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ON THE PLANARITY, GENUS, AND CROSSCAP OF THE
WEAKLY ZERO-DIVISOR GRAPH OF COMMUTATIVE RINGS

NADEEM UR REHMAN, MOHD NAZIM, AND SHABIR AHMAD MIR

Abstract. Let R be a commutative ring and Z(R) its zero-divisors set. The
weakly zero-divisor graph of R, denoted by W Γ(R), is an undirected graph
with the nonzero zero-divisors Z(R)∗ as vertex set and two distinct vertices
x and y are adjacent if and only if there exist a ∈ Ann(x) and b ∈ Ann(y)
such that ab = 0. In this paper, we characterize finite rings R for which
the weakly zero-divisor graph W Γ(R) belongs to some well-known families of
graphs. Further, we classify the finite rings R for which W Γ(R) is planar,
toroidal or double toroidal. Finally, we classify the finite rings R for which
the graph W Γ(R) has crosscap at most two.

1. Introduction

All rings R considered in this paper will be commutative with unit element
1 6= 0. For x ∈ R, the set Ann(x) = {y ∈ R∗ : xy = 0} is the annihilator of x. The
set of all zero-divisors, nilpotent elements, minimal prime ideals and unit elements
of a ring R are denoted by Z(R), Nil(R), Min(R) and U(R), respectively. We write
S∗ = S \ {0} for any subset S of R. We refer the reader to [6] for any ambiguous
notation or vocabulary in ring theory.

Algebraic combinatorics is an area of mathematics which employs methods of
abstract algebra in various combinatorial contexts and vice versa. Lately, linking
a graph to the algebraic structure has received a lot of attention.

A variety of graphs attached to rings or other algebraic structures can be found
in the literature. In [7], Beck introduced for the first time a graph associated
to a commutative ring R with the elements of R as its vertices, and was mainly
interested in the coloring of commutative rings. In [3], Anderson and Livingston
introduced the zero-divisor graph of R, denoted by Γ(R), with vertex set Z(R)∗
(the set of nonzero zero-divisors of R), and where two vertices x 6= y ∈ Z(R)∗
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are adjacent if and only if xy = 0. See [1, 2, 4, 8, 9, 16, 19] for more details.
Several authors have looked at the zero-divisor graphs of commutative rings. Later,
Redmond [15] established the zero-divisor graph of a noncommutative ring which
corresponds to the concept introduced by Demeyer et al. in [10] for semigroups.

In [14], Nikmehr et al. introduced and studied the weakly zero-divisor graph of
a commutative ring R, denoted by WΓ(R). It is an undirected graph with vertex
set Z(R)∗, where two distinct vertices x and y are adjacent if and only if there
exist a ∈ Ann(x) and b ∈ Ann(y) such that ab = 0. The authors in [14] discussed
some basic properties of the weakly zero-divisor graph and studied the similarities
between WΓ(R) and Γ(R).

In this paper, we characterize the finite rings R for which WΓ(R) is a tree, a
unicycle or a split graph. Then we classify the finite rings R for which WΓ(R) is
a planar, ring, outerplanar, toroidal or double toroidal graph. Finally, we classify
the finite rings R for which the graph WΓ(R) has crosscap at most two.

2. Preliminaries

Let G be a graph with vertex set V (G). The distance between two vertices u
and v of G, denoted by d(u, v), is the smallest path from u to v. If there is no such
path, then d(u, v) = ∞. The diameter of G is defined as diam(G) = sup{d(u, v) :
u, v ∈ V (G)}. A cycle is a closed path in G. The girth of G, denoted by gr(G),
is the length of a shortest cycle in G. Note that gr(G) = ∞ whenever G contains
no cycle. A graph is said to be a complete graph if all its vertices are adjacent to
each other. A complete graph with n vertices is denoted by Kn. A bipartite graph
is a graph G whose vertex set V (G) can be partitioned into two subsets V1 and
V2 such that every edge in G has one end in V1 and the other end in V2. Further,
if each vertex of V1 is adjacent to every vertex of V2, then G is called a complete
bipartite graph. The complete bipartite graph with partition (V1, V2) such that
|V1| = m and |V2| = n is denoted by Km,n. We write Km,∞ (respectively, K∞,∞)
if one (respectively, both) of the disjoint vertex sets is infinite. A complete bipartite
graph of the form K1,n is called a star graph. A connected graph is said to be a tree
if it does not contain cycles. A graph is said to be a unicycle whenever it contains a
unique cycle. A graph is said to be a split graph if its vertex set can be partitioned
into a clique and an independent set. We say that a graph is planar whenever
it can be drawn in the plane in such a way that its edges intersect only at their
ends. A subdivision of a graph is a graph obtained from it by replacing edges with
pairwise internally disjoint paths. A remarkably simple characterization of planar
graphs was given by Kuratowski in 1930. Kuratowski’s Theorem says that a graph
is planar if and only if it contains no subdivision of K5 or K3,3. An undirected
graph is said to be outerplanar if it can be embedded in the plane in such a way
that all the vertices lie on the unbounded face of the drawing. For more details on
graph theory, we refer the reader to [17, 18].

The following observation proved by Nikmehr et al. [14] is used frequently in
this article and hence given below.
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Lemma 2.1 ([14, Lemma 2.1]). If R is a commutative ring, then the following
statements hold:

(1) If p − q is an edge of Γ(R) for some distinct elements x, y ∈ Z(R)∗, then
p− q is an edge of WΓ(R).

(2) If p ∈ Nil(R)∗, then p is adjacent to all other vertices.
(3) Nil(R)∗ is a complete subgraph of WΓ(R).

Theorem 2.2. If R is a local ring, then WΓ(R) is a complete graph.

Proof. It is clear from Lemma 2.1 (3). �

Theorem 2.3 ([14, Theorem 3.1]). If R is a reduced ring which is not an integral
domain, then WΓ(R) = Γ(R) if and only if |Min(R)| = 2.

In the following examples, we calculate the weakly zero-divisor graph of some
rings.

Example 2.4. If R = Z8, then Z(R) = {0, 2, 4, 6}. Also, Ann(2) = {4}, Ann(4) =
{2, 4, 6} and Ann(6) = {4}. Since 2 · 4 = 0, 4 · 6 = 0 and 4 ∈ Ann(2)∩Ann(6) such
that 4 · 4 = 0, we have that the graph WΓ(R) is K3.

Example 2.5. If R = Z25, then Z(R) = {0, 5, 10, 15, 20}. Also, since 5 · 10 = 0,
5 · 15 = 0, 5 · 20 = 0, 10 · 15 = 0, 10 · 20 = 0 and 15 · 20 = 0, we have that the graph
WΓ(R) is K4.

Some finite local rings and their weakly zero-divisor graphs are given in Table 1.

3. Basic properties of WΓ(R)

In this section, we classify the finite rings for which the weakly zero-divisor graph
is a unicycle, a tree or a split graph. The following results will play an important
role in the characterization of commutative rings whose weakly zero-divisor graph
is a unicycle, a tree or a split graph.

