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USING DIGRAPHS TO COMPUTE DETERMINANT,
PERMANENT, AND DRAZIN INVERSE OF CIRCULANT
MATRICES WITH TWO PARAMETERS

ANDRES M. ENCINAS, DANIEL A. JAUME, CRISTIAN PANELO, AND DENIS E. VIDELA

ABSTRACT. This work presents closed formulas for the determinant, perma-
nent, inverse, and Drazin inverse of circulant matrices with two non-zero co-
efficients.

1. INTRODUCTION

Circulant matrices appear in many applications, for example, to approximate the
finite difference of elliptic equations with periodic boundary, and to approximate
periodic functions with splines. Circulant matrices play an important role in coding
theory and statistics. The standard reference for this topic is [9].

Among the main problems associated with circulant matrices are those of de-
termining invertibility conditions and computing their Drazin inverse. These prob-
lems have been widely treated in the literature by using the primitive n-th root of
unity and some polynomial associated with circulant matrices, see [9], [§], and [21].
There exist some classical and well-known results that enable us to solve almost
everything we would raise about the inverse or Drazin inverse of circulant ma-
trices. However, when dealing with specific families of circulant matrices, these
classical results yield unwieldy formulas. Thus, it is interesting to seek alternative
descriptions, and indeed, many papers have been devoted to this question. Direct
computation for the inverse of some circulant matrices has been proposed in many
works, see for example [I1], [21], [25], [14], [8], and [I7] (in chronological order).

Besides, the combinatorial structure of circulant matrices also has deserved at-
tention. Graphs whose adjacency matrix is circulant, specially those with integral
spectrum, have been studied in many works; see, for example, [22], [4], [12], [16],
and [20].
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In this work, we delve into the combinatorial structure of circulating matrices
with only two non-null generators, by considering the digraphs associated with this
kind of matrices. Therefore, we complete a previous work of some of the authors,
see [10], where only a specific class of these matrices was considered.

We use digraphs in the present work; for all the graph-theoretic notions not
explicitly defined here, the reader is referred to [2].

We warn the reader that, as is usual in circulant matrices, our matrix indexes
and permutations start at zero. Hence, permutations in this work are bijections

over {0,...,n— 1}, and if
1 2
a= 5 4]

then the set of indexes of A is {0,1}. So Agp = 1 and Ay = 3. This is also why
in the present work [n] denotes the set {0,...,n — 1} instead of {1,...,n}.

For permutations, we use the cyclic notation: (0 2 1 4)(5 6) is the permutation
(in row notation) (2 4 1 3 0 6 5), see [I8]. Given a permutation « of [n],
we denote by P, the n x n matrix defined by (Pu)a(;); = 1 and 0 otherwise.
The matrix P, is known as the permutation matrix associated to a. It is well-
known that P;! = PT. The assignation o + P, from the symmetric group S,, to
the general lineal group GL(n) is a representation of S,, i.e., Pyg = P, Pz where
product is composition. The cycle type of a permutation « is an expression of the
form

(1 2mz o ™),
where my, is the number of cycles of length k£ in a. It is well-known that the
conjugacy classes of S,, are determined by the cycle type, see [19, p. 3]. Thus, «
and 3 are conjugated (i.e., there exists a permutation o such that cac~! = j) if
and only if o and 8 have the same cycle type.

We use the matrix associated to the permutation

Tw=Mm—-1 n-2---210)

many times along this work, so instead of P, we just write P,.
Notice that, for k € Z, we have that Py = I,,, Py = P¥™°" = P« det(P,) =

(—=1)"~1 and (P,’j)fl = Pr~*. Moreover, 7% (i) = i — kmod n.

A matrix C = (¢;;) is called circulant with parameters co, c1, ..., cp—1 if
Co C1 e Cn—1
Ch—1 Co ... Cp—2 .
C = . . . = Circ(cg, -+, Cp—1)
C1 Cy ... Co

or, equivalently,
Cij = Cj—imodn-
We have that
Circ(co, .., n1) = colp + - + ¢ 1 P*L.
Let A be an m x n matrix and let S < [m], T < [n]. The submatrix of A
obtained by deleting the rows in S and the columns in 7" is denoted by A(S|T).
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The paper is organized as follows. In Section [2 we present our main idea
about how to work with circulant matrices with just two non-zero parameters:
untangling the associated digraphs. In Section [3] we explicitly find the matrices
that untangle the digraphs associated with our matrices. In Section [d we find
explicit formulas for the determinant and permanent of circulant matrices with
two non-zero parameters. In Section [5] we give an explicit formula for the inverse
of non-singular circulant matrices with two non-zero coefficients. In Section [6] we
give an explicit formula for the Drazin inverse of singular circulant matrices with
two non-zero parameters. Finally, in Sections and [9] we generalize the previous
results for block circulant matrices.

2. UNTANGLING THE SKEIN: TWO KEY PERMUTATIONS

Let n, s1, s2, and s be non-negative integers such that 0 < s; < s9 < n and
0 < s <n. Let a, b be non-zero complex numbers. We are going to work with the
following type of n X n circulant matrices:

aPSt + bP32.

We call it a circulant matrix with two parameters.

There are (g) forms of circulant matrices with two parameters. Since aPj;* +
bPs2 = Pst(al, + bPs2~51) and al,, + bP"1 = (al, + bP:)", it looks like we
only need to understand (n — 1)/2 of them. As we will see later, it is enough with
just one of them: al, + bP,.

As usual in number theory, the greatest common divisor of two integers n and s
is denoted by (n, s). We find the following notation useful:

n\s := (R

We read it “n without s”. Notice that s(n\s) = n(s\n) = [n,s], where [n,s] is
the lowest common multiple of n and s. The remainder of the integer division of x
by n is denoted by x modn.

