ Shiftn,s ˝Fn,s,

νn,s “ pJn,s ˝ Shiftn,s ˝Jn,s.
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Corollary 3.3. Let n and s be integers such that 0 ă s ă n. Then
νn,s “ σ´1

n,s ˝ τn,s ˝ σn,s,

Ipn,sq b Pnzs “ PTσn,s
P snPσn,s

.

Theorem 3.4. Let n, s1, and s2 be integers such that 0 ď s1 ă s2 ă n, and let
a, b be non-zero complex numbers. Then,
aP s1

n ` bP s2
n “ P s1

n Pσn,s2´s1

“

Ipn,s2´s1q b
`

aInzps2´s1q ` bPnzps2´s1q

˘‰

PTσn,s2´s1
.

Proof. Let s “ s2 ´ s1. Then, by Corollary 3.3,
PTσn,s

Pn´s1
n paP s1

n ` bP s2
n qPσn,s

“ aIn ` bP
T
σn,s

P snPσn,s

“ aIn ` b
`

Ipn,sq b Pnzs
˘

“ Ipn,sq b
`

aInzs ` bPnzs
˘

.

This concludes the proof. �

The following theorem shows that we can untangle
řnzs´1
k“0 akP

ks
n , in the same

way as in the case of P sn.

Theorem 3.5. Let s, n be positive integers such that s ă n and let ak be non-zero
complex numbers for k P rnzss. Then there exists a permutation σn,s of rns such
that

P´1
σn,s

¨

˝

pnzsq´1
ÿ

k“0
akP

s k
n

˛

‚Pσn,s “ Ipn,sq b

¨

˝

pnzsq´1
ÿ

k“0
akP

k
nzs

˛

‚.

Proof. Clearly νn,s has the same cycle type that τsn. Then, there exists a permu-
tation σn,s such that

σ´1
n,sτ

s
nσn,s “ νn,s.

By taking into account that the application P : Sn Ñ GLpnq, where Sn is the
symmetric group and GLpnq is the general lineal group, defined by P pσq “ Pσ
considered in the above section is a group homomorphism, we have that

P´1
σn,s

P snPσn,s
“ Pσ´1

n,sτs
nσn,s

“ Pνn,s
“ Ipn,sq b Pnzs.

In the same way, if we consider the powers P s kn with k P rnzss, we obtain
P´1
σn,s

P k sn Pσn,s
“ pP´1

σn,s
P snPσn,s

qk “ P k
σ´1

n,s˝τs
n˝σn,s

“ P kνn,s
.

By the property pAbBqpC bDq “ AC bBD of the Kronecker product, we have
that

P´1
σn,s

P k sn Pσn,s
“ P kνn,s

“ pIpn,sq b Pnzsq
k “ Ipn,sq b P

k
nzs

for all k P rnzss. By taking into account that A b pB ` Cq “ A b B ` A b C, we
obtain

P´1
σn,s

¨

˝

pnzsq´1
ÿ

k“0
akP

k s
n

˛

‚Pσn,s “

pnzsq´1
ÿ

k“0
ak

´

Ipn,sq b P
k
nzs

¯

“ Ipn,sq b

¨

˝

nzs´1
ÿ

k“0
akP

k
nzs

˛

‚,

as asserted. �
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4. Determinant and permanent of aP s1
n ` bP s2

n

A linear subdigraph L of a digraph D is a spanning subdigraph of D in which
each vertex has indegree 1 and outdegree 1 (there is exactly one arc getting into
each vertex, and there is exactly one arc (possibly the same) getting out of each
vertex), see [6].

Theorem 4.1 ([6]). Let A “ paijq be a square matrix of order n. Then

det pAq “
ÿ

L PLpDpAqq

p´1qn´cpLqw pLq

and
permA “

ÿ

L PLpDpAqq

wpLq,

where L pD pAqq is the set of all linear subdigraphs of the digraph DpAq, c pLq is
the number of cycles contained in L, and w pLq is the product of the weights of the
edges of L.

Theorem 4.2. Let n be a non-negative integer and let a, b be non-zero complex
numbers. Then

det paIn ` bPnq “ an ´ p´bq
n
.

Proof. Notice that the digraph Dn,1pa, bq has only two linear subdigraphs, the
whole cycle and n loops. The result follows from Theorem 4.1. �

Corollary 4.3. Let n, s1, and s2 be integers such that 0 ď s1 ă s2 ă n. Let a
and b be non-zero complex numbers. Then

det paP s1
n ` bP s2

n q “ p´1qpn´1qs1
´

anzps2´s1q ´ p´bq
nzps2´s1q

¯pn,s2´s1q

.

Hence, aP s1
n ` bP s2

n is singular if and only if anzps2´s1q ´ p´bq
nzps2´s1q “ 0.

Notice that anzps2´s1q ´ p´bq
nzps2´s1q “ 0 if and only if either a “ ˘b when

nz ps2 ´ s1q is even or a “ ´b when nz ps2 ´ s1q is odd.