Lemma 3.1 ([12, Theorem VI-2]). Let R be a finite commutative ring. Then R
decomposes uniquely (up to order of summands) as a direct sum of local rings.

Lemma 3.2. If m ≥ 3 and R = R1 ×R2 × · · · ×Rm for some commutative rings
Ri, then WΓ(R) contains K5 as a subgraph.

Proof. Let p1 = e1, p2 = e1 + e2, p3 = e2, p4 = e2 + e3, p5 = e3 ∈ Z(R)∗,
where ei = (0, 0, . . . , 0, 1, 0, . . . , 0). Since p3 ∈ Ann(p1) and p5 ∈ Ann(p2) such that
p3p5 = 0, p1p3 = 0, p1p4 = 0, p1p5 = 0, p5 ∈ Ann(p2) and p1 ∈ Ann(p3) such
that p1p5 = 0, p5 ∈ Ann(p2) and p1 ∈ Ann(p4) such that p1p5 = 0, p2p5 = 0,
p5 ∈ Ann(p3) and p1 ∈ Ann(p4) such that p1p5 = 0, p3p5 = 0, p1 ∈ Ann(p4) and
p3 ∈ Ann(p5) such that p1p3 = 0, we see that the vertices {p1, p2, p3, p4, p5} induce
a complete graph with five vertices. �
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Table 1. Weakly zero-divisor graphs of some finite local commu-
tative rings

|Z(R)∗| Local ring R WΓ(R)

1 Z4, Z2[x]
〈x2〉 K1

2 Z9, Z3[x]
〈x2〉 K2

3 Z8, Z2[x]
〈x3〉 , Z4[x]

〈x3,x2−2〉 ,
Z4[x]
〈2x,x2〉 ,

Z2[x,y]
〈x2,xy,y2〉 ,

F4[x]
〈x2〉 , Z4[x]

〈x2+x+1〉 K3

4 Z25, Z5[x]
〈x2〉 K4

6 Z49, Z7[x]
〈x2〉 K6

7 Z16, Z2[x]
〈x4〉 , Z4[x]

〈x2−2,x4〉 ,
Z2[x]

〈x3−2,x4〉 ,
Z4[x]

〈x3+x2−2,x4〉 ,
Z2[x,y]

〈x3,xy,y2−x2〉 ,
Z2[x]

〈x3,x2−2x〉 ,
Z8[x]

〈x2−4,2x〉 ,
Z4[x,y]

〈x3,x2−2,xy,y2−2,y3〉 ,
Z4[x]
〈x2〉 ,

Z4[x,y]
〈x2,y2,xy−2〉 ,

Z2[x,y]
〈x2,y2〉 ,

Z2[x,y]
〈x2,y2,xy〉 ,

Z4[x]
〈x3,2x〉 ,

Z4[x,y]
〈x3,x2−2,xy,y2〉 ,

Z8[x]
〈x2,2x〉 ,

F8[x]
〈x2〉 , Z4[x]

〈x3+x+1〉 ,
Z4[x,y]

〈2x,2y,x2,y2,xy〉 ,
Z2[x,y,z]
〈x,y,z〉2

K7

8 Z27, Z9[x]
〈3x,x2−3〉 ,

Z9[x]
〈3x,x2−6〉

Z3[x]
〈x3〉 , Z3[x]

〈x,y〉2 , Z9[x]
〈3,x〉2 , F9[x]

〈x2〉 , Z9[x]
〈x2+1〉 K8

Lemma 3.3. Let R1 and R2 be local commutative rings. If either R1 or R2 is not
a field, then WΓ(R1 ×R2) contains K4 as a subgraph.
Proof. Suppose without loss of generality that R1 is not a field with nonzero max-
imal ideal =1. Then there exists α ∈ =∗1 such that Ann(α) = =1. Let q1 = (1, 0),
q2 = (α, 0), q3 = (α, 1) and q4 = (0, 1) ∈ Z(R)∗. Since q4 ∈ Ann(q1) and
q2 ∈ Ann(q2) with q2q4 = 0, q4 ∈ Ann(q1) and q2 ∈ Ann(q3) with q2q4 = 0,
q1q4 = 0, q4 ∈ Ann(q2) and q2 ∈ Ann(q3) with q2q4 = 0, q2q4 = 0, q2 ∈ Ann(q3)
and q2 ∈ Ann(q4) with q2q2 = 0, we get that {q1, q2, q3, q4} induces a K4 in
WΓ(R1 ×R2). �

Now we are ready to characterize the finite commutative rings such that their
weakly zero-divisor graph is a unicycle, a tree or a split graph.
Theorem 3.4. If R is a finite commutative ring, then WΓ(R) is a unicycle if and
only if R is isomorphic to one of the following rings: Z8, Z2[x]

〈x3〉 , Z4[x]
〈x3,x2−2〉 ,

Z4[x]
〈2x,x2〉 ,

Z2[x,y]
〈x2,xy,y2〉 ,

F4[x]
〈x2〉 , Z4[x]

〈x2+x+1〉 or Z3 × Z3.

Proof. Assume that WΓ(R) is a unicycle. Since R is finite, by Lemma 3.1, R ∼=
R1 ×R2 × · · · ×Rm, where (Ri,=i) is a local ring for each i and m ≥ 1. If m ≥ 3,
then by Lemma 3.2, WΓ(R) contains two different cycles, which contradicts our
assumption.

If m = 2 and either R1 or R2 is not a field, then by Lemma 3.3, WΓ(R)
contains two different cycles, a contradiction. Hence R1 and R2 are both fields.
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This implies that WΓ(R) ∼= K|R∗
1 |,|R∗

2 |. Since we are assuming that WΓ(R) is a
unicycle, |R∗1| = 2 and |R∗2| = 2. Therefore, R ∼= Z3 × Z3.

Finally, if m = 1, then R is a local ring. Thus by Theorem 2.2, WΓ(R) is
complete. Since we are assuming that WΓ(R) is a unicycle, |Z(R)∗| = 3. Therefore,
by Table 1, R ∼= Z8, Z2[x]

〈x3〉 , Z4[x]
〈x3,x2−2〉 ,

Z4[x]
〈2x,x2〉 ,

Z2[x,y]
〈x2,xy,y2〉 ,

F4[x]
〈x2〉 or Z4[x]

〈x2+x+1〉 . �

Theorem 3.5. If R is a finite commutative ring, then WΓ(R) is a tree if and only
if R is isomorphic to one of the following rings: Z4, Z2[x]

〈x2〉 , Z9, Z3[x]
〈x2〉 or Z2 × F.

Proof. Assume that WΓ(R) is a tree. Since R is finite, by Lemma 3.1, R ∼=
R1 ×R2 × · · · ×Rm, where (Ri,=i) is a local ring for each i and m ≥ 1. If m ≥ 3,
then by Lemma 3.2, WΓ(R) contains a cycle, a contradiction. Hence m ≤ 2.