Let A = (a; ;) be a matrix of order n. It is usual to associate a digraph of order n
to A, denoted by D(A) (see [6]). The vertices of D(A) are labeled by the integers
{0,1,...,n—1}. If a;; # 0, there is an arc from the vertex i to the vertex j of
weight a; ;. When o is a permutation, we just write D(c) instead of D (P,), and
we talk about digraphs and permutations associated.

In this section, we show that aP;' 4+ bP? is associated with a digraph that has
(n, s2 — s1) main cycles of length n\(s2 — s1) each, and we give two permutations
that allow us to untangle this digraph, in a sense that will be clear later.

The first untangle is given by the permutation associated with the matrix P!,
because aPS! + bP2 = P3t(al,, + bP:2751). Therefore, we only need to study
digraphs associated to matrices of the form al,, + bP7. In Figures [I| and [2] it can
be seen how this permutation untangles these digraphs.

Notice that D (al,, + bP?) has (n,s) connected components of order n\s, and
each of them has a main spanning cycle. Notice that for u,v € [n], in D (al, + bP?)
we have a directed arc from u to v if and only if v — u = smodn.
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FIGURE 2. On the left D (aP§ + bP§) (b-arcs in blue and a—arcs
in red), and on the right D (aly + bP3).

Given n and s positive integers such that 0 < s < n, the (n, s)-canonical per-

mutation is
(n,s

)
Vps = | | Un,s,is
i=1

where

Unsi = (1(n\s)—1 i(n\s)—2 --- i(n\s)—((n\s)—1) i(n\s)—(n\s)).

The permutation v, s has (n, s) cycles of length n\s in the natural-cyclic-order. For
instance, if we consider n = 8 and s = 6, we have that 56 = (3 2 1 0)(7 6 5 4).
Notice that

Pl/n,s = I(n,s) ®Pn\s7

where ® denotes the usual Kronecker product between matrices, see [23].
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The permutations 7, and v, s have the same cycle type. Therefore, for each
pair n, s with 0 < s < n, there exists a permutation o such that oo™ = v, ;.
The digraph D(vg ) can be seen in Figure Notice that D(vg) is an untangling
version of D (afg + bPE?), up to loops. The untangling versions of digraphs of the
form D (aP3* + bP2?) are digraphs of the form D (aIn +bP, , see Figures
and Bl

Let n, s1, and sy be integers such that 0 < $1 < s2 < n. If n\s; = n\sg, then
Un.sy = Un,sy, thus D (1 5,) = D (Vp, s, )-

The permutations 7;;' and o give us a block diagonal form of aP;' + bP,;2:

P,P] (aP; + bPy) P = aly + bP,, ,

[ a b 0[]0 0 0|0 0O O ]
0O a b/0 0 0|0 0 O
b 0 a|{0 O O[O0 O O
0 0 Ojla b 0|0 0 O
=0 0 0/0 a b|0 0 O
0O 0 0O[b O a0 0 O
0O 00Oj0O O O|la b O
0O 0 Oj]0O O 0|0 a b
| 0 0 0]0 0 O|b O a |
= I ®(a13+bP3)
i 0s,6(i)mod (8,6) fs(i)
0 0 0
1 0 3
2 0 2
3 0 1
4 1 0
5 1 3
6 1 2
7 1 1

FIGURE 3. D(vg6) = D(vg2). Note that (8,6) = (8,2) = 2 and
8\6 = 8\2 = 4.

3. FINDING oy, 6

In order to compute the Drazin (group) inverse of a matrix of the form aP?5* +
bP?> (among other computations) we need to find one o explicitly. This can be
done if we find which vertices are together in the same connected component of
D(al,, + bP?). Since this digraph appears many times in our work, we just write
D,, s(a,b) instead of D (al,, + bPS).
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FIGURE 4. On the left D (an + ng), and on the right its untan-
gled version D (als + bP,, ).

FICURE 5. On the left D (aP§ + bP5) (in blue b-arcs and in red
a—arcs), and on the right its untangled version D (aIg + bpug,3)~

Let n and s be non-negative integers such that 0 < s < n. For each i € Z, we
define

R(n,s,i):={i+ksmodn : k € Z}.

This is the set of all reachable vertices from vertex ¢ in D, ;(a,b). Notice that the
following statements are all equivalent:

(1) R(na S, 7;1) = R(n, S, Z'2)7

(2) igmodn € R(n, s, i),

(3) R(n,s,i1) n R(n,s,is) # &, and

(4) i1 — iz = 0mod (n, s).
In Figure [6] we can see R(8,6,0) and R(8,6,1).

In order to obtain explicitly a o, we introduce the following functions:
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FIGURE 6. Dgg(a,b). Note that (8,6) = 2 and 8\6 = 4.

R(8,6,0) = {0,6,4, 2}

R(8,6,1) = {1,7,5,3}

cycle&6(i) posg)ﬁ(i)

0

1
0
1
2
3
4
)
6
7
8

N = O N = O N

FIGURE 7. Dy 3(a,b). Note that (9,3) = 9\3 = 3.

(1) ons : [n] — [(n, )],

0On,s(1) := max{k € [(n,s)] : i = k (n\s)}.

(2) lys : [n] — [n\s],
Uy s(1) == 1 — 0n,s(7) (n\s) mod n\s.
(3) cycle,, ; : [n] — [(n,s)]; if i € R(n, s, h), then
cycle,, (i) := h.