Proof. Let s “ s2 ´ s1. By Theorem 3.4,
det paP s1

n ` bP s2
n q “ det pP s1

n qdet
`

Ipn,sq b
`

aInzs ` bPnzs
˘˘

.

Owing to det
`

P in
˘

“ p´1qpn´1q i, the result follows from Theorem 4.2. �

Example 4.4. The matrix aI8 ` bP 6
8 , whose associated digraph is in Figure 6, is

singular if and only if |a| “ |b |, and the same occurs with the matrix aP 1
8 ` bP 7

8 .
The matrix aI9 ` bP 3

9 , whose associated digraph is in Figure 7, is singular if and
only if a “ ´b. The matrix aP 2

9 ` bP
5
9 is also singular if and only if a “ ´b.

Corollary 4.5. Let n, s1, and s2 be integers such that 0 ď s1 ă s2 ă n. Let a
and b be non-zero complex numbers. Then

perm paP s1
n ` bP s2

n q “

´

anzps2´s1q ` bnzps2´s1q
¯pn,s2´s2q

.
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Proof. The result follows from Theorem 4.1 and Corollary 4.3: if A is a square
matrix and Q is a permutation matrix of the same order, then permQA “ permA,
see [15, Theorem 1.1]. �

5. Inverse of aP s1
n ` bP s2

n

Theorem 5.1. Let n be a non-negative integer and let a and b be non-zero complex
numbers. If aIn ` bPn is non-singular, then

paIn ` bPnq
´1
“

1
an ´ p´bqn

n´1
ÿ

i“0
p´1qibian´1´iP in.

Proof. We just check that

paIn ` bPnq

«

1
an ´ p´bqn

n´1
ÿ

i“0
p´1qibian´1´iP in

ff

“ In. �

Example 5.2. Let a, b be non-zero complex numbers. If a4 ´ p´bq4 ‰ 0, then

paI4 ` bP4q
´1
“

1
a4 ´ b4

Circ
`

a3,´ba2, b2a,´b3
˘

.

If a5 ´ p´bq5 ‰ 0, then

paI5 ` bP5q
´1
“

1
a5 ` b5

Circ
`

a4,´ba3, b2a2,´b3a, b4
˘

.

In order to obtain an explicit formula for the inverse of a non-singular circulant
matrix of the form aP s1

n ` bP s2
n , we define

ρn,spiq “ p´1qposn,spiq δ0,cyclen,spiq
bposn,spiq apnzsq´1´posn,spiq, (5.1)

where δ is the usual Kronecker delta. Notice that ρn,s satisfies the following prop-
erties:

(1) For n ą 0, ρn,1piq “ p´1qibian´i´1 for all i “ 0, . . . , n´ 1.
(2) For 0 ă s ă n, ρnzs,1piq “ ρn,spi sq for all i “ 0, . . . , pnzsq ´ 1.

Corollary 5.3. Let n, s1, and s2 be integers such that 0 ď s1 ă s2 ă n. Let a
and b be non-zero complex numbers such that anzps2´s1q ´ p´bq

nzps2´s1q ‰ 0. Then

paP s1
n ` bP s2

n q
´1
“

1
anzps2´s1q ´ p´bqnzps2´s1q

n´1
ÿ

i“0
ρn,s2´s1pi` s1qP

i
n.

Proof. Let s “ s2 ´ s1. By Theorem 3.4 we have that paP s1
n ` bP s2

n q
´1 is equal to

Pσn,s

”

Ipn,sq b
`

aInzs ` bPnzs
˘´1

ı

PTσn,s
Pn´s1
n .

Thus, by Theorem 5.1 and (5.1),

paP s1
n ` bP s2

n q
´1
“ Pσn,s

¨

˝

pnzsq´1
ÿ

i“0
Ipn,sq b

ρnzs,1piq

anzs ´ p´bqnzs
P inzs

˛

‚PTσn,s
Pn´s1
n .
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By Corollary 3.3 we have that

P sn “ Pσn,s

`

Ipn,sq b Pnzs
˘

PTσn,s
(5.2)

and
Pσn,s

´

Ipn,sq b P
i
nzs

¯

PTσn,s
“ P i sn . (5.3)

Then

paP s1
n ` bP s2

n q
´1
“

pnzsq´1
ÿ

i“0

ρnzs,1piq

anzs ´ p´bqnzs
P pi sq´s1
n

“

pnzsq´1
ÿ

i“0

ρn,spi sq

anzs ´ p´bqnzs
P pi sq´s1
n

“

n´1
ÿ

j“0

ρn,spj ` s1q

anzs ´ p´bqnzs
P jn. �

Example 5.4. Let a and b be two real numbers such a4 ´ p´bq4 ‰ 0. We will
compute

`

aP12 ` bP
4
12
˘´1. Since 4´ 1 “ 3 and 12z3 “ 4, by Theorems 3.4 and 5.1

we know that the inverse of aI12 ` bP
3
12 is composed essentially by 3 blocks of

Circ
`

a3,´a2b, ab2,´b3
˘

.