Now, if m = 2 and either R1 or R2 is not a field, then by Lemma 3.3, WΓ(R)
contains a cycle, a contradiction. Hence R1 and R2 are both fields. Thus, WΓ(R) ∼=
K|R∗

1 |,|R∗
2 |. Since we are assuming that WΓ(R) is a tree, |R∗1| = 1 or |R∗2| = 1. Hence

R1 ∼= Z2 or R2 ∼= Z2.
If n = 1, then WΓ(R) is a complete graph by Theorem 2.2, because R is a local

ring. Also, we are assuming that WΓ(R) is a tree, then 1 ≤ |Z(R)∗| ≤ 2. Therefore
by Table 1, R ∼= Z4, Z2[x]

〈x2〉 , Z9 or Z3[x]
〈x2〉 . �

Theorem 3.6 ([17]). If G is a connected graph, then G is a split graph if and only
if G contains no induced subgraph isomorphic to 2K2, C4 or C5.

Theorem 3.7. If R is a finite commutative ring with |Z(R)∗| ≥ 2, then WΓ(R)
is a split graph if and only if R is isomorphic to one of the following rings: Z9,
Z3[x]
〈x2〉 , Z8, Z2[x]

〈x3〉 , Z4[x]
〈x3,x2−2〉 ,

Z4[x]
〈2x,x2〉 ,

Z2[x,y]
〈x2,xy,y2〉 ,

F4[x]
〈x2〉 , Z4[x]

〈x2+x+1〉 or Z2 × F.

Proof. Assume that WΓ(R) is a split graph. Since R is finite, by Lemma 3.1,
R ∼= R1 × R2 × · · · × Rm, where (Ri,=i) is a local ring for each i and m ≥ 1. If
m ≥ 3, then by Lemma 3.2, WΓ(R) contains C4, a contradiction by Theorem 3.6.

Now, if m = 2 and either R1 or R2 is a field, then by Lemma 3.3, WΓ(R)
contains C4, a contradiction by Theorem 3.6. Hence R1 and R2 are both fields.
Thus, WΓ(R) ∼= K|R∗

1 |,|R∗
2 |. Since we are assuming that WΓ(R) is a split graph,

|R∗1| = 1 or |R∗2| = 1. Hence R1 ∼= Z2 or R2 ∼= Z2.
Finally, if m = 1, then WΓ(R) is a complete graph, because R is local. Also,

we are assuming that WΓ(R) is a split graph, then 2 ≤ |Z(R)∗| ≤ 3. Therefore by
Table 1, R ∼= Z9, Z3[x]

〈x2〉 , Z8, Z2[x]
〈x3〉 , Z4[x]

〈x3,x2−2〉 ,
Z4[x]
〈2x,x2〉 ,

Z2[x,y]
〈x2,xy,y2〉 ,

F4[x]
〈x2〉 or Z4[x]

〈x2+x+1〉 . �

4. Planar, outerplanar, and ring graph WΓ(R)

In this section, we characterize the finite commutative rings R for which WΓ(R)
is a planar, a ring or an outerplanar graph. We recall the characterization of planar
graphs given by Kuratowski, which will play an important role in the characteri-
zation of commutative rings whose weakly zero-divisor graph is planar.

Theorem 4.1 (Kuratowski’s Theorem, [17]). A graph G is planar if and only if it
contains no subdivision of K5 or K3,3.
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Theorem 4.2. If R is a finite commutative ring, then WΓ(R) is a planar graph
if and only if R is isomorphic to one of the following rings: Z4, Z2[x]

〈x2〉 , Z9, Z3[x]
〈x2〉 ,

Z8, Z2[x]
〈x3〉 , Z4[x]

〈x3,x2−2〉 ,
Z4[x]
〈2x,x2〉 ,

Z2[x,y]
〈x2,xy,y2〉 ,

F4[x]
〈x2〉 , Z4[x]

〈x2+x+1〉 , Z25, Z5[x]
〈x2〉 , Z2 × F, Z3 × F,

Z4 × Z2 or Z2[x]
〈x2〉 × Z2.

Proof. Assume that WΓ(R) is planar. Since R is finite, by Lemma 3.1, R ∼=
R1 × R2 × · · · × Rm, where (Ri,=i) is a local ring for each i and m ≥ 1. If
m ≥ 3, then by Lemma 3.2, WΓ(R) contains K5 as a subgraph, a contradiction by
Theorem 4.1.

If m = 2 and =i 6= (0) for each i = 1, 2, then by [14, Theorem 2.6], WΓ(R)
contains K5 induced by the set {(1, 0), (α1, 0), (0, α2), (α1, α2), (0, 1)}, where αi ∈
=∗i for each i, a contradiction by Theorem 4.1. Hence one of the Ri must be a field.
Consider the following cases:

Case (i) If R1 and R2 both are fields, then WΓ(R) ∼= K|R∗
1 |,|R∗

2 |. Since we are
assuming that WΓ(R) is planar, |R∗1| ≤ 2 or |R∗2| ≤ 2 by Theorem 4.1. Hence
R ∼= Z2 × F or Z3 × F.

Case (ii) If R1 is not a field with =1 6= (0) and R2 is a field, then there is α ∈ =∗1
such that Ann(α) = =1. Suppose |=∗1| ≥ 2. Let q1 = (0, 1), q2 = (α, 0), q3 = (β, 0),
r1 = (1, 0), r2 = (γ, 0), r3 = (δ, 0), where α 6= β ∈ =∗1 and 1 6= γ, δ ∈ U(R1). Since
q1ri = 0, q2 ∈ Ann(q2) and q1 ∈ Ann(ri) such that q1q2 = 0, q2 ∈ Ann(q3) and
q1 ∈ Ann(ri) such that q1q2 = 0 for each i = 1, 2, 3, we get that {q1, q2, q3, r1, r2, r3}
induces K3,3 in WΓ(R), a contradiction by Theorem 4.1. Hence |=∗1| = 1, which
shows that R1 ∼= Z4 or Z2[x]

〈x2〉 .
Suppose |R∗2| ≥ 2 and let α ∈ =∗1 such that α2 = 0. Let s1 = (1, 0), s2 = (α, 0),

s3 = (α1, 0), t1 = (0, 1), t2 = (0, α2), t3 = (α, 1) ∈ Z(R)∗, where 1 6= α1 ∈ U(R1)
and 1 6= α2 ∈ R∗2. Since sitj = 0 for each j = 1, 2, t1 ∈ Ann(si) and s2 ∈ Ann(t3)
such that s2t1 = 0 for each i = 1, 2, 3, we get that {s1, s2, s3, t1, t2, t3} induces K3,3
in WΓ(R), a contradiction by Theorem 4.1. Hence |R∗2| = 1, which shows that
R2 ∼= Z2.