(4) pos, s :[n] — [n\s]; if i € R(n,s,h) and i =t s + h, then

posn’s(i) =t

0

N NN~ = =O O

87
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The functions g, s, and ¢, s give us, essentially, the cycle and the position on the
cycle of a vertex of D(v, ), respectively, while the functions cycle,, ; and pos,, ,
give us the main cycle and the position on the main cycle in D, 4(a, b), respectively.

We embed these digraphs in the cylinder [(n, s)] x [n\s]. The following functions
and their pullbacks are these embeddings:

(5) Jns : [n] — [(n, )] x [n\s],
Ins(i) = (0n,s(1), ln,s(7)).
(6) Jns: [(n,8)] x [n\s] — [n],
Tn,s(@,9) =y + (n\s).
(7) P [n] — [(n,5)] x [n\s],
F (i) = (cycle,, 4(i), pos, 4(i))-

(8) Frs : [(n,8)] x [n\s] — [n],

Fos(z,y) = sy + zmodn.

The function J, s embeds D(v, ) in [(n,s)] x [n\s] “in the same way” that F),
embeds D,, 5(a,b) in [(n,s)] x [n\s].

Let A be a set; we denote the identity map by ids : A — A. If n and s are two
integers such that 0 < s < n, then the following identities are direct:

sO0dns = id[n]:

Jn,s o Jn,s = id[(n,s)]x[n\s]7
ﬁms o Fms = ld[n]a

&

n,s © Fn,s = ld[(ne)]x [n\s]*
These expressions give us the next lemma.

Lemma 3.1. Let n and s be integers such that 0 < s < n. Then, the function
Ons @ [n] — [n], defined by ops := Fys 0 Jus, is a permutation of [n] and
1 T

On,s = JnsoFys.

The function Shift,, s : [(n,s)] x [n\s] — [(n,s)] x [n\s], defined by
Shift, s(z,y) := (x, y — Lmod n\s),

S : fa .
allows us to express 7,5 in terms of F,, ; and F, s, and v, in terms of J, s and
Ins-

Lemma 3.2. Let n and s be integers such that 0 < s <n. Then

ﬁn,s o Shlftn75 OFn,37
jn,s O Shlftn,s OJn,S

s
Tn
Vnp,s =

Rev. Un. Mat. Argentina, Vol. 67, No. 1 (2024)



CIRCULANT MATRICES WITH TWO PARAMETERS 89

Corollary 3.3. Let n and s be integers such that 0 < s <mn. Then
Un,s = U_l O Tn,s ©0n,s,
I(ms) ®Pn\s - PT PsPO'n,s'

On,s

Theorem 3.4. Let n, s1, and so be integers such that 0 < s1 < s2 < n, and let
a,b be non-zero complex numbers. Then,

P}t + 0P = PPy, [Tsa—si) @ (i (sa—s0) + bPosa—s) | o, L, -
Proof. Let s = sy — s1. Then, by Corollary [3.3]
Pl Pt (aPyt +bP}?) Py, = al, +bP) PiP,,
=al,+b (I(n’s) ® Pn\s)
=I5 ® (aIn\S + an\s) .
This concludes the proof. O

The following theorem shows that we can untangle Z\:éo_ ! ar P, in the same
way as in the case of P?.

Theorem 3.5. Let s,n be positive integers such that s <n and let ay be non-zero
complex numbers for k € [n\s]. Then there exists a permutation oy, s of [n] such
that

(n\s)—1 (n\s)—
PO’_n s Z aszk PUn,s = I(n,s) ® Z arP
k=0

Proof. Clearly v, s has the same cycle type that 7). Then, there exists a permu-
tation o, s such that

anlsrnans Vp s-
By taking into account that the application P : S, — GL(n), where S, is the
symmetric group and GL(n) is the general lineal group, defined by P(c) = P,

considered in the above section is a group homomorphism, we have that
Pyl PPy, =Py =Pu =I5 @ Py
In the same way, if we consider the powers PS* with k € [n\s], we obtain
Pyl PYP, = (P PiP,, ) =Pr, =pk

By the property (A® B)(C ® D) = AC ® BD of the Kronecker product, we have
that

Pz;z%sprlfspﬂn,s = an,s = (I(n,s) ® Pn\s)k = I(n,s) ®P,
for all k € [n\s]. By taking into account that AQ (B+C) = A B+ A®C, we
obtain

(n\s)— (n\ n\s—1
Pa'n,s Z akp O'n s Z (I(n S) ® ) = I(TL,S) ® Z akPn\S y
k=0 k=0
as asserted. O

Rev. Un. Mat. Argentina, Vol. 67, No. 1 (2024)



90 A. M. ENCINAS, D. A. JAUME, C. PANELO, AND D. E. VIDELA

4. DETERMINANT AND PERMANENT OF aP;' + bP;?

A linear subdigraph L of a digraph D is a spanning subdigraph of D in which
each vertex has indegree 1 and outdegree 1 (there is exactly one arc getting into
each vertex, and there is exactly one arc (possibly the same) getting out of each
vertex), see [6].

Theorem 4.1 ([6]). Let A = (a;;) be a square matriz of order n. Then
det(A)= > (=1)"Pw (L)
LeL(D(A)

and

perm A = Z w(L),
Le £(D(A))
where L (D (A)) is the set of all linear subdigraphs of the digraph D(A), ¢ (L) is
the number of cycles contained in L, and w (L) is the product of the weights of the
edges of L.

Theorem 4.2. Let n be a non-negative integer and let a,b be non-zero complex
numbers. Then

det (al, +bP,) = a" — (=b)".
Proof. Notice that the digraph D, 1(a,b) has only two linear subdigraphs, the

whole cycle and n loops. The result follows from Theorem [4.1 O

Corollary 4.3. Let n, s1, and so be integers such that 0 < s; < so < n. Let a
and b be non-zero complex numbers. Then
(n,s2—s1)
det (aP;jl + beLZ) = (fl)("*l)sl (an\(52*81) _ (7b)”\(52—81)) 2o
Hence, aP3* + bP3? is singular if and only if a™\(52=51) — (—b)"\(sz_sl) =0.

