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STABLE QUASI-PERIODIC ORBITS OF A CLASS OF QUINTIC
DUFFING SYSTEMS

HOMERO G. DÍAZ-MARÍN AND OSVALDO OSUNA

Abstract. For a Duffing-type oscillator with constant damping, a unique
odd nonlinearity, and time-dependent coefficients which are quasi-periodic, we
prove existence and stability conditions of quasi-periodic solutions. We thus
generalize some results for periodic coefficients and quintic nonlinearity. We
use the classical theory of perturbations and present some numerical examples
for the quintic case to illustrate our findings.

1. Introduction

Traditionally a Duffing oscillator reads as follows:

x′′ + cx′ + a0x + e0x3 = λ cos ωt,

where the cubic nonlinearity yields interesting properties such as existence and sta-
bility of periodic solutions under certain conditions. Parameter c is the damping
constant, λ is the external excitation amplitude with frequency ω. For more general
time-dependent coefficients a(t), e(t) there is no general exact solving method, ex-
cept for a few cases (see, for instance, [8] and [1]). Nevertheless, time-dependent pe-
riodic coefficients appear in many important problems; for instance, in the damped
externally excited sinusoidal pendulum with oscillating support,

x′′ + cx′ + ω0(1 + εh′′(ω1t))x + e0x3 = λ cos ω2t,

where cubic nonlinearity appears in the approximation of the sine function, here
h(t) = h(t + 2π) (see, for instance, [10]). In [11] (see also [3]), averaging methods
are used to show existence and local stability of some generalizations for periodic
time-dependent coefficients,

x′′ + cx′ + a(t)x + e(t)x3 = λh(t). (1.1)

Our aim is to generalize the results on the existence and stability of oscillating
solutions for equations (1.1) to equations of the form

x′′ + cx′ + a(t)x + e(t)x2k+1 = λh(t), k = 1, 2, 3, . . . ,
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where the parameters are time-dependent continuous almost periodic functions.
These results are contained in Theorems 2.1 and 3.1. Their proofs use averag-
ing techniques which remain valid in the quasi-periodic case. Some other recent
approaches to the almost periodic forcing also appear in the literature (see, for
instance, [16]). We use the classical averaging method approach. This general
approach to forced oscillations, which goes from the periodic forcing towards the
quasi-periodic and almost periodic case, is well known as the Krylov–Bogoliubov–
Mitropolski perturbation method. Nevertheless, historically, there has been some
misunderstanding of the basic techniques; see, for instance, historical remarks
in [13], as well as further discussion and subtle differences between quasi-periodic
and almost periodic oscillations in [12]. The formalization of the results can be con-
sulted, for instance, in [10] and [13]. For the readers’ convenience, these techniques
are briefly summarized in the Appendix.

2. Duffing equation with quintic nonlinearity

We generalize the results in [11], from a cubic to a quintic Duffing equation
without cubic nonlinearity,

x′ = y

y′ = −cy − a(t)x − e(t)x5 + λh(t),
(2.1)

with e ̸= 0. We also consider a generalization of the coefficients in the sense that
we will consider almost periodic (a.p.) functions a(t), e(t), h(t), instead of periodic
functions. See the Appendix for the proper definitions.

By a change of coordinates y = ε3/2Y , x = ε1/2X, λ = ε5/2Λ, c = εC, a = ε2A,
we get

X ′ = εY,

Y ′ = ε
(
−Cy − AX − eX5 + Λh(X)

)
.

Notice that this change of coordinates is different from the ones proposed in [3], in
the sense that we allow fractional exponents in ε.

The averaged system then becomes
x′ = εy,

y′ = ε
(
−Cy − A0x − e0x5 + Λh0

)
,

(2.2)

where A0 = M(A), e0 = M(e), and h0 = M(h) are the mean of the corresponding
almost periodic functions (see Appendix).