They are merged in a 12 ˆ 12 matrix via P12 and Pσ12,3 . Since s1 “ 1, we have
that p12, 3q “ 3, so there are 3 major cycles of length 4 in D

`

aI12 ` bP
3
12
˘

:
0 Ñ 3 Ñ 6 Ñ 9 Ñ 0,
1 Ñ 4 Ñ 7 Ñ 10 Ñ 1,
2 Ñ 5 Ñ 8 Ñ 11 Ñ 2.

Now we compute the coefficients of the inverse:
i cycle12,3pi` 1q δ0,cycle12,3pi`1q pos12,3pi` 1q ρ12,3pi` 1q
0 1 0 0 0
1 2 0 0 0
2 0 1 1 ´a2b

3 1 0 1 0
4 2 0 1 0
5 0 1 2 ab2

6 1 0 2 0
7 2 0 2 0
8 0 1 3 ´b3

9 1 0 3 0
10 2 0 3 0
11 0 1 0 a3
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Therefore,
`

aP12 ` bP
4
12
˘´1

“
1

a4 ´ b4
Circ

`

0, 0,´ba2, 0, 0, b2a, 0, 0,´b3, 0, 0, a3˘ .

6. Drazin inverse of aP s1
n ` bP s2

n

Given a matrix A, the column space of A is denoted by RankpAq and its di-
mension by rankA. The null space of A is denoted by Null pAq and its dimension,
called nullity, by nullpAq. The index of a square matrix A, denoted by indpAq,
is the smallest non-negative integer k for which RankpAkq “ RankpAk`1q. It is
well-known that a circulant matrix has index 0 or 1, see [9]. Let A be a matrix of
index k. The Drazin inverse of A, denoted by AD, is the unique matrix such that

(1) AAD “ ADA,
(2) Ak`1AD “ Ak,
(3) ADAAD “ AD.

In [10], the following Bjerhammar-type condition for the Drazin inverse was
proved. We find it handy for checking the Drazin conditions in combinatorial
settings.

Theorem 6.1 ([10]). Let A and D be square matrices of order n, with indpAq “ k,
such that Null

`

Ak
˘

“ Null pDq, and AD “ DA. Then Ak`1D “ Ak if and only if
D2A “ D.

Theorem 6.2. Let n, s1, and s2 be integers such that 0 ď s1 ă s2 ă n. Let a
and b be non-zero complex numbers such that anzps2´s1q ´ p´bq

nzps2´s1q “ 0. Then
paP s1

n ` bP s2
n q

D equals

Pn´s1
n Pσn,s2´s1

”

Ipn,s2´s1q b
`

aInzps2´s1q ` bPnzps2´s1q

˘D
ı

PTσn,s2´s1
.

Proof. The following two facts are well-known. If A “ XBX´1, then AD “

XBDX´1. If AB “ BA, then pABqD “ BDAD “ ADBD. See [5] or [7].
In 1997, Wang proved that pAbBqD “ ADbBD and indpAbBq “ maxtindpAq,

indpBqu, see [24, Theorem 2.2]. Let s “ s2 ´ s1. Then, by Theorem 3.4,

paP s1
n ` bP s2

n q
D
“ Pn´s1

n

”

Pσn,s

“

Ipn,sq b
`

aInzs ` bPnzs
˘‰

PTσn,s

ıD

“ Pn´s1
n Pσn,s

“

Ipn,sq b
`

aInzs ` bPnzs
˘‰D

PTσn,s

“ Pn´s1
n Pσn,s

”

Ipn,sq b
`

aInzs ` bPnzs
˘D

ı

PTσn,s
. �

Therefore, we just need to study the Drazin inverse of matrices of the form
aIn ` bPn.

By Corollary 4.3, we know that aP s1
n ` bP s2

n is singular if and only if anzs ´
p´bq

nzs
“ 0, where s “ s2 ´ s1. If nzs is even, then anzs ´ p´bqnzs “ 0 if and

only if |a| “ |b|. If nzs is odd, then anzs ´ p´bqnzs “ 0 if and only if a “ ´b.
Hence, matrices of the form a pIn ´ Pnq are always singular, but matrices of the
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form a pIn ` Pnq are singular if and only if n is even. All of these facts reduce
the computation of the Drazin inverse of singular circulant matrices of the form
aP s1

n ` bP
s2
n to the computation of the Drazin inverse of just two matrices: In´Pn

and I2n ` P2n.

6.1. Drazin inverse of In ´ Pn.

Theorem 6.3. Let n be a non-negative integer. The Drazin inverse of aIn ´ aPn
is

pIn ´ Pnq
D :“ 1

2n

n´1
ÿ

i“0
pn´ 2 i´ 1qP in. (6.1)

Example 6.4. Let a be a non-zero complex number. Thus, we have that

paI4 ´ aP4q
D
“ 1

8a Circ p3, 1,´1,´3q

and

paI5 ´ aP5q
D
“ 1

10a Circ p4, 2, 0,´2,´4q .