Notice that a™(s2=s1) — (=p)"\*27%) _ ( if and only if either a = +b when
n\ (s2 — s1) is even or a = —b when n\ (sg — $1) is odd.
Proof. Let s = sy — s1. By Theorem [3.4]
det (aP:* + bP3?) = det (P') det (I(n)s) ® (aIn\S + an\s)) .
Owing to det (P!) = (—1)™~1? the result follows from Theorem O
Example 4.4. The matrix alg + bPS, whose associated digraph is in Figure |§|, is
singular if and only if |a] = |b|, and the same occurs with the matrix aP} + bPy.

The matrix aly + bP§, whose associated digraph is in Figure [7} is singular if and
only if a = —b. The matrix aP§ + bPJ is also singular if and only if a = —b.

Corollary 4.5. Let n, s1, and so be integers such that 0 < s1 < so < n. Let a
and b be non-zero complex numbers. Then

(n,s0—s2)
perm (aP;' 4+ bP,;?) = (a"\(s“’_sl) + b"\(”_sl)> T
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Proof. The result follows from Theorem 4] and Corollary [I.3} if A is a square
matrix and @ is a permutation matrix of the same order, then perm QA = perm A,
see [15, Theorem 1.1]. O

5. INVERSE OF aP;' + bP}?

Theorem 5.1. Let n be a non-negative integer and let a and b be non-zero complex
numbers. If al, + bP, is non-singular, then

1 n—1 o o
(al, + an)_1 =————— ) (=D)'a" P
T
Proof. We just check that
(al, + bP,) | ————— Z Ybia" 1P | = I,. O

Example 5.2. Let a,b be non-zero complex numbers. If a* — (—b)* # 0, then
-1 1 . 3 2 72 3
(aly + bPy)™ " = pra——, Circ (a ,—ba*, b*a, —b ) )
If a® — (=b)® # 0, then
_ 1 .
(als + bPs) 1= P Circ (a4, —ba?,b%a?, —b3a, b4) .

In order to obtain an explicit formula for the inverse of a non-singular circulant

matrix of the form aP;' + bP;;?, we define
pms(i) = (71)posnys(i) 50,cyclen S (1) bPo5n, +(®) a(n\s) 1=pos,, S(Z), (51)

where ¢ is the usual Kronecker delta. Notice that p,, s satisfies the following prop-
erties:

(1) For n> 0, p,, 1(i) = (—1)la" "L for all i = 0,...,n — 1.

(2) For 0 <s <, pp\s,1(i) = pn,s(is) foralli =0,...,(n\s) — 1.

Corollary 5.3. Let n, s1, and so be integers such that 0 < s; < so < n. Let a

and b be non-zero complex numbers such that a™\($2=51) — (—p)"™\2751) 2 0 Then

1

S1 S2 -1 _ - 7
(G,Pn +0F, ) o gn\(s2—s1) — (_b)n\(sz—:n) Z;J Pr,s2—s1 (Z * Sl)P”

Proof. Let s = so —s1. By Theoremwe have that (aP5* + bPiQ)_1 is equal to
Pr Ty ® (alnys +0Pus) | BT P,
Thus, by Theorem [5.1] and (5.1)),

(n\s)—

Z I(n 5) ® pn\s 1( ) % PT prst

s soy—1 _
(aPnl + anz) == P ( b)n\6 n\s On,s™ N

On,s

Rev. Un. Mat. Argentina, Vol. 67, No. 1 (2024)



92 A. M. ENCINAS, D. A. JAUME, C. PANELO, AND D. E. VIDELA

By Corollary [3:3] we have that

Py =P, . (Itns) ® Pa) P (5.2)
and
Pr,. . (Iins) ® Py ) P, = Pi*. (5.3)
Then
n\s)—1
(P 4+ bP) ! — ( Z\Z)E) an\fris(l(;,))n\s plis-s
(n\s)-1

an(ZS) (is)—s1
= Z — e ? _ pl
i=0 a™ _( b) \

—1
pns.7+31) v

an\s _ n\s n:

O

Example 5.4. Let a and b be two real numbers such a* — (=b)* # 0. We will

compute (aPlz + bP142)71. Since 4 — 1 = 3 and 12\3 = 4, by Theorems and

we know that the inverse of alis + bPY, is composed essentially by 3 blocks of
Circ (a?’, —a%b, ab?, —b3) .

They are merged in a 12 x 12 matrix via P12 and Py, ,. Since s1 = 1, we have

that (12,3) = 3, so there are 3 major cycles of length 4 in D (ahg + be’Q):

0 - 3 - 6 — 9 — 0

1 > 4 > 7 - 10 — 1,

2 - 5 - 8 — 11 —» 2
Now we compute the coefficients of the inverse:

.

cyclejps(i +1)  docycle,,,(i+1) POS1p3(i+1) pras(i+1)

0 1 0 0 0
1 2 0 0 0
2 0 1 1 —a®b
3 1 0 1 0
4 2 0 1 0
5 0 1 2 ab?
6 1 0 2 0
7 2 0 2 0
8 0 1 3 —b3
9 1 0 3 0
10 2 0 3 0
11 0 1 0 ad
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Therefore,

_ 1
(aPpy +bPYL) ' = —— Cire (0,0, ~ba,0,0,6%,0,0, =%, 0,0,0%)..