Finally, if m = 1, then WΓ(R) is a complete graph by Theorem 2.2, because
R is a local ring. Also, we are assuming that WΓ(R) is a planar graph, then
1 ≤ |Z(R)∗| ≤ 4 by Theorem 4.1. Therefore by Table 1, R ∼= Z4, Z2[x]

〈x2〉 , Z9, Z3[x]
〈x2〉 ,

Z8, Z2[x]
〈x3〉 , Z4[x]

〈x3,x2−2〉 ,
Z4[x]
〈2x,x2〉 ,

Z2[x,y]
〈x2,xy,y2〉 ,

F4[x]
〈x2〉 , Z4[x]

〈x2+x+1〉 , Z25 or Z5[x]
〈x2〉 .

Conversely, if R ∼= Z2 × F or Z3 × F, then WΓ(R) ∼= K1,n or K2,n, where n ≥ 1
is a positive integer. Hence WΓ(R) is planar by Theorem 4.1. If R ∼= Z4 × Z2 or
Z2[x]
〈x2〉 ×Z2, the planar embedding of WΓ(R) is shown in Figure 1. Also, if R ∼= Z4,
Z2[x]
〈x2〉 , Z9, Z3[x]

〈x2〉 , Z8, Z2[x]
〈x3〉 , Z4[x]

〈x3,x2−2〉 ,
Z4[x]
〈2x,x2〉 ,

Z2[x,y]
〈x2,xy,y2〉 ,

F4[x]
〈x2〉 , Z4[x]

〈x2+x+1〉 , Z25 or Z5[x]
〈x2〉 ,

then the result follows from Table 1 and Theorem 4.1. �

Let C be a cycle of G. Any edge in G that connects two nonadjacent vertices
in C is called a chord. A primitive cycle is one that has no chords. Furthermore,
we claim that G has the primitive cycle property (PCP) if any two primitive cycles

Rev. Un. Mat. Argentina, Vol. 67, No. 1 (2024)



GENUS AND CROSSCAP OF THE WEAKLY ZERO-DIVISOR GRAPH 219

(1,0)

(2,0)

(2,1)

(3,0) (0,1)

Figure 1. Planar embedding of WΓ(Z4 × Z2) ∼= WΓ(Z2[x]
〈x2〉 × Z2).

intersect in at most one edge. The frank of G, denoted by frank(G), equals the
number of primitive cycles of G. Also, rank(G) = q − n + r, where q, n and r
denote the number of edges, vertices and connected components of G, respectively.
Section 2 of [11] contains a detailed definition of a ring graph. The authors in [11]
also demonstrated the following equivalence.
Theorem 4.3 ([11]). If G is a connected graph, then following are equivalent:

(1) G is a ring graph,
(2) rank(G) = frank(G),
(3) G satisfies PCP and G does not contain a subdivision of K4 as a subgraph.

As a result, each ring graph is planar. In the following theorem, we characterize
all finite commutative rings R for which WΓ(R) is a ring graph.
Theorem 4.4. If R is a finite commutative ring, then WΓ(R) is a ring graph if
and only if R is isomorphic to one of the following rings: Z4, Z2[x]

〈x2〉 , Z9, Z3[x]
〈x2〉 , Z8,

Z2[x]
〈x3〉 , Z4[x]

〈x3,x2−2〉 ,
Z4[x]
〈2x,x2〉 ,

Z2[x,y]
〈x2,xy,y2〉 ,

F4[x]
〈x2〉 , Z4[x]

〈x2+x+1〉 , Z2 × F or Z3 × Z3.

Proof. Since every ring graph is a planar graph, it is enough to deal with rings
whose weakly zero-divisor graphs are planar. If R ∼= Z4×Z2, then WΓ(R) contains
K4 induced by the set {(1, 0), (0, 1), (0, 2), (2, 1)} as shown in Figure 1. Hence by
Theorem 4.3, WΓ(R) is not a ring graph. Also, if R ∼= Z2[x]

〈x2〉 ×Z2, then WΓ(Z2[x]
〈x2〉 ×

Z2) ∼= WΓ(Z4 × Z2), which implies that WΓ
(Z2[x]
〈x2〉 × Z2

)
is not a ring graph.

If R ∼= Z2×F, then WΓ(R) ∼= K1,n, where n ≥ 1 is a positive integer. Thus, by
Theorem 4.3, WΓ(R) is a ring graph. Also, if R ∼= Z3×F, then WΓ(R) ∼= K2,n−1,
where n = |F|. Thus, rank(WΓ(R)) = n − 2 and frank(WΓ(R)) = (n−1)(n−2)

2 .
Hence WΓ(R) is a ring graph if and only if n− 2 = (n−1)(n−2)

2 , which implies that
n = 2 or n = 3. Hence F ∼= Z2 or Z3.

If R ∼= Z4 or Z2[x]
〈x2〉 , then WΓ(R) ∼= K1 by Table 1, which is a ring graph. If

R ∼= Z9 or Z3[x]
〈x2〉 , then WΓ(R) ∼= K2, again a ring graph. If R ∼= Z8, Z2[x]

〈x3〉 , Z4[x]
〈x3,x2−2〉 ,
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Z4[x]
〈2x,x2〉 ,

Z2[x,y]
〈x2,xy,y2〉 ,

F4[x]
〈x2〉 or Z4[x]

〈x2+x+1〉 , then WΓ(R) ∼= K3 by Table 1; this is also a
ring graph. If R ∼= Z25 or Z5[x]

〈x2〉 , then WΓ(R) ∼= K4, which is not a ring graph by
Theorem 4.3. �

Theorem 4.5 ([17]). A graph G is outerplanar if and only if it does not contain
a subdivision of K4 or K2,3.

In the next theorem, we determine all finite commutative rings with outerplanar
weakly zero-divisor graphs.
Theorem 4.6. If R is a finite commutative ring, then WΓ(R) is an outerplanar
graph if and only if R is isomorphic to one of the following rings: Z4, Z2[x]

〈x2〉 , Z9,
Z3[x]
〈x2〉 , Z8, Z2[x]

〈x3〉 , Z4[x]
〈x3,x2−2〉 ,

Z4[x]
〈2x,x2〉 ,

Z2[x,y]
〈x2,xy,y2〉 ,

F4[x]
〈x2〉 , Z4[x]

〈x2+x+1〉 , Z2 × F or Z3 × Z3.

Proof. In view of Theorems 4.3 and 4.5, one can say that every outerplanar graph
is a ring graph. Thus it is enough to deal with the rings R for which WΓ(R) is a
ring graph. Hence the result follows from Theorem 4.4. �

5. Genus of WΓ(R)

In this section, we classify the finite commutative rings R for which WΓ(R) has
genus at most two.

The minimal integer k such that a graph G can be drawn without crossing itself
on a sphere with k handles (i.e. an oriented surface of genus k) is called the genus
of G, denoted by γ(G). A planar graph has genus 0 because it can be drawn on
a sphere without self-crossing. The following results deal with genus features of
complete and complete bipartite graphs.