In order to prove this theorem, we will use some polynomial tools. The idea
is to prove that both matrices in (6.1) have the same null space, and then use
Theorem 6.1.

We denote by 1n the vector of all ones. The easy proof of the following lemma
is left to the reader.

Lemma 6.5. Let n be a non-negative integer. Then

1n P Null pIn ´ Pnq XNull
˜

1
2n

n´1
ÿ

i“0
pn´ 2 i´ 1qP in

¸

.

Every circulant matrix Circ pc0, . . . , cn´1q has its associated polinomial PCpxq “
řn´1
i“0 cix

i. Ingleton proved the following proposition in 1955.

Proposition 6.6 ([13, Proposition 1.1]). The rank of a circulant matrix C of
order n is n´d, where d is the degree of the greatest common divisor of xn´1 and
the associated polynomial of C.

This means that in order to know the rank of some circulant matrix, it is enough
to know how many n-th roots of the unit are roots of its associated polynomial.

Let us consider the polynomials

Hn
j pxq “

n´1
ÿ

i“0
pn´ 2 pi` jq ´ 1q xi (6.2)

for j “ 0, . . . , n´1. Notice that Hn
0 pxq is the associated polynomial of the circulant

matrix
řn´1
i“0 pn´ 2 i´ 1qP in.

We denote by Ω` the set tx P C : x` “ 1u of `-th roots of the unit. Notice that

Ωn “ tωkn : k “ 0, . . . , n´ 1u,
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where ω “ expp 2πi
n q, i.e., ωkn are exactly the roots of the polynomial ppxq “ xn´ 1.

Moreover, they are all simple roots of ppxq “ xn ´ 1, because they are all different
and p has degree n. Moreover, if we define

Φnpxq :“ xn ´ 1
x´ 1 “

n´1
ÿ

i“0
xi,

then ωkn are all simple roots of Φn for any k ‰ 0. In terms of derivatives, this
means that

Φnpωq “ 0 and Φ1npωq ‰ 0

for all ω P Ωn r t1u.

Proposition 6.7. Let n be a non-negative integer. Then

Hn
j pωq ‰ 0

for all j “ 0, . . . , n´ 1 and ω P Ωn r t1u.

Proof. We have that

Hn
j pxq “

n´1
ÿ

i“0
pn´ 2 pi` jq ´ 1q xi “ pn´ 2 j ´ 1q

n´1
ÿ

i“0
xi ´ 2

n´1
ÿ

i“0
i xi.

Notice that
řn´1
i“0 i x

i “ xΦ1npxq, and so we obtain

Hn
j pxq “ pn´ 2 j ´ 1qΦnpxq ´ 2xΦ1npxq. (6.3)

Now, assume that Hn
j pωq “ 0 for some ω P Ωn r t1u, thus (6.3) implies that

0 “ pn´ 2 j ´ 1qΦnpωq ´ 2ωΦ1npωq.

Hence, we have that ωΦ1npωq “ 0, since Φnpωq “ 0. But this cannot occur since
ω ‰ 0 and ω are all simple roots of Φn. Therefore Hn

j pωq ‰ 0 for all j “ 0, . . . , n´1
and ω P Ωn r t1u, as asserted. �
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We are ready to prove the main result of the subsection.

Proof of Theorem 6.3. Since the index of all singular circulant matrices is 1 and
the rank of In ´ Pn is clearly n´ 1, by Propositions 6.6 and 6.7 we have that

Null pIn ´ Pnq “ Null
˜

1
2n

n´1
ÿ

i“0
pn´ 2 i´ 1qP in

¸

.

By Theorem 6.1, we just need to check that

pIn ´ Pnq
2

˜

1
2n

n´1
ÿ

i“0
pn´ 2 i´ 1qP in

¸

“ In ´ Pn,

which is left to the reader. �

In order to obtain an explicit formula for the Drazin inverse of circulant matrices
of the form P s1

n ´ P s2
n we define

ρ˚n,spiq :“ δ0,cyclen,spiq

`

nzs´ 2 posn,spiq ´ 1
˘

, (6.4)

where δ is the usual Kronecker delta. In this case, ρ˚ satisfies the following:
(1) For n ą 0, ρ˚n,1piq “ pn´ 2i´ 1q for all i “ 0, . . . , n´ 1.
(2) For 0 ă s ă n, ρ˚nzs,1piq “ ρ˚n,spi sq for all i “ 0, . . . , pnzsq ´ 1.

Corollary 6.8. Let n, s1, and s2 be integers such that 0 ď s1 ă s2 ă n. Then

pP s1
n ´ P s2

n q
D
“

1
2 pnz ps2 ´ s1qq

n´1
ÿ

i“0
ρ˚n,s2´s1

pi` s1qP
i
n.