If we denote by x0, x1, . . . the roots of the polynomial −e0q(x) that stand for
equilibria (x0, 0), (x1, 0), . . . of (2.2), where

q(x) = x5 + rx + s, r = A0/e0, s = −Λh0/e0,

then
q′(x) = 5x4 + s

has either two real roots, one real root of multiplicity 2, or no real root at all. This
means that we will have at most three a.p. orbits emerging from the averaging
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theory applied to (2.1). Moreover, if x0 is a root of multiplicity 2, then q(x0) =
q′(x0) = 0. Therefore, there is a multiple root condition which can be written as

44
(

−A5
0

e0

)
= 55 (Λh0)4

. (2.3)

We apply averaging theory to the system (see [10]). Early uses of this theory go
back to Bogolyubov’s averaging principle, originally described in [5]. Thus we get
the following assertion, which generalizes the results exposed in [11].

Theorem 2.1. Suppose that the quintic Duffing system (2.1) has quasi-periodic
coefficients and averaged equations (2.2); if e0 ̸= 0, then the following assertions
hold:

(i) Suppose that 55Λ4/h4
0 ≥ 44(−A5

0/e0) ≥ 0 and e0 > 0.
(a) If c > 0, then there exists 1 stable a.p. orbit.
(b) If c < 0, then there exists 1 unstable a.p. orbit.

(ii) Suppose that 55Λ4/h4
0 < 44(−A5

0/e0).
(a) If e0 > 0 and c > 0, then there exist 2 stable a.p. solutions.
(b) If e0 > 0 and c < 0, then there exist 3 unstable a.p. solutions.
(c) If e0 < 0 and c > 0, then there exist 3 unstable a.p. solutions.
(d) If e0 < 0 and c < 0, then there exists 1 stable a.p. solution and with 2

unstable a.p. solutions.
(iii) Suppose that equality (2.3) holds.

(a) If e0 > 0 and c > 0, then there exists 1 stable a.p. solution.
(b) If e0 > 0 and c < 0, then there exists 1 unstable a.p. solution.

(iv) Suppose that Λ = 0 = A0.
(a) If c > 0 and a > 0, then the origin is a stable equilibrium (hence a.p.)

solution.
(b) If c < 0 and a > 0, then the origin is an unstable equilibrium (hence

a.p.) solution.
(c) If a < 0, then the origin is an equilibrium (hence a.p.) solution with

mixed sign Lyapunov exponents.

We provide a proof for Theorem 2.1.
According to (2.3) and also to [15], the classification of the roots and their

multiplicity can be expressed in terms of the following discriminants:
D4 = 160r3

D5 = 256r5 + 3125s4.

(I) One real root of multiplicity 1. D5 > 0, D4 ≤ 0:

3125Λ4h4
0 > 256

(
−A5

0
e0

)
≥ 0.

(II) Three real roots of multiplicity 1. D5 < 0:

3125Λ4h4
0 < 256

(
−A5

0
e0

)
.
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(III) One real root of multiplicity 1 and one of multiplicity 2. D5 = 0,
D4 < 0:

3125Λ4h4
0 = 256

(
−A5

0
e0

)
> 0.

(IV) One real root of multiplicity 5. D4 = D5 = 0:

A0 = h0 = 0.

(V) Three real roots of multiplicity 1 and one real root of multiplic-
ity 2. D5 = 0, D4 > 0:

3125Λ4h4
0 = 256

(
−A5

0
e0

)
< 0.

This case is not possible.
Degeneracies of the Jacobian J(x) of the averaged system (2.2) occur at x = x0 if

det J(x0) = det
(

0 1
−e0q′(x0) −C

)
= 0,

that is, when −e0q′(x0) = −e0q(x0) = 0. This implies that x0 is a real root of
multiplicity at least 2. Since q′(x) = 5x4 + A0/e0, we have

5x4
0 = −A0/e0, 3125Λ4h4

0 = 256
(

−A5
0

e0

)
.