6. DRAZIN INVERSE OF aP;' + bP;?

Given a matrix A, the column space of A is denoted by Rank(A) and its di-
mension by rank A. The null space of A is denoted by Null (A) and its dimension,
called nullity, by null(A4). The index of a square matrix A, denoted by ind(A),
is the smallest non-negative integer k for which Rank(A*) = Rank(A**1). Tt is
well-known that a circulant matrix has index 0 or 1, see [9]. Let A be a matrix of
index k. The Drazin inverse of A, denoted by AP is the unique matrix such that

(1) AAP = AP A,
(2) Ak+1AD _ Ak7
(3) APAAD = AP,

In [I0], the following Bjerhammar-type condition for the Drazin inverse was
proved. We find it handy for checking the Drazin conditions in combinatorial
settings.

Theorem 6.1 ([I0]). Let A and D be square matrices of order n, with ind(A) = k,
such that Null (Ak) = Null (D), and AD = DA. Then A¥*1D = A* if and only if
D?A =D.

Theorem 6.2. Let n, s1, and so be integers such that 0 < s1 < sg < n. Let a
and b be non-zero complex numbers such that a™\s2=51) — (—p)™\52751) — 0 Thep
(aP3 + beL?)D equals

n—sq D
Pn PO'.,L,SQ,SI I:I(TL,SQ—Sl) ® (G/In\(sg—sl) + bP’fL\(SQ—Sl)) ] PT

On,sg—sq

Proof. The following two facts are well-known. If A = XBX ™!, then AP =
XBPX~!. If AB = BA, then (AB)” = BPAP — APBP. See [5] or [7].

In 1997, Wang proved that (A ® B)” = APQBP and ind(AQ B) = max{ind(A),
ind(B)}, see [24, Theorem 2.2]. Let s = sy — s1. Then, by Theorem (3.4}

s1 so\D _ pn—si T b
(aP’n + bP’rL ) Pn Po'n,s [I("aé) ® (aIn\S + bpn\é)] Pa'n,s

= P’r?islpo'n,s [I(nvs) ® (aIn\S + an\S):ID PT

On,s

= ngslpanys [I(n,s) X (a[n\s + an\s)D] pr 0

On,s

Therefore, we just need to study the Drazin inverse of matrices of the form
al, + bP,.

By Corollary we know that aP;' + bP?? is singular if and only if am\s —
(=b)™* = 0, where s = sy — s1. If n\s is even, then a™\* — (—=b)"\* = 0 if and
only if |a| = [b]. If n\s is odd, then a™* — (=b)™* = 0 if and only if a = —b.
Hence, matrices of the form a (I, — P,) are always singular, but matrices of the
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form a (I, + P,) are singular if and only if n is even. All of these facts reduce
the computation of the Drazin inverse of singular circulant matrices of the form
aP;' +bP;? to the computation of the Drazin inverse of just two matrices: I,, — P,
and I, + Po,.

6.1. Drazin inverse of I,, — P,.

Theorem 6.3. Let n be a non-negative integer. The Drazin inverse of al, — aP,
18

[

n—

(I, — P,)" = %Z (n—2i—1) P (6.1)
Example 6.4. Let a be a non-zero complex number. Thus, we have that
(aly — aP4)D = 8% Circ (3,1,—1,-3)
and
(als — aP5)” = {1 Circ (4,2,0, -2, —4).

In order to prove this theorem, we will use some polynomial tools. The idea
is to prove that both matrices in have the same null space, and then use
Theorem

We denote by 1,, the vector of all ones. The easy proof of the following lemma
is left to the reader.

Lemma 6.5. Let n be a non-negative integer. Then

=0

n—1
1 . i
1,, € Null (I, — P,) n Null (2n dl(n—2i- 1)Pn> .

Every circulant matrix Circ (co, . .., c,—1) has its associated polinomial Po(z) =
Z;:Ol c;z'. Ingleton proved the following proposition in 1955.

Proposition 6.6 ([I3, Proposition 1.1]). The rank of a circulant matriz C of
order n is n—d, where d is the degree of the greatest common divisor of x™ —1 and
the associated polynomial of C'.

This means that in order to know the rank of some circulant matrix, it is enough
to know how many n-th roots of the unit are roots of its associated polynomial.
Let us consider the polynomials

2 (i+7)—1) ¢ (6.2)

for j =0,...,n—1. Notice that HJ(z) is the associated polynomial of the circulant
matrix Zi:o (n—2i—1)P:.
We denote by € the set {x € C: 2* = 1} of f-th roots of the unit. Notice that

Q,={uwf:k=0,...,n-1},
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where w = exp(27”) i.e., w* are exactly the roots of the polynomial p(x) = 2™ — 1.

Moreover, they are all simple roots of p(z) = 2™ — 1, because they are all different
and p has degree n. Moreover, if we define

() = rz—1 Z

then wk are all simple roots of ®,, for any k # 0. In terms of derivatives, this

means that
P, (w)=0 and & (w)#0
for all w e Q,, ~ {1}

Proposition 6.7. Let n be a non-negative integer. Then

H}'(w) #0

forallj=0,...,n—1 and we Q, ~ {1}.

Proof. We have that

2 2(0+j)—1)a=mn—-25-1) Zx—Qsz
i=0 =0

Notice that Y~ 0 iz® = x® (z), and so we obtain
Hi(x)=(n—2j—1)®u(zx) — 22 ), (2). (6.3)
Now, assume that H}'(w) = 0 for some w € 2, \ {1}, thus (6.3)) implies that

0=mn—-27j-1)P,(w) — 2w P (w).

Hence, we have that w @] (w) = 0, since @, (w) = 0. But this cannot occur since
w # 0 and w are all simple roots of ®,,. Therefore H]”(w) #0forallj=0,...,n—1
and w € Q,, \ {1}, as asserted. O
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We are ready to prove the main result of the subsection.