Proof. Let s “ s2 ´ s1. By Theorem 6.2 we have that pP s1
n ´ P s2

n q
D is equal to

Pn´s1
n Pσn,s

”

Ipn,sq b
`

Inzs ´ Pnzs
˘D

ı

PTσn,s
.

Thus, by Theorem 6.3 and (6.4),

pP s1
n ´ P s2

n q
D
“ Pn´s1

n Pσn,s

¨

˝

pnzsq´1
ÿ

i“0
Ipn,sq b

ρ˚nzs,1piq

2 pnzsq P
i
nzs

˛

‚PTσn,s
.

Hence, by Corollary 3.3 and expressions (5.2) and (5.3),

pP s1
n ´ P s2

n q
D
“

pnzsq´1
ÿ

i“0

ρ˚nzs,1piq

2 pnzsq P
pi sq´s1
n

“

pnzsq´1
ÿ

i“0

ρ˚n,spi sq

2 pnzsq P
pi sq´s1
n

“

n´1
ÿ

j“0

ρ˚n,spj ` s1q

2 pnzsq P jn. �
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Example 6.9. We compute
`

aP12 ´ aP
4
12
˘D. Since 12z3 “ 4, by Theorems 6.2

and 6.3 we know that the Drazin inverse is essentially 3 blocks of Circ p3, 1,´1,´3q
merged in a 12ˆ 12 matrix via P12 and Pσ12,3 .

i cycle12,3pi` 1q δ0,cycle12,3pi`1q pos12,3pi` 1q ρ˚12,3pi` 1q
0 1 0 0 0
1 2 0 0 0
2 0 1 1 1
3 1 0 1 0
4 2 0 1 0
5 0 1 2 ´1
6 1 0 2 0
7 2 0 2 0
8 0 1 3 ´3
9 1 0 3 0
10 2 0 3 0
11 0 1 0 3

Therefore,
`

aP12 ´ aP
4
12
˘D
“

1
8 a Circ p0, 0, 1, 0, 0,´1, 0, 0,´3, 0, 0, 3q.

6.2. Drazin inverse of I2n ` P2n.

Theorem 6.10. Let n be a non-negative integer. The Drazin inverse of I2n`P2n
is

pI2n ` P2nq
D
“

1
4n

2n´1
ÿ

i“0
p´1qi p2n´ 2 i´ 1qP i2n. (6.5)

The idea of the proof is the same as before, i.e., we want to show that both
matrices in (6.5) have the same null space, and then use Theorem 6.1.

We define ˘1n “ pp´1qiq2n´1
i“0 P R2n, a particular vector of ones and minus ones.

The following lemma can be proved easily and its proof is left to the reader.

Lemma 6.11. Let n be a non-negative integer. Then

˘1n P Null pI2n ` P2nq XNull
˜

1
4n

2n´1
ÿ

i“0
p´1qi p2n´ 2 i´ 1qP i2n

¸

.

Let us consider the polynomials

pH2n
j pxq “

2n´1
ÿ

i“0
p´1qi`j p2n´ 2 pi` jq ´ 1q xi

for j “ 0, . . . , 2n´1. As before, notice that pH2n
0 pxq is the associated polynomial of

the circulant matrix
ř2n´1
i“0 p´1qi p2n´ 2 i´ 1qP i2n. The following result ensures

that its rank is 2n´ 1.
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Proposition 6.12. Let n be a non-negative integer. Then

pH2n
j pωq ‰ 0

for all j “ 0, . . . , 2n´ 1 and ω P Ω2n r t´1u.

Proof. On the one hand, the linear transformation T pxq “ ´x for x P C is a
permutation on Ω2n, i.e., we have that

ω is a p2nq-th root of 1 ðñ ´ω is a p2nq-th root of 1. (6.6)

On the other hand, if Ci`j “ 2n´ 2 pi` jq ´ 1 we have that

pH2n
j pxq “

2n´1
ÿ

i“0
p´1qi`jCi`jxi “ p´1qj

2n´1
ÿ

i“0
Ci`jp´xq

i “ p´1qjH2n
j p´xq,

where H2n
j is as in (6.2). By (6.6) and Proposition 6.7 we obtain

pH2n
j pωq “ 0 ðñ H2n

j p´ωq “ 0 ðñ ω “ ´1.

So, if ω ‰ ´1, then pH2n
j pωq ‰ 0, as desired. �

We are ready to prove the main result of the subsection.

Proof of Theorem 6.10. The rank of I2n`P2n is clearly 2n´ 1. Hence, by Lemma
6.11 and Proposition 6.12,

Null pI2n ` P2nq “ Null
˜

1
4n

2n´1
ÿ

i“0
p´1qi p2n´ 2 i´ 1qP i2n

¸

.