We will now discuss stability criteria for non-degenerate equilibria of the aver-
aged system (2.2). See the Appendix, where the main results on averaging theory
are described.

i. In case (I), A0, e0 have opposing signs. We have a stable or unstable a.p.
orbit for the unique equilibrium, −e0q(x0) = 0, depending on the signs:
−C = tr J(x) > 0 and det J(x) = e0q′(x0) > 0, or C < 0 and e0q′(x0) > 0,
respectively. The sign of e0q′(x0) coincides with the sign of the leading
term of e0q′(x) since the distance of the symmetric roots of q′(x) to the
origin is less than |x0|.

Therefore, if e0 > 0 then there would exist a stable or an unstable
equilibrium, depending on the sign, C > 0 or C < 0, respectively.

ii. In case (II), A0 and e0 also have opposing signs. The sign of e0q′(xi) at
the three different zeroes x0 < x1 < x2 of −e0q(x) is the sign of the leading
term of e0q′(x) for the extrema of the interval, x0 and x2. Meanwhile,
this sign is opposite for the intermediate zero x1. Therefore, we have the
following subcases:
(a) If e0 > 0 and C > 0, then there are 2 stable equilibria and 1 semi-

stable equilibrium.
(b) If e0 > 0 and C < 0, then there are 1 semi-stable equilibrium and

2 unstable equilibria.
(c) If e0 < 0 and C > 0, then there are 1 unstable equilibrium and 2 semi-

stable equilibria.
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(d) If e0 < 0 and C < 0, then there are 1 stable equilibrium and 2 semi-
stable equilibria.

iii. In case (III), A0, e0 have opposing signs. Thus the real root x1 of multi-
plicity 1, −e0q(x1) = 0, is not a root of −q′(x). By Rolle’s Theorem the
second real root of −q′(x) would appear in the interval between x0 and
x1, where e0q(x0) = e0q′(x0) = 0. Recall that q′(x) is an even function;
therefore, e0q′(x1) = 5e0x4

1 + A0 would have the same sign as its leading
term. Thus, stability holds whenever e0 > 0 and C > 0, while unstable
equilibria would take place when e0 > 0 and C < 0.

iv. In case (IV), we have A0 = 0 = Λ. For the degenerate cases (III)
and (IV), another approach is needed to analyze roots of multiplicity
greater than 1. Here we have a fixed point at the origin, whose Jacobian(

0 1
−a(t) −c

)
is not degenerate for c ̸= 0. By a suitable Lyapunov analysis, this equilib-
rium is locally stable under certain assumptions.

2.1. Examples of quasi-periodic solutions with quintic nonlinearities. We
consider the following set of parameters: h0 = 4/5, e0 ∈ {±1}, A0 ∈ {0, ±1},
Λ ≥ 0, C = 0.01, with time dependent almost periodic coefficients

A = A0 + 0.5 cos(3.1416 t), e = e0 + 0.05 cos(
√

2t),
h = h0 + 0.001 sin(3.1416t),

Example for case (I): Take A0 = −1, e0 = 1, Λ = 1, and ε = 1. We have a
stable almost periodic orbit as a limit for the initial condition x ≈ 0.055, y ≈ 0.873
and also for the initial condition x = 1.13, y = 0 (see Fig. 1). The a.p. solution
lies near the equilibrium x0 ≈ 1.1, y0 = 0 of (2.2) as ε → 0. Numerical evidence
shows that a different recurrence behaviour may occur which is not related to a.p.
solutions. Take for instance the initial condition x ≈ −0.115, y ≈ −2.249 as in
Fig. 2. For the complementary case C = −0.01, we have an unstable a.p. solution.
Numerical evidence also shows that for some initial conditions solutions diverge
towards infinity as t → ∞. Meanwhile, some other solutions diverge in finite time.

Example for case (II): Take A0 = −1, e0 = 1, Λ = 1/2, ε = 0.1, C = 0.01.
For the initial conditions (−0.95, 0) and (0.85, 0), we have that solutions converge
towards two different stable a.p. orbits (see Fig. 3). As ε → 0, these a.p. orbits
converge towards x0 and x2, respectively, with x0 ≈ −0.85 and x2 ≈ 1.08. Here
the middle equilibrium is x1 ≈ −0.41. Numerical evidence shows that some initial
data solutions go towards infinity in finite time.