Proof of Theorem[6.3 Since the index of all singular circulant matrices is 1 and
the rank of I,, — P, is clearly n — 1, by Propositions [6.6] and [6.7] we have that

1 N 3
Null(In—Pn)—NuH(QZ n—2i—1 P)

By Theorem we just need to check that

1 n—1 ' )
(I, — P,)? <2n Z (n—2i— 1)be> =1, - P,

i=0
which is left to the reader. O

In order to obtain an explicit formula for the Drazin inverse of circulant matrices
of the form P;* — P?* we define

pn s( ) 50 seycle,, (i) (n\s -2 posn,s(i) - 1) ’ (64)

where ¢ is the usual Kronecker delta. In this case, p* satisfies the following:
(1) Forn >0, pj (i) = (n—2i—1) foralli=0,...,n—1.
(2) For 0 < s <n, pn\sl( i) = pj s(is) foralli =0,...,(n\s) — 1.
Corollary 6.8. Let n, s1, and sy be integers such that 0 < s1 < sg <n. Then
D 1 nzl
(Pot = P2)" = s D Prsp—s (i + 51) P
2(n\(s2 —s1)) & "
Proof. Let s = sy — s1. By Theorem [6.2) we have that (P51 — P£2)” is equal to
i7" P Ty ® (s = )| P,

Thus, by Theorem and (6.4)),

(n\s)—1 1(1) 4
(Pt = P)? = By Pr | ) T @ 5 Psa ) i | PE
= 2(n\s)
Hence, by Corollary and expressions (5.2]) and (5.3)),
(n\s)—1 % ( )

an
(P =P = 3 SR

= 2(n\s)

;“i*p::,s(is) (i 8t
= 2(n\s) "
n—1 % .
+ s .
_ pn,s(] I)P]. 0
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Example 6.9. We compute (aPys — aP142)D. Since 12\3 = 4, by Theorems
and [6.3] we know that the Drazin inverse is essentially 3 blocks of Circ (3,1, -1, —3

merged in a 12 x 12 matrix via P12 and P, ,.

.

cyclepg 3(i + 1) Oocycle,, 4(i+1) POS1a3(i+1) piys(i+1)

0 1 0 0 0
1 2 0 0 0
2 0 1 1 1
3 1 0 1 0
4 2 0 1 0
) 0 1 2 -1
6 1 0 2 0
7 2 0 2
8 0 1 3 -3
9 1 0 3
10 2 0 3
11 0 1 0

1
Therefore, (aPlz - an‘Q)D irys Circ (0,0,1,0,0,—1,0,0,-3,0,0,3).
a
6.2. Drazin inverse of Iy, + Py,.

Theorem 6.10. Let n be a non-negative integer. The Drazin inverse of Iy, + Py,

v 1 2n—1 , .

= — (-1)*'(2n—-2i—1)P;,. (6.5)
4n =

(IQn + P2n)D

The idea of the proof is the same as before, i.e., we want to show that both
matrices in have the same null space, and then use Theorem [6.1

We define +1,, = ((—1)")?";' € R?", a particular vector of ones and minus ones.
The following lemma can be proved easily and its proof is left to the reader.

Lemma 6.11. Let n be a non-negative integer. Then

in =0

1 2n—1 ) )
+1,, € Null (I3, + P2,) n Null ( D (-1 @2n-2i-1) P;n> .

Let us consider the polynomials

2n—1
H(z) = > (=)™ 2n—2(i+j)—1) 2'

i=0
for j =0,...,2n—1. As before, notice that ﬁg" (z) is the associated polynomial of
the circulant matrix 37" (=1)% (2n — 2i — 1) P4,. The following result ensures
that its rank is 2n — 1.
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Proposition 6.12. Let n be a non-negative integer. Then
772
Hi"(w) #0

forall j=0,...,2n—1 and w € Qa,, ~\ {—1}.

Proof. On the one hand, the linear transformation T(z) = —x for z € C is a
permutation on €, i.e., we have that

wisa (2n)-throot of 1 <= —w isa (2n)-th root of 1. (6.6)

On the other hand, if C;j;; = 2n — 2 (¢ + j) — 1 we have that

2n—1

A2(@) = 3 ()00t = (1) Y, Cory ()t = (Y HZ (),
i=0 =0

where H3" is as in (6.2). By and Proposition [6.7| we obtain

772 2
Hi"(w)=0 <= H"(-w)=0 <= w=-L
So, if w # —1, then ﬁff"(w) # 0, as desired. O

We are ready to prove the main result of the subsection.
Proof of Theorem[6.10. The rank of I5, + P, is clearly 2n — 1. Hence, by Lemma

[6-17] and Proposition [6.12}

4n

1 2n—1 ) )
Null (Iy, + P»y,) = Null ( D (-1 (2n—2i-1) P§n> .
i=0

By Theorem [6.] it suffices to check that

1 2n—1 ) . )
(Iyp + Pa2y)? <4n D (=1 (2n—2i— 1) P§n> = Iyp + Poy,
i=0
which is left to the reader. O

Corollary 6.13. Let n, s1, and so be integers such that 0 < s1 < so < 2n. Then

1 2n—1 ) )
Psl psz D — -1 1+81 % : Pt
( 2n + 2n) 92 (271\ (82 — 81)) P ( ) p2n732—31 (7’ + Sl) 2n
4 \D o
Example 6.14. Let us compute (aP12 + aPlz) . Since 12\3 = 4, by Theorems
and [6.3] we know that the Drazin inverse is essentially 3 blocks of Circ (3, —1,—1,3

merged in a 12 x 12 matrix via Pj5 and P, Since 4 — 1 = 3, we have 12\3 = 4,
and (12,3) = 3. Therefore, we have