By Theorem 6.1, it suffices to check that

pI2n ` P2nq
2

˜

1
4n

2n´1
ÿ

i“0
p´1qi p2n´ 2 i´ 1qP i2n

¸

“ I2n ` P2n,

which is left to the reader. �

Corollary 6.13. Let n, s1, and s2 be integers such that 0 ď s1 ă s2 ă 2n. Then

pP s1
2n ` P

s2
2nq

D
“

1
2 p2nz ps2 ´ s1qq

2n´1
ÿ

i“0
p´1qi`s1ρ˚2n,s2´s1

pi` s1qP
i
2n.

Example 6.14. Let us compute
`

aP12 ` aP
4
12
˘D. Since 12z3 “ 4, by Theorems 6.2

and 6.3 we know that the Drazin inverse is essentially 3 blocks of Circ p3,´1,´1, 3q
merged in a 12ˆ 12 matrix via P12 and Pσ12,3 . Since 4´ 1 “ 3, we have 12z3 “ 4,
and p12, 3q “ 3. Therefore, we have
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i cycle12,3pi` 1q δ0,cycle12,3pi`1q pos12,3pi` 1q p´1qi`1ρ˚12,3pi` 1q
0 1 0 0 0
1 2 0 0 0
2 0 1 1 ´1
3 1 0 1 0
4 2 0 1 0
5 0 1 2 ´1
6 1 0 2 0
7 2 0 2 0
8 0 1 3 3
9 1 0 3 0
10 2 0 3 0
11 0 1 0 3

Therefore,
`

aP12 ` aP
4
12
˘D
“

1
8 a Circ p0, 0,´1, 0, 0,´1, 0, 0, 3, 0, 0, 3q.

7. Block circulant matrices with two parameters

Let n, s1, and s2 be non-negative integers such that 0 ď s1 ă s2 ď n´ 1. Let A
and B be two square matrices of order r. We will use the basic properties of the
Kronecker product, see [23]. The matrices of the form P s1

n b A` P s2
n b B we call

block circulant matrices with two parameters.
For example, for the matrices

A “

„

1 2
2 1



and B “

„

´1 3
3 ´1



, (7.1)

we have that P8 bA` P
3
8 bB is

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 1 2 0 0 -1 3 0 0 0 0 0 0 0 0
0 0 2 1 0 0 3 -1 0 0 0 0 0 0 0 0
0 0 0 0 1 2 0 0 -1 3 0 0 0 0 0 0
0 0 0 0 2 1 0 0 3 -1 0 0 0 0 0 0
0 0 0 0 0 0 1 2 0 0 -1 3 0 0 0 0
0 0 0 0 0 0 2 1 0 0 3 -1 0 0 0 0
0 0 0 0 0 0 0 0 1 2 0 0 -1 3 0 0
0 0 0 0 0 0 0 0 2 1 0 0 3 -1 0 0
0 0 0 0 0 0 0 0 0 0 1 2 0 0 -1 3
0 0 0 0 0 0 0 0 0 0 2 1 0 0 3 -1

-1 3 0 0 0 0 0 0 0 0 0 0 1 2 0 0
3 -1 0 0 0 0 0 0 0 0 0 0 2 1 0 0
0 0 -1 3 0 0 0 0 0 0 0 0 0 0 1 2
0 0 3 -1 0 0 0 0 0 0 0 0 0 0 2 1
1 2 0 0 -1 3 0 0 0 0 0 0 0 0 0 0
2 1 0 0 3 -1 0 0 0 0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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The following tells us that it is enough to study circulant matrices of the form
In bA` P

s
n bB. We have that

P s1
n bA` P s2

n bB “ P s1
n b Ir

`

In bA` P
s2´s1
n bB

˘

.

Thus, if P s1
n bA` P s2

n bB is non-singular, then

pP s1
n bA` P s2

n bBq´1 “ pIn bA` P
s2´s1
n bBq´1Pn´s1

n b Ir.

The next is a direct consequence of the following fact: i ´ j “ n ´ s mod n if
and only if j ´ i “ s mod n.

pIn bA` P
s
n bBq

T
“ In bA

T ` Pn´sn bBT .

Let s “ s2 ´ s1. Note that by Theorem 3.4 we have that the matrix Ipn,sq b
`

Inzs bA` Pnzs bB
˘

is equal to

´

PTσn,s
b Ir

¯

`

Pn´s1
n b Ir

˘

pP s1
n bA` P s2

n bBq
`

Pσn,s
b Ir

˘

. (7.2)

For the matrices given in (7.1) we have that

´

PTσ8,2
b I2

¯

`

P 7
8 b I2

˘ `

P8 bA` P
3
8 bB

˘ `

Pσ8,2 b I2
˘

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 2 -1 3 0 0 0 0 0 0 0 0 0 0 0 0
2 1 3 -1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 2 -1 3 0 0 0 0 0 0 0 0 0 0
0 0 2 1 3 -1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 -1 3 0 0 0 0 0 0 0 0
0 0 0 0 2 1 3 -1 0 0 0 0 0 0 0 0

-1 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0
3 -1 0 0 0 0 2 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 -1 3 0 0 0 0
0 0 0 0 0 0 0 0 2 1 3 -1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 2 -1 3 0 0
0 0 0 0 0 0 0 0 0 0 2 1 3 -1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 2 -1 3
0 0 0 0 0 0 0 0 0 0 0 0 2 1 3 -1
0 0 0 0 0 0 0 0 -1 3 0 0 0 0 1 2
0 0 0 0 0 0 0 0 3 -1 0 0 0 0 2 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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8. Determinant of block circulant matrices with two parameters

From the Schur complement we have the following proposition.