Example for case (III): Take A0 = −1, e0 = 1, Λ = 5−1/4, and ε = 0.1.
For the initial condition (0, 0) the solution approaches a stable a.p. which tends
towards the simple root x1 ≈ 1.1 as ε → 0 (see Fig. 4). Numerical evidence shows
no other limit as t → ∞ for other initial conditions.

Example for case (IV): Take A0 = λ = 0, c = 1, and e0 = 1. Here the origin
is a local equilibrium which behaves like a local attractor.
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Figure 1. Convergence towards an almost periodic solution near x0 ≈ 1.1,
from two different initial conditions.

Figure 2. Recurrent behaviour apparently not related to an almost peri-
odic solution near x0 ≈ 1.1.

3. Duffing equation with odd nonlinearity

Condition (2.3) can be generalized for the odd Duffing system for k ∈ N,
x′ = y,

y′ = −cy − a(t)x − e(t)x2k+1 + λh(t),
(3.1)

as

(2k)2k

(
−A2k+1

0
e0

)
= (2k + 1)2k+1 (Λh0)2k

. (3.2)

Thus, Theorem 2.1 can be generalized as the following assertion.

Theorem 3.1. For the quintic Duffing system (3.1), if e0 ̸= 0 then the following
assertions hold:

(i) Suppose that (2k + 1)2k+1 (Λh0)2k
> (2k)2k

(
− A2k+1

0
e0

)
≥ 0 and e0 > 0.
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Figure 3. Two solutions converging towards two stable almost periodic
solutions near x0 ≈ −0.85 and x2 ≈ 1.08, respectively.

Figure 4. A solution converging towards a stable almost periodic solution
near x0 ≈ 1.1.

(a) If c > 0, then there exists 1 stable a.p. orbit.
(b) If c < 0, then there exists 1 unstable a.p. orbit.

(ii) Suppose that (2k + 1)2k+1 (Λh0)2k
< (2k)2k

(
− A2k+1

0
e0

)
.

(a) If e0 > 0 and c > 0, then there exist 2 stable a.p. solutions.
(b) If e0 > 0 and c < 0, then there exist 3 unstable a.p. solutions.
(c) If e0 < 0 and c > 0, then there exist 3 unstable a.p. solutions.
(d) If e0 < 0 and c < 0, then there exists 1 stable a.p. solution and

2 unstable a.p. solutions.
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(iii) Suppose that equality (3.2) holds.
(a) If e0 > 0 and c > 0, then there exists 1 stable a.p. solution.
(b) If e0 > 0 and c < 0, then there exists 1 unstable a.p. solution.

(iv) Suppose that Λ = 0 = A0.
(a) If c > 0 and a > 0, then the origin is a stable equilibrium (hence a.p.)

solution.
(b) If c < 0 and a > 0, then the origin is an unstable equilibrium (hence

a.p.) solution.
(c) If a < 0, then the origin is an equilibrium (hence a.p.) solution with

mixed sign Liapunov exponents.

4. Conclusions and further problems

If we consider a quintic Duffing equation with cubic-quintic nonlinearity,

x′ = y

y′ = −cy − ax − bx3 − ex5 + λh(x)

with e ̸= 0, then the corresponding classification of roots and their multiplicities de-
pend on certain conditions given in terms of certain discriminants. Such conditions
appear for instance in [15]. This will be described elsewhere.