12,3°
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i cyclep (i 4+ 1) Socyele,, 5(i+1) POS123(i + 1) (*1)H1P>1k2,3(i +1)
0 1 0 0 0
1 2 0 0 0
2 0 1 1 -1
3 1 0 1 0
4 2 0 1 0
5 0 1 2 -1
6 1 0 2 0
7 2 0 2 0
8 0 1 3 3
9 1 0 3 0
10 2 0 3 0
11 0 1 0 3

1
Therefore, (aP12 + aP142)D = %a Circ (0,0,-1,0,0,-1,0,0,3,0,0, 3).
a

7. BLOCK CIRCULANT MATRICES WITH TWO PARAMETERS

Let n, s1, and so be non-negative integers such that 0 < s; < sy <n—1. Let A
and B be two square matrices of order r. We will use the basic properties of the
Kronecker product, see [23]. The matrices of the form P ® A + P32 ® B we call
block circulant matrices with two parameters.

For example, for the matrices

A—[; ?] and B—[é _‘3] (7.1)

we have that s ® A + P3 ® B is

e}
=}
—
[\V
e}
e}

O OO OO OO O NO O WO O

O OO OO ON RHIOoOOoOWHO O OO

O OO OO O NO O WO oo o

O OIN O OoOWMROOoOo oo oo o

O OIFH NO O WO oo o oo o

N O OWHEOOO OO oo oo

HNO O WO OoOo oo oo oo

O OlWHOOOoOoOOo oo o0 oN

O Ol WO OO OO0 OO0 oo O

wrRlooooooooooN o
colooNRoolwRro oo oo o
1
o oloor No oOR wWo oo oo o

O OO OO O OoON OO WHEOO

O OO OO0 oooINHOO W
O OO OO OO oo NO O W

H W o ool oo o NO
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The following tells us that it is enough to study circulant matrices of the form
I, ® A+ P ® B. We have that

Pl'@A+P2®@B=P)'Q®I, (I, A+ P> " ®B).
Thus, if P’* ® A+ P72 ® B is non-singular, then
(PP @A+P2@B) ' =(I, @A+ P25 @B) 'PI ' ®1,.

The next is a direct consequence of the following fact: ¢ — j = n — s mod n if
and only if j — i = s mod n.

(I,@A+P:@B)" =1, AT + PP *®BT.

Let s = s3 — s;. Note that by Theorem we have that the matrix I, ) ®
(In\s ®A+ P ® B) is equal to

(P2 L) (Pr" QL) (P} @A+ PP ®B) (P, ®L).  (72)

For the matrices given in ([7.1)) we have that

(PL.®L) (PI®L) (R®A+ P ®B) (Pry, ® L)

1 2 -1 8 0 0 0 0[0 0 0 0 0 0 0 0]

2 131000 0[0 0 0 0 0 0 0 0
00 1 2-1 3 0 0/0 0 0 0 0 0 0 0
00 2 1 3-1 0 0/0 00 0 0 0 0 0
00 0 0 1 2-1 3,0 0 0 0 0 0 0 0
00 0 0 2 1 8 -1/0 0 0 0 0 0 0 0
13 0 0 0 0 1 2,0 0 0 0 0 0 0 0
|3 -1 0 0 0 0 2 1/0 0 0 0 0 0 0 0
|70 0 0 0 0 0 0 0[1 2 -1 3 0 0 0 0
00 0 0 0 0 0 0/2 1 3-1 020 0 0
00 0 0 0 0 0 0/0 0 1 2-1 3 0 0
00 0 0 00 0 0/0 02 1 3-1 0 0
00 0 0 0 00 000001 2-1 3
00 0000 0 00000 2 1 3 -1
00 0 0 0 0 0 0f-1 3 0 0 0 0 1 2

00 0 0 0 0 0 0/3-1 00 0 0 2 1
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8. DETERMINANT OF BLOCK CIRCULANT MATRICES WITH TWO PARAMETERS

From the Schur complement we have the following proposition.

Proposition 8.1. Suppose E, F, G, and H are respectively p X p, p X q, ¢ X p,
and q X q matrices, with H non-singular. If

E F
e ul

det(M) = det(H)det(E — FH™'Q).

then

Let k be a non-negative integer. We denote by U} a k x 1 vector and by uy a

1 x k vector given by
. 1 ifi=k—1,
(Uk)io = {

0 otherwise,

and

0 otherwise.

. 1 if j=0,
(Uk)oj = { J .

In the proof of the following lemma we use the notation given in [3]. Let K be
an m x n matrix. If S € [m] and T < [n], then K [S|T] will denote the submatrix
of K determined by the rows corresponding to S and the columns corresponding
toT.

Lemma 8.2. Let n be a non-negative integer. Let A and B two non-zero square
matrices or order r. If AB = BA and A is non-singular, then

det(I, ® A+ P, ® B) = det(A)" det(I, — (—A™'B)™).