Proposition 8.1. Suppose E, F , G, and H are respectively p ˆ p, p ˆ q, q ˆ p,
and q ˆ q matrices, with H non-singular. If

M “

„

E F
G H



,

then
detpMq “ detpHqdetpE ´ FH´1Gq.

Let k be a non-negative integer. We denote by ~vk a k ˆ 1 vector and by ~uk a
1ˆ k vector given by

p~vkqi 0 “

#

1 if i “ k ´ 1,
0 otherwise,

and

p~ukq0 j “

#

1 if j “ 0,
0 otherwise.

In the proof of the following lemma we use the notation given in [3]. Let K be
an mˆn matrix. If S Ď rms and T Ď rns, then K rS|T s will denote the submatrix
of K determined by the rows corresponding to S and the columns corresponding
to T .

Lemma 8.2. Let n be a non-negative integer. Let A and B two non-zero square
matrices or order r. If AB “ BA and A is non-singular, then

detpIn bA` Pn bBq “ detpAqn detpIr ´ p´A´1Bqnq.

Proof. For 1 ď i ď n´ 1, we define the following sequences of matrices:
(1) Ei :“ In rrn´ is|rn´ iss bA` Pn rrn´ is|rn´ iss bB,
(2) Fi :“ ~vn´i bB,
(3) Gi :“ ~un´i b p´Aq

´i`1Bi and
(4) Hi :“ A.

Note that

In bA` Pn bB “

„

E1 F1
G1 H1



and Ei´1 ´ Fi´1H
´1
i´1Gi´1 “

„

Ei Fi
Gi Hi



for 2 ď i ď n´ 1. Therefore, by Proposition 8.1,

detpIn bA` Pn bBq “ detpH1qdetpE1 ´ F1H
´1
1 G1q

and
detpEi´1 ´ Fi´1H

´1
i´1Gi´1q “ detpHiqdetpEi ´ FiH´1

i Giq
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for 2 ď i ď n´ 1. Therefore

detpIn bA` Pn bBq “
n´1
ź

i“1
detpHiqdetpEi ´ FiH´1

i Giq

“ pdetpAqqn´2 detpEn´1 ´ Fn´1H
´1
n´1Gn´1q

“ detpAqn detpIr ´ p´A´1Bqnq. �

Given the matrix P s1
n b A` P s2

n bB “ pP s1
n b IrqpIn b A` P

s2´s1
n bBq, note

that

detpP s1
n bA` P s2

n bBq “ detpP s1
n b IrqdetpIn bA` P s2´s1

n bBq,

and detpP s1
n b IrqdetpIn bA` P s2´s1

n bBq is equal to

detpP s1
n b IrqdetppPTσn,s2´s1

b IrqpIn bA` P
s2´s1
n bBqpPσn,s2´s1

b Irqq. (8.1)

Theorem 8.3. Let n, s1, and s2 be non-negative integers such that 0 ď s1 ă
s2 ď n ´ 1, and let A and B two non-zero square matrices or order r such that
AB “ BA. We have the following:

(1) if A is non-singular, then

detpP s1
n bA` P s2

n bBq

“ detpP s1
n q

r detpAqn
”

det
´

Ir ´ p´A
´1Bqnzps2´s1q

¯ıpn,s2´s1q

.

(2) If B is non-singular and A is singular, then

detpP s1
n bA` P s2

n bBq

“ detpP s2
n q

r detpBqn
”

det
´

Ir ´ p´B
´1Aqnzpn´s2`s1q

¯ıpn,n´s2`s1q

.

Proof. Let s “ s2 ´ s1. Assume that A is non-singular. By (8.1) and Lemma 8.2
we have that

detpP s1
n bA` P s2

n bBq

“ detpP s1
n b IrqdetpIn bA` P sn bBq

“ detpP s1
n b IrqdetppPTσn,s

b IrqpIn bA` P
s
n bBqpPσn,s

b Irqq

“ detpP s1
n b Irqdet

`

Ipn,sq b pInzs bA` Pnzs bBq
˘

“ detpP s1
n b Irq

`

detpInzs bA` Pnzs bBq
˘pn,sq

“ detpP s1
n q

r detpAqn
´

det
´

Ir ´ p´A
´1Bqnzs

¯¯pn,sq

.