Lemma 5.1 ([18]). γ(Km) = d (m−3)(m−4)
12 e if m ≥ 3. In particular, γ(Km) = 1 if

m = 5, 6, 7.

Lemma 5.2 ([18]). γ(Kn,m) = d (n−2)(m−2)
4 e if n,m ≥ 2. In particular, γ(K4,4) =

γ(K3,m) = 1 if m = 3, 4, 5, 6. Also γ(K5,4) = γ(K6,4) = γ(Km,3) = 2 if m =
7, 8, 9, 10.

Lemma 5.3 ([13]). If G is a connected graph with q edges and m ≥ 3 vertices,
then

γ(G) ≥
⌈q

6 −
m

2 + 1
⌉
.

Lemma 5.4. If R ∼= R1 ×R2 × · · · ×Rm is a commutative ring, where (Ri,=i) is
a commutative ring for each i and m ≥ 4, then WΓ(R) contains K9 as a subgraph.

Proof. Let pi = ei for 1 ≤ i ≤ 4 and p5 = e3 + e4, p6 = e2 + e3, p7 = e2 + e4,
p8 = e2 + e3 + e4, p9 = e1 + e2 ∈ Z(R)∗, where ei = (0, 0, . . . , 0, 1, 0, . . . , 0). Since
pipj = 0 for each 1 ≤ i, j ≤ 4, the subgraph induced by the set {p1, p2, p3, p4} is
K4 in WΓ(R). Since p1p5 = 0, p2p5 = 0, p1 ∈ Ann(pi) and p2 ∈ Ann(p5) such
that p1p2 = 0 for i = 1, 2, the subgraph induced by the set {p1, p2, p3, p4, p5} is K5
in WΓ(R). Since p1p6 = 0, p1 ∈ Ann(pi) and p4 ∈ Ann(p6) such that p1p4 = 0
for i = 2, 3, 5, p4p6 = 0, we have that {p1, p2, . . . , p6} induces K6 in WΓ(R). Since
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p1p7 = 0, p1 ∈ Ann(pi) and p3 ∈ Ann(p7) such that p1p3 = 0 for i = 2, 4, 5, 6,
p3p7 = 0, we have that {p1, p2, . . . , p7} induces K7 in WΓ(R). Since p1p8 = 0,
p3 ∈ Ann(pi) and p1 ∈ Ann(p8) such that p1p3 = 0 for i = 2, 7, p2 ∈ Ann(pi) and
p1 ∈ Ann(p8) such that p1p2 = 0 for i = 3, 4, 5, p4 ∈ Ann(p6) and p1 ∈ Ann(p8)
such that p1p4 = 0, we have that {p1, p2, . . . , p8} induces K8 in WΓ(R). Since
p3 ∈ Ann(pi) and p1 ∈ Ann(p9) such that p1p3 = 0 for i = 1, 2, 4, 7, p1 ∈ Ann(pi)
and p4 ∈ Ann(p9) such that p1p4 = 0 for i = 3, 5, 6, 8, we have that {p1, p2, . . . , p9}
induces K9 in WΓ(R). �

Lemma 5.5. Let R ∼= R1 × R2 × R3 be a commutative ring, where Ri is a local
ring for each i = 1, 2, 3. If Ri is not a field for at least one i = 1, 2, 3, then WΓ(R)
contains K4,7 as a subgraph.
Proof. Suppose without loss of generality that R1 is not a field with nonzero
maximal ideal =1. Then there is α ∈ =∗1 such that Ann(α) = =1. Consider
q1 = (1, 0, 0), q2 = (α, 0, 0), q3 = (1, 1, 0), q4 = (0, 1, 0), r1 = (0, 0, 1), r2 = (1, 0, 1),
r3 = (0, 1, 1), r4 = (α, 1, 0), r5 = (α, 0, 1), r6 = (α, 1, 1), r7 = (u, 0, 0) ∈ Z(R)∗,
where 1 6= u ∈ U(R1). Since q1r1 = 0, r1 ∈ Ann(q1) and q4 ∈ Ann(r2) such
that q4r1 = 0, q1r3 = 0, q4 ∈ Ann(q1) and r1 ∈ Ann(r4) such that q4r1 = 0,
r1 ∈ Ann(q1) and q4 ∈ Ann(r5) such that q4r1 = 0, q4 ∈ Ann(q1) and q2 ∈ Ann(r6)
such that q2q4 = 0, q4 ∈ Ann(q1) and r1 ∈ Ann(r7) such that q4r1 = 0, q2r1 = 0,
r1 ∈ Ann(q2) and q4 ∈ Ann(r2) such that q4r1 = 0, q2r3 = 0, r1 ∈ Ann(r4)
and q4 ∈ Ann(q2) such that q4r1 = 0, r1 ∈ Ann(q2) and q4 ∈ Ann(r5) such that
q4r1 = 0, q4 ∈ Ann(q2) and q2 ∈ Ann(r6) such that q2q4 = 0, r1 ∈ Ann(q2) and
q4 ∈ Ann(r7) such that q4r1 = 0, q3r1 = 0, r1 ∈ Ann(q3) and q4 ∈ Ann(r2) such
that q4r1 = 0, r1 ∈ Ann(q3) and q1 ∈ Ann(r3) such that q1r1 = 0, r1 ∈ Ann(q3)
and q2 ∈ Ann(r4) such that q2r1 = 0, r1 ∈ Ann(q3) and q4 ∈ Ann(r5) such that
q4r1 = 0, r1 ∈ Ann(q3) and q2 ∈ Ann(r6) such that q2r1 = 0, r1 ∈ Ann(q3)
and q4 ∈ Ann(r7) such that q4r1 = 0, q4r1 = 0, q4r2 = 0, r1 ∈ Ann(q4) and
q1 ∈ Ann(r3) such that q1r1 = 0, q1 ∈ Ann(q4) and r1 ∈ Ann(r4) such that
q1r1 = 0, q4r5 = 0, r1 ∈ Ann(q4) and q2 ∈ Ann(r6) such that q2r1 = 0, q4r7 = 0,
we get that {q1, q2, q3, q4, r1, r2, . . . , r7} induces K4,7 in WΓ(R). �

Lemma 5.6. Let R ∼= F1 × F2 × F3 be a commutative ring, where Fi is a field
for each i = 1, 2, 3. If |Fi| ≥ 3 for some i = 1, 2, 3, then WΓ(R) contains K9 as a
subgraph.
Proof. Suppose without loss of generality that |F1| ≥ 3. Let s1 = (1, 0, 0), s2 =
(α, 0, 0), s3 = (0, 1, 0), s4 = (0, 0, 1), s5 = (1, 1, 0), s6 = (α, 1, 0), s7 = (1, 0, 1),
s8 = (α, 0, 1), s9 = (0, 1, 1) ∈ Z(R)∗, where 1 6= α ∈ F ∗1 . Since si is adjacent with
sj for each i and j, {s1, s2, . . . , s9} induces K9 in WΓ(R). �

Lemma 5.7. Let R ∼= R1 × F be a commutative ring, where (R1,=1) is a local
ring with =1 6= (0) and F is a field. If |=1|∗ = 2, then WΓ(R) contains K6,5 as a
subgraph.