Proof. For 1 <i < n — 1, we define the following sequences of matrices:

(1) Ei:=IL,[[n—i]lln—i]®A+ Py, [[n—1]|[n—i]]| ® B,
( ) Fz = 17n 1®B
(3) G =i ®(—A)"*1B" and
(4) H; := A.
Note that
E F _ E;, F;
I, ® A+ P,®B = [ Gi Hll ] and I _Filei_11Gifl = [ G, H, ]

for 2 < i < n — 1. Therefore, by Proposition
det(I, ® A + P, ® B) = det(H;)det(E, — FH{'Gy)
and

det(Ei,1 - Filei__llGifl) = det(HZ) det(El - FZHz_lGZ)
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for 2 <7 < n —1. Therefore
det(I, ® A+ P, ® B) = Hdet ) det(E; — F;H;'Gy)

= (det(A))” 2det(By1 — F 1 H Y Gov)
= det(A)" det(I, — (—A™*B)"). O
Given the matrix P' ® A+ P2 ® B = (P2 ®1,)(I, ® A+ P>~ ® B), note
that
det(P* ® A+ P2 ® B) = det(P;* ® 1) det(I,, ® A + P*** ® B),
and det(P5' ® I,,) det(I, ® A + P32~ ® B) is equal to
det(Pyt @ I,) det((P), | ®L)(In®A+ PP ' ®@B)(Fs,, ,, ®1)). (81)

Theorem 8.3. Let n, s1, and ss be non-negative integers such that 0 < s1 <
so <n—1, and let A and B two non-zero square matrices or order r such that
AB = BA. We have the following:

(1) if A is non-singular, then
det(P' ® A+ P ® B)
= det(P;")" det(A)" [det (1, - (_A—lB)"\<sz—31>)]("’SH” .
(2) If B is non-singular and A is singular, then

det(P' ® A + P> @ B)

(n,n—s2+s1)

= det(P22)" det(B)" [det (Ir - (—B*lA)"V"*SWl))]

Proof. Let s = s5 — s1. Assume that A is non-singular. By (8.1) and Lemma
we have that

det(P,* ® A+ P2 ® B)

=det(P;' ® I,

=det(P* ® I

=det(P;' ® I,

(

)det(I, ® A+ P: ® B)
)det((PY . ® L) (I, ® A+ Py ® B)(P, . ® 1))
)det (L) @ (Ins @A + Pps® B))
det P51 ®I ) (det n\s ®A + Pn\s ®B))(n,b)
(n,s)
= det(P:1)" det(A)" (det (Ir _ (_A—lB)n\s)) .

If B is non-singular and A is singular the proof is analogous to the previous
proof. O

For example, for the matrices A and B given in ([7.1), we have
det (Ps @ A + P ® B) = (det(Py))? (det(A))® (det (I, — (—A~'B)*))*.
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Since

Iy (—A-1B) = 8L [ ~1296 —1295

1
o A-1py4)
20728 | —1295 1296 ] , det (b~ (-A7'B)Y) = 5,
and det(A) = —3, we obtain det (PS ®A+ P} @B) = (—3)8 (25191)2.

Corollary 8.4. Let n, s1, and sy be non-negative integers such that 0 < s1 <
so <n—1, and let A and B be two non-zero square matrices or order r such that
AB = BA. We have that det(P:* ® A+ P22 ® B) = 0 if and only if
(1) A, B are singular, or
(2) A is non-singular, but I, — (—A~1B)("\(52=510)) s singular, or
(3) A is singular, but B is non-singular and I, — (—B~1A)(M\(n=s2+51)) 45 sin-
gular.

9. INVERSE OF BLOCK CIRCULANT MATRICES WITH TWO PARAMETERS

Theorem 9.1. Let n be a non-negative integer and let A and B be non-zero square
matrices of order r, such that AB = BA. If I, ® A+ P,,® B and A™ — (—B)"™ are
non-singular, then

(I, @A+ P, ®B)~ Z Pi® [ )iBiAT—i=L (A" (fB)”)_l]
Proof. We just check that

(I,®A+ P, ®B) [Z Pi® [ BiAn—i=l(An _ (—B)")_l]] I, ®I. O

In order to obtain an explicit formula for the inverse of non-singular circulant
matrices of the form P5' ® A + P32 ® B, we define

0, s(@) _ (_1>posn’5(i) 8o eycle, () BPosn, s (i) gn\s—1—pos, (i) [An\s _ (_B)n\s]fl )

assuming that [A™\® — (—B)”\ST1 exists. Notice that  satisfies the following
properties:

(1) Forn >0, Q,1(7) = (-1 )BlA" “lforalli=0,...,n— 1.

(2) For 0 <s <mn, Qys1(i) = Qns(is) for all i = O,...,(n\s) —1.

Theorem 9.2. Let n, s1, s2, and v be non-negative integers such that 0 < s1 <

so <n—1. Let A and B be two square matrices of order r such that AB = BA.
If P5* @ A+ P32 ® B and A™\%2751 — (—B)™\*27%1 gre non-singular, then

n—1

(PP ®A+P?@B) ™ =) Pi@®W o s,(i+51).

=0
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Proof. Let s = sg — s1. By we have that (P5' @ A+ P2 ® B) ™" is equal to
(P @ L) [I1n,5) ® (Ins ® A+ P s ® B)],l (P;S ® b) (P ®1).

Thus, by Theorem and the definition of Q, s, (P* @ A+ P2 @ B) ' is

(n\s)-1
(Pr®L) | Y Iy ® Pl © Qi (0) (P(Z;,S ®IT) (P @)
i=0
Then, by and ,

(n\s)—1
(PP ®A+PP@B)" = Y PV @Q,,1(i)
=0
(n\s)—1 _
— Y PO @Q,L (i)

= P @, <(j + s1). O

For example, for the matrices given in ([7.1)) we have that (Pg RA+P® B)_1
is equal to

Py ®0s2(2) + P3®0s2(4) + Py ®Qs.2(6) + PY ® Qg.2(0),

where
1 2357 2206
Qs2(0) = 2519 [ 2206 2357 ] ’
1 1823 1219
Qg2(2) = " 9519 [ 1219 1823 ] ’
1 202 —194
Qg0(4) = 2519 [ —194 202 ] ’
and

1 5508 —4156
Q82(6) = —2519[ —4156 5508 ]
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