If B is non-singular and A is singular the proof is analogous to the previous
proof. �

For example, for the matrices A and B given in (7.1), we have

det
`

P8 bA` P
3
8 bB

˘

“ pdetpP8qq
2
pdetpAqq8

`

det
`

I2 ´ p´A
´1Bq4

˘˘2
.
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Since

I2 ´ p´A
´1Bq4 “

81
20728

„

´1296 ´1295
´1295 ´1296



, det
`

I2 ´ p´A
´1Bq4

˘

“
1

2591 ,

and detpAq “ ´3, we obtain det
`

P8 bA` P
3
8 bB

˘

“ p´3q8
` 1

2591
˘2.

Corollary 8.4. Let n, s1, and s2 be non-negative integers such that 0 ď s1 ă
s2 ď n´ 1, and let A and B be two non-zero square matrices or order r such that
AB “ BA. We have that detpP s1

n bA` P s2
n bBq “ 0 if and only if

(1) A,B are singular, or
(2) A is non-singular, but Ir ´ p´A´1Bqpnzps2´s1qq is singular, or
(3) A is singular, but B is non-singular and Ir ´p´B´1Aqpnzpn´s2`s1qq is sin-

gular.

9. Inverse of block circulant matrices with two parameters

Theorem 9.1. Let n be a non-negative integer and let A and B be non-zero square
matrices of order r, such that AB “ BA. If InbA`PnbB and An´ p´Bqn are
non-singular, then

pIn bA` Pn bBq
´1
“

n´1
ÿ

i“0
P in b

”

p´1qiBiAn´i´1 pAn ´ p´Bqnq
´1

ı

Proof. We just check that

pIn bA` Pn bBq

«

n´1
ÿ

i“0
P in b

”

p´1qiBiAn´i´1 pAn ´ p´Bqnq
´1

ı

ff

“ In b Ir. �

In order to obtain an explicit formula for the inverse of non-singular circulant
matrices of the form P s1

n bA` P s2
n bB, we define

Ωn,spiq “ p´1qposn,spiq δ0,cyclen,spiq
Bposn,spiqAnzs´1´posn,spiq

”

Anzs ´ p´Bqnzs
ı´1

,

assuming that
“

Anzs ´ p´Bqnzs
‰´1 exists. Notice that Ω satisfies the following

properties:
(1) For n ą 0, Ωn,1piq “ p´1qiBiAn´i´1 for all i “ 0, . . . , n´ 1.
(2) For 0 ă s ă n, Ωnzs,1piq “ Ωn,spi sq for all i “ 0, . . . , pnzsq ´ 1.

Theorem 9.2. Let n, s1, s2, and r be non-negative integers such that 0 ď s1 ă
s2 ď n ´ 1. Let A and B be two square matrices of order r such that AB “ BA.
If P s1

n bA` P s2
n bB and Anzs2´s1 ´ p´Bqnzs2´s1 are non-singular, then

pP s1
n bA` P s2

n bBq
´1
“

n´1
ÿ

i“0
P in b Ωn,s2´s1pi` s1q.
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Proof. Let s “ s2 ´ s1. By (7.2) we have that pP s1
n bA` P s2

n bBq
´1 is equal to

`

Pσn,s
b Ir

˘ “

Ipn,sq b
`

Inzs bA` Pnzs bB
˘‰´1

´

PTσn,s
b Ir

¯

`

Pn´s1
n b Ir

˘

.

Thus, by Theorem 9.1 and the definition of Ωn,s, pP s1
n bA` P s2

n bBq
´1 is

`

Pσn,s
b Ir

˘

¨

˝

pnzsq´1
ÿ

i“0
Ipn,sq b P

i
nzs b Ωnzs,1piq

˛

‚

´

PTσn,s
b Ir

¯

`

Pn´s1
n b Ir

˘

.

Then, by (5.2) and (5.3),

pP s1
n bA` P s2

n bBq
´1
“

pnzsq´1
ÿ

i“0
P pi sq´s1
n b Ωnzs,1piq

“

pnzsq´1
ÿ

i“0
P pi sq´s1
n b Ωn,spi sq

“

n´1
ÿ

j“0
P jn b Ωn,spj ` s1q. �

For example, for the matrices given in (7.1) we have that
`

P8 bA` P
3
8 bB

˘´1

is equal to

P8 b Ω8,2p2q ` P 3
8 b Ω8,2p4q ` P 5

8 b Ω8,2p6q ` P 7
8 b Ω8,2p0q,

where

Ω8,2p0q “
1

2519

„

2357 2206
2206 2357



,

Ω8,2p2q “ ´
1

2519

„

1823 1219
1219 1823



,

Ω8,2p4q “
1

2519

„

202 ´194
´194 202



,

and

Ω8,2p6q “ ´
1

2519

„

5508 ´4156
´4156 5508



.
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Verlag, New York, 2003. MR Zbl
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