Proof. Since |=∗1| = 2, it follows that R1 ∼= Z9 or Z3[x]
〈x2〉 and hence |U(R1)| = 6. Let

α, β ∈ =∗1 be such that αβ = 0 and Ann(α) = =1. Let w1 = (δ1, 0), w2 = (δ2, 0),
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w3 = (δ3, 0), w4 = (δ4, 0), w5 = (δ5, 0), w6 = (δ6, 0), z1 = (α, 0), z2 = (β, 0),
z3 = (0, 1), z4 = (α, 1), z5 = (β, 1) ∈ Z(R)∗, where δi ∈ U(R1) for each i. Since
z3 ∈ Ann(wi) and z1 ∈ Ann(zj) such that z1z3 = 0 for 1 ≤ i ≤ 6 and 1 ≤ j ≤ 5,
we have that {w1, w2, . . . , w6, z1, z2, . . . , z5} induces K6,5 in WΓ(R). �

Lemma 5.8. Let R ∼= R1 × F be a commutative ring, where (R1,=1) is a local
ring with =1 6= (0) and F is a field. If |=1|∗ ≥ 3, then WΓ(R) contains K4,7 as a
subgraph.

Proof. Suppose α, β, δ ∈ =∗1 are such that αβ = αδ = 0 and Ann(α) = =1. Let
e1 = (1, 0), e2 = (u, 0), e3 = (v, 0), e4 = (w, 0), f1 = (α, 0), f2 = (β, 0), f3 = (0, 1),
f4 = (α, 1), f5 = (β, 1), f6 = (δ, 0), f7 = (δ, 1) ∈ Z(R)∗, where 1 6= u, v, w ∈ U(R1).
Since f3 ∈ Ann(ei) and f1 ∈ Ann(fj) such that e1f3 = 0 for 1 ≤ i ≤ 4 and
1 ≤ j ≤ 7, we have that {e1, e2, e3, e4, f1, f2, . . . , f7} induces K4,7 in WΓ(R). �

Lemma 5.9. Let R ∼= R1 × F be a commutative ring, where (R1,=1) is a local
ring with =1 6= (0) and F is a field. If |=∗1| = 1 and |F | ≥ 4, then WΓ(R) contains
K9 \ {e} as a subgraph, where e denotes an edge.

Proof. Let α ∈ =∗1 be such that α2 = 0. Let k1 = (0, 1), k2 = (0, a), k3 = (0, b),
k4 = (α, 1), k5 = (α, a), k6 = (1, 0), k7 = (α, 0), k8 = (u, 0), k9 = (α, b) ∈ Z(R)∗,
where 1 6= a, b ∈ F ∗ and 1 6= u ∈ U(R1). It is easy to see that WΓ(R) contains
K9 \ {e} induced by the set {k1, k2, . . . , k9}. �

Now, we can characterize the finite commutative rings R with genus one WΓ(R).

Theorem 5.10. If R is a finite commutative ring, then γ(WΓ(R)) = 1 if and only
if R is isomorphic to one of the following rings: Z49, Z7[x]

〈x2〉 , Z16, Z2[x]
〈x4〉 , Z4[x]

〈x2−2,x4〉 ,
Z2[x]

〈x3−2,x4〉 ,
Z4[x]

〈x3+x2−2,x4〉 ,
Z2[x,y]

〈x3,xy,y2−x2〉 ,
Z2[x]

〈x3,x2−2x〉 ,
Z8[x]

〈x2−4,2x〉 ,
Z4[x,y]

〈x3,x2−2,xy,y2−2,y3〉 ,
Z4[x]
〈x2〉 , Z4[x,y]

〈x2,y2,xy−2〉 ,
Z2[x,y]
〈x2,y2〉 ,

Z2[x,y]
〈x2,y2,xy〉 ,

Z4[x]
〈x3,2x〉 ,

Z4[x,y]
〈x3,x2−2,xy,y2〉 ,

Z8[x]
〈x2,2x〉 ,

F8[x]
〈x2〉 , Z4[x]

〈x3+x+1〉 ,
Z4[x,y]

〈2x,2y,x2,y2,xy〉 ,
Z2[x,y,z]
〈x,y,z〉2 , F4 × F4, F4 × Z5, Z5 × Z5, F4 × Z7, Z4 × Z3, Z2[x]

〈x2〉 × Z3

or Z2 × Z2 × Z2.

Proof. Assume that γ(WΓ(R)) = 1. Since R is finite, by Lemma 3.1, R ∼= R1 ×
R2 × · · · × Rm, where (Ri,=i) is a local ring for each i and m ≥ 1. If m ≥ 4,
then by Lemma 5.4, WΓ(R) contains K9. Thus by Lemma 5.1, γ(WΓ(R)) ≥ 3, a
contradiction. Hence m ≤ 3. Consider the following cases:
Case (i) If m = 3 and Ri is not a field for some i = 1, 2, 3, then by Lemma 5.5,
WΓ(R) contains K4,7 as a subgraph. Thus by Lemma 5.2, γ(WΓ(R)) ≥ 3, a
contradiction. Hence Ri is a field for each i = 1, 2, 3.

If |Ri| ≥ 3 for some i = 1, 2, 3, then by Lemma 5.6, WΓ(R) contains K9 as a
subgraph. Thus by Lemma 5.1, γ(WΓ(R)) ≥ 3, a contradiction. Hence |Ri| = 2
for each i = 1, 2, 3. This implies that R ∼= Z2 × Z2 × Z2.
Case (ii) Ifm = 2 and =i 6= (0) for each i = 1, 2, then by [14, Theorem 2.6], WΓ(R)
containsK8 induced by the set {(1, 0), (α1, 0), (0, α2), (0, 1), (α1, 1), (1, α2), (α1, α2),
(u, 0)}, where αi ∈ =i for i = 1, 2 and 1 6= u ∈ U(R1). Thus, γ(WΓ(R)) > 1 by
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Lemma 5.1, a contradiction. Hence at least one of the Ri is a field. Consider the
following subcases:
Subcase (a) If R1 and R2 both are fields, then by Theorem 2.3, WΓ(R) = Γ(R).
Hence R ∼= F4 × F4, F4 × Z5, Z5 × Z5 or F4 × Z7 by [19, Theorem 3.1].
Subcase (b) Suppose R1 is not a field with =1 6= (0) and R2 is a field. If |=∗1| = 2,
then by Lemma 5.7, WΓ(R) contains K6,5. Thus γ(WΓ(R)) ≥ 3 by Lemma 5.2,
a contradiction. Also, if |=∗1| ≥ 3, then by Lemma 5.8, WΓ(R) contains K4,7, a
contradiction by Lemma 5.2. Hence |=∗1| = 1, which shows that R1 ∼= Z4 or Z2[x]

〈x2〉 .
Finally, if |R2| ≥ 4, then by Lemma 5.9, WΓ(R) contains K9 \ {e}, a contradiction
by Lemma 5.1. Hence |R2| ≤ 3. It is clear from Theorem 4.2 that |R1| 6= 2. Hence
R2 ∼= Z3.