On the other hand, we consider the equation with quadratic and cubic nonlin-
earities subjected to combined parametric and external excitation having incom-
mensurate frequencies ωi,

x′′ + cx′ + ω2
0(1 + k1 cos ω1t)x + k2x2 + k3x3 = λ cos(ω2t),

which models a one-mode vibration of a heavy elastic structure suspended between
two fixed supports at the same level and excited by a quasi-periodic forcing (see [2]
and references therein); the quadratic term arises from curvature considerations.
The oscillation in the parameter may be due to a harmonic axial load. Thus we
have also motivations to study systems of the form

x′′ + cx′ + a(t)x + b(t)x2 + e(t)x3 = λh(t),

as well as some other models, such as special cases of van der Pol–Mathieu (see [9]
and [14]).

5. Appendix: Averaging method for almost periodic functions

We refer the reader to [6], [4], and [7] for more detailed information on almost
periodic functions.

Definition 5.1. According to Bohr’s definition, a function φ ∈ C(R) is almost
periodic (a.p.) if, for all ϵ > 0, there exists a set of real numbers T (φ, ϵ) such that
there is l(φ, ϵ) > 0 such that in any interval of length l(φ, ϵ) there is at least one
point of T (φ, ϵ). The set T (φ, ϵ) satisfies

|φ(t + τ(ϵ)) − φ(t)| < ϵ
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for each t ∈ R and τ(ϵ) ∈ T (φ, ϵ). We will call each number τ(ϵ) a translation
number. A length of T (φ, ϵ) will be a number l(φ, ϵ) satisfying that any interval of
length l(φ, ϵ) intersects T (φ, ϵ).

Notice that a periodic function φ with period τ is actually an a.p. function, with
translation numbers T (φ, ϵ) = {nτ | n ∈ Z} for any ϵ > 0. In particular, our results
also apply to the periodic case. Since the sum of a.p. functions and the multipli-
cation of an a.p. function by constant values both result in a.p. functions, we can
conclude that trigonometric polynomials are a.p. functions. A linear combination

φ(t) = a1 cos(λ1t) + b1(λ1t) + a2 cos(λ2t) + b2 sin(λ2t)

is an a.p. function even if λ1 and λ2 are rationally independent. In such a case φ is
not periodic. Interestingly, every function φ which can be approximated uniformly
by trigonometric polynomials is an a.p. function. A consequence of these properties
is that a.p. functions form a Banach space, Cap(R). Furthermore, we have the
following known result.

A fundamental fact of the theory of almost periodic functions is that, for every
almost periodic function φ, there exists its mean value

φ0 = M(φ) := lim
T →∞

1
T

∫ T

0
φ(t) dt,

which is a continuous linear functional denoted by M : Cap(R) → R. It is also
possible to associate to an almost periodic function φ its unique generalized Fourier
expansion,

φ(t) ∼ φ0 +
∑
n∈N

a(φ, λn) cos(λnt) + b(φ, λn) sin(λnt).

Recall that the module

φ̂ := ⟨{λn}n∈N⟩ =
{ N∑

k=1
rkλnk

| rk ∈ Z
}

⊂ R

of an almost periodic function φ is the Z-module generated by the generalized
Fourier spectrum {λn > 0}n∈N.

Definition 5.2. An almost periodic function φ ∈ Cap(R) is a quasi-periodic func-
tion if its module of frequencies φ̂ is finitely generated.

Thus a typical generalized Fourier expansion for a quasi-periodic function reads

φ0 +
M∑

k=1
φk(t), φk(t) =

∑
n∈N

a(φ, k, n) cos(nβkt) + b(φ, k, n) sin(nβkt),

where {β1, . . . , βk} is a basis of rationally independent generators for φ̂. Thus, a
quasi-periodic function φ can also be described as a finite sum of periodic functions
φk, k = 1, . . . , N .
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Our aim is to consider the initial value problem

x′ = εf(x, y, t), x(0) = x0,

y′ = εg(x, y, t), y(0) = y0,
(5.1)

where (x, y), (x0, y0) ∈ D ⊂ R2, t ∈ [0, ∞), ε ∈ (0, ε0]. Suppose that f, g are
almost periodic with respect to t and C1 with respect to (x, y). A more adequate
consideration requires f, g to be uniformly almost periodic with respect to (x, y) in
the compact set D ⊂ R2, which means that