Case (iii) If m = 1, then WΓ(R) is a complete graph, because R is local.
Also, we are assuming that γ(WΓ(R)) = 1, then 5 ≤ |Z(R)∗| ≤ 7. There-
fore by Table 1, R ∼= Z49, Z7[x]

〈x2〉 , Z16, Z2[x]
〈x4〉 , Z4[x]

〈x2−2,x4〉 ,
Z2[x]

〈x3−2,x4〉 ,
Z4[x]

〈x3+x2−2,x4〉 ,
Z2[x,y]

〈x3,xy,y2−x2〉 ,
Z2[x]

〈x3,x2−2x〉 ,
Z8[x]

〈x2−4,2x〉 ,
Z4[x,y]

〈x3,x2−2,xy,y2−2,y3〉 ,
Z4[x]
〈x2〉 , Z4[x,y]

〈x2,y2,xy−2〉 ,
Z2[x,y]
〈x2,y2〉 ,

Z2[x,y]
〈x2,y2,xy〉 ,

Z4[x]
〈x3,2x〉 ,

Z4[x,y]
〈x3,x2−2,xy,y2〉 ,

Z8[x]
〈x2,2x〉 ,

F8[x]
〈x2〉 , Z4[x]

〈x3+x+1〉 ,
Z4[x,y]

〈2x,2y,x2,y2,xy〉 or Z2[x,y,z]
〈x,y,z〉2 .

Conversely, if R ∼= Z49 or Z7[x]
〈x2〉 , then WΓ(R) ∼= K6. Thus by Lemma 5.1,

γ(WΓ(R)) = 1. If R ∼= Z16, Z2[x]
〈x4〉 , Z4[x]

〈x2−2,x4〉 ,
Z2[x]

〈x3−2,x4〉 ,
Z4[x]

〈x3+x2−2,x4〉 ,
Z2[x,y]

〈x3,xy,y2−x2〉 ,
Z2[x]

〈x3,x2−2x〉 ,
Z8[x]

〈x2−4,2x〉 ,
Z4[x,y]

〈x3,x2−2,xy,y2−2,y3〉 ,
Z4[x]
〈x2〉 , Z4[x,y]

〈x2,y2,xy−2〉 ,
Z2[x,y]
〈x2,y2〉 ,

Z2[x,y]
〈x2,y2,xy〉 ,

Z4[x]
〈x3,2x〉 ,

Z4[x,y]
〈x3,x2−2,xy,y2〉 ,

Z8[x]
〈x2,2x〉 ,

F8[x]
〈x2〉 , Z4[x]

〈x3+x+1〉 ,
Z4[x,y]

〈2x,2y,x2,y2,xy〉 or Z2[x,y,z]
〈x,y,z〉2 , then

WΓ(R) ∼= K7. Thus γ(WΓ(R)) = 1 again by Lemma 5.1. If R ∼= F4 × F4,
F4 × Z5, Z5 × Z5 or F4 × Z7, then γ(WΓ(R)) = γ(Γ(R)) = 1 by [19, Theorem
3.1]. If R ∼= Z4 × Z3 or Z2[x]

〈x2〉 × Z3, the toroidal embedding of WΓ(R) is shown in
Figure 2. If R ∼= Z2 × Z2 × Z2, then WΓ(R) ∼= K6 by [14, Theorem 2.6]. Hence
γ(WΓ(R)) = 1 by Lemma 5.1. �

(2,1)

(2,2)

(0,1)

(2,0) (2,0)

(2,0)(2,0)

(0,2) (0,2)

(2,1)

(2,2)

(0,1)

(1,0)

(3,0)

Figure 2. Toroidal embedding of WΓ(Z4 × Z3) ∼= WΓ
(Z2[x]
〈x2〉 × Z3

)
.
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We end this section with the classification of finite commutative rings R with
genus two WΓ(R).

Theorem 5.11. If R is a finite commutative ring, then γ(WΓ(R)) = 2 if and only
if R is isomorphic to one of the following rings: Z27, Z9[x]

〈3x,x2−3〉 ,
Z9[x]

〈3x,x2−6〉
Z3[x]
〈x3〉 ,

Z3[x]
〈x,y〉2 , Z9[x]

〈3,x〉2 , F9[x]
〈x2〉 , Z9[x]

〈x2+1〉 , F4 × F8, F4 × F9, F4 × F11 or Z5 × Z7.

Proof. Assume that γ(WΓ(R)) = 2. Since R is finite, by Lemma 3.1, R ∼= R1 ×
R2 × · · · × Rm, where (Ri,=i) is a local ring for each i and m ≥ 1. If m ≥ 4,
then by Lemma 5.4, WΓ(R) contains K9. Thus by Lemma 5.1, γ(WΓ(R)) ≥ 3, a
contradiction. Hence m ≤ 3. Consider the following cases:

Case (i) If m = 3 and Ri is not a field for some i = 1, 2, 3, then by Lemma 5.5,
WΓ(R) contains K4,7 as a subgraph. Thus by Lemma 5.2, γ(WΓ(R)) ≥ 3, a
contradiction. Hence Ri is a field for each i = 1, 2, 3.

If |Ri| ≥ 3 for some i = 1, 2, 3, then by Lemma 5.6, WΓ(R) contains K9 as a
subgraph. Thus by Lemma 5.1, γ(WΓ(R)) ≥ 3, a contradiction. Hence |Ri| = 2
for each i = 1, 2, 3. This implies that R ∼= Z2 × Z2 × Z2. Thus γ(WΓ(R)) = 1 by
Theorem 5.10, again a contradiction.

Case (ii) Ifm = 2 and =i 6= (0) for each i = 1, 2, then by [14, Theorem 2.6], WΓ(R)
containsK9 induced by the set {(1, 0), (α1, 0), (0, α2), (0, 1), (α1, 1), (1, α2), (α1, α2),
(u, 0), (0, v)}, where αi ∈ =i for i = 1, 2, 1 6= u ∈ U(R1) and 1 6= v ∈ U(R2). Thus,
γ(WΓ(R)) > 2 by Lemma 5.1, a contradiction. Hence at least one of the Ri is a
field. Consider the following subcases:
Subcase (a) If R1 and R2 both are fields, then by Theorem 2.3, WΓ(R) = Γ(R).
Hence R ∼= F4 × F8, F4 × F9, F4 × F11 or Z5 × Z7 by [5, Theorem 4].
Subcase (b) Suppose R1 is not a field with =1 6= (0) and R2 is a field. If |=∗1| = 2,
then by Lemma 5.7, WΓ(R) contains K6,5, a contradiction by Lemma 5.2. Also,
if |=∗1| ≥ 3, then by Lemma 5.8, WΓ(R) contains K4,7. Thus by Lemma 5.2,
γ(WΓ(R)) ≥ 3, a contradiction. Hence |=∗1| = 1, which shows that R1 ∼= Z4 or
Z2[x]
〈x2〉 . Finally, if |R2| ≥ 4, then by Lemma 5.9, WΓ(R) contains K9 \ {e}. Thus,
γ(WΓ(R)) > 3 by Lemma 5.3, a contradiction. Hence |R2| ≤ 3. If |R2| = 2,
then by Theorem 4.2, γ(WΓ(R)) = 0. Also, if |R2| = 3, then by Theorem 5.10,
γ(WΓ(R)) = 1. Hence in this case γ(WΓ(R)) 6= 2.