|f(x, y, t + τ(ϵ)) − f(x, y, t)| < ϵ ∀t ∈ R, ∀(x, y) ∈ D

for each translation number τ(ϵ) ∈ T (ϵ, f) and length l(ϵ, f) > 0, not depending on
a particular choice (x, y) but remaining the same throughout the entire compact
domain D. More specifically, if f, g have generalized Fourier expansions

f(x, y, t) ∼ f0(x, y) +
∑
n∈N

a(f, λn, x) cos(λnt) + b(f, λn, x) sin(λnt),

g(x, y, t) ∼ g0(x, y) +
∑
n∈N

a(g, λn, x) cos(λnt) + b(g, λn, x) sin(λnt),
(5.2)

then f, g are uniformly almost periodic, whenever the exponents λn do not depend
on (x, y) (see [7, Chapter VI]).

Recall that

f0(x, y) = lim
T →0

1
T

∫ T

0
f(x, y, t) dt

and

g0(x, y) = lim
T →0

1
T

∫ T

0
g(x, y, t) dt.

Consider also the averaged initial value problem

x′ = εf0(x, y), x(0) = x0,

y′ = εg0(x, y), y(0) = y0.
(5.3)

The main problem, roughly speaking, is to establish to what extent the solutions
of the averaged problem (5.3) “approximate” the solutions of the original almost
periodic system (5.1).

The notion of approximation suitable in such a context comes from perturbation
theory. We will clarify the idea of approximation using the averaged system, as
outlined below.

The following result summarizes the tools that we use. See also [10, Lemmas
V.3.1 and V.3.2], which deal with this issue. Suppose that f(x, y, t), g(x, y, t) are
continuous in t and uniformly almost periodic with respect to (x, y) in the compact
set D ⊂ R2, and have continuous bounded partial derivatives ∂xf , ∂yf , ∂xg, ∂yg
in the domain D × [0, ∞).
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Theorem 5.3. [13, Theorem 4.3.6 and Lemma 4.6.6] Suppose that the Fourier
spectrum (5.2) of f and g is such that λn ≥ α > 0, with α independent of n ∈ N.
Then, the solution (x(t), y(t)) of the averaged initial value problem (5.3) approxi-
mates the solution of the quasi-periodic problem (5.1) as follows:

(x(y), y(t)) = (x(t), y(t)) + O(ε)

as ε → 0 on the time scale 1/ε.

In other words, the asymptotic approximation yields a solution (x(t), y(t)) ∈ D
such that

∥(x, y) − (x, y)∥∞ ≤ k ε

for an ε-independent constant k > 0 and the sup-norm in D×[0, L/ε), for an ε0 > 0
small enough and for every ε ∈ (0, ε0] and for every t ∈ [0, L/ε), where L > 0 is a
constant.

Notice that the hypotheses of Theorem 5.3 about the Fourier spectrum are
fulfilled taking, for instance, quasi-periodic functions f, g.

The stability statement is contained in the following assertion (see also [10,
Theorem V.3.1]).

Theorem 5.4. [13, Theorem 5.5.1] Assuming the same conditions as in Theo-
rem 5.3, the averaged system (5.3) is C1 in D. Furthermore, suppose (x0, y0)
is asymptotically stable with respect to the linearization J(x0, y0) := ∂(f0,g0)

∂(x,y) with
basin of attraction D0. If K ⊂ Do is compact, (x1, y1) ∈ K, and (x(t), y(t)) ∈ D
is the solution of the averaged system

x′ = εf0(x, y), x(0) = x1,

y′ = εg0(x, y), y(0) = y1,

then there exists a constant k > 0 such that

∥x(t) − x(t)∥∞ ≤ k δ1(ε) ∀t ∈ [0, ∞),

where δ1(ε) satisfies limε→0+ δ1(ε) = 0 and is called the order function. In the
periodic case, δ1(ε) = ε.

For the instability claims, we refer the reader to [10, Theorem V.3.1].
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