Case (iii) If m = 1, then WΓ(R) is a complete graph, because R is local. Also,
we are assuming that γ(WΓ(R)) = 2, then |Z(R)∗| = 8. Therefore by Table 1,
R ∼= Z27, Z9[x]

〈3x,x2−3〉 ,
Z9[x]

〈3x,x2−6〉
Z3[x]
〈x3〉 , Z3[x]

〈x,y〉2 , Z9[x]
〈3,x〉2 , F9[x]

〈x2〉 or Z9[x]
〈x2+1〉 .

Conversely, if R ∼= Z27, Z9[x]
〈3x,x2−3〉 ,

Z9[x]
〈3x,x2−6〉

Z3[x]
〈x3〉 , Z3[x]

〈x,y〉2 , Z9[x]
〈3,x〉2 , F9[x]

〈x2〉 or Z9[x]
〈x2+1〉 ,

then WΓ(R) ∼= K8, which implies that γ(WΓ(R)) = 2 by Lemma 5.1. Also, if
R ∼= F4×F8, F4×F9, F4×F11 or Z5×Z7, then by Theorem 2.3 and [5, Theorem 4],
γ(WΓ(R)) = γ(Γ(R)) = 2. �
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6. Crosscap of WΓ(R)

In this section, we characterize the finite commutative rings R for which WΓ(R)
has crosscap at most two.

Let Nk denote the sphere with k crosscaps, where k is a non-negative integer,
that is, Nk is a non-oriented surface with k crosscaps. The crosscap number of a
graph G, denoted by γ(G), is the minimal integer k such that G can be embedded
in Nk. Intuitively, G is embedded in a surface if it can be drawn in the surface
so that its edges intersect only at their common vertices. It is easy to see that
γ(H) ≤ γ(G) for all subgraphs H of G. The crosscap of various particular types of
graphs are given in the following lemmas, which are useful for proving the results
of this section.

Lemma 6.1 ([18]). If m ≥ 3, then

γ(Km) =
{⌈

(m−3)(m−4)
6

⌉
if m ≥ 3 and m 6= 7;

3 if m = 7.

Lemma 6.2 ([18]). If n,m ≥ 2, then

γ(Km,n) =
⌈

(m− 2)(n− 2)
2

⌉
.

Lemma 6.3 ([13]). If G is a connected graph with q edges and m ≥ 3 vertices,
then

γ(G) ≥
⌈q

3 −m+ 2
⌉
.

Now, we can characterize the finite commutative rings R with crosscap at most
two WΓ(R).

Theorem 6.4. If R is a finite commutative ring, then γ(WΓ(R)) = 1 if and only
if R is isomorphic to one of the following rings: Z49, Z7[x]

〈x2〉 , F4 × F4, F4 × Z5 or
Z2 × Z2 × Z2.

Proof. Since γ(WΓ(R)) ≤ γ(WΓ(R)), it is enough to deal with the rings R for
which γ(WΓ(R)) = 1. If R ∼= Z49 or Z7[x]

〈x2〉 , then WΓ(R) ∼= K6. Thus by
Lemma 6.1, γ(WΓ(R)) = 1. If R ∼= Z16, Z2[x]

〈x4〉 , Z4[x]
〈x2−2,x4〉 ,

Z2[x]
〈x3−2,x4〉 ,

Z4[x]
〈x3+x2−2,x4〉 ,

Z2[x,y]
〈x3,xy,y2−x2〉 ,

Z2[x]
〈x3,x2−2x〉 ,

Z8[x]
〈x2−4,2x〉 ,

Z4[x,y]
〈x3,x2−2,xy,y2−2,y3〉 ,

Z4[x]
〈x2〉 , Z4[x,y]

〈x2,y2,xy−2〉 ,
Z2[x,y]
〈x2,y2〉 ,

Z2[x,y]
〈x2,y2,xy〉 ,

Z4[x]
〈x3,2x〉 ,

Z4[x,y]
〈x3,x2−2,xy,y2〉 ,

Z8[x]
〈x2,2x〉 ,

F8[x]
〈x2〉 , Z4[x]

〈x3+x+1〉 ,
Z4[x,y]

〈2x,2y,x2,y2,xy〉 or Z2[x,y,z]
〈x,y,z〉2 ,

then WΓ(R) ∼= K7. Thus γ(WΓ(R)) = 3 by Lemma 6.1. If R ∼= F4×F4 or F4×Z5,
then WΓ(R) ∼= K3,3 or K3,4. Thus by Lemma 6.2, γ(WΓ(R)) = 1. If R ∼= Z5×Z5
or F4 × Z7, then WΓ(R) ∼= K4,4 or K3,6. Thus by Lemma 6.2, γ(WΓ(R)) = 2.
If R ∼= Z4 × Z3 or Z2[x]

〈x2〉 × Z3, then WΓ(R) contains K7 \ {e} induced by the set
{(1, 0), (2, 0), (3, 0), (0, 1), (0, 2), (2, 1), (2, 2)}. Thus by Lemma 6.3, γ(WΓ(R)) > 1.

IfR ∼= Z2×Z2×Z2, thenWΓ(R) ∼= K6 by [14, Theorem 2.6]. Hence γ(WΓ(R)) =
1 by Lemma 6.1. �

Rev. Un. Mat. Argentina, Vol. 67, No. 1 (2024)



226 N. UR REHMAN, M. NAZIM, AND S. AHMAD MIR

Theorem 6.5. If R is a finite commutative ring, then γ(WΓ(R)) = 2 if and only
if R is isomorphic to one of the following rings: Z5 × Z5, F4 × Z7, Z4 × Z3 or
Z2[x]
〈x2〉 × Z3.

Proof. Since γ(WΓ(R)) ≤ γ(WΓ(R)), it is enough to deal with the rings R for
which WΓ(R) has genus at most two. It is clear from Theorem 6.4 that if R ∼=
Z49, Z7[x]

〈x2〉 , F4 × F4, F4 × Z5 or Z2 × Z2 × Z2, then γ(WΓ(R)) = 1. If R ∼=
Z16, Z2[x]

〈x4〉 , Z4[x]
〈x2−2,x4〉 ,

Z2[x]
〈x3−2,x4〉 ,

Z4[x]
〈x3+x2−2,x4〉 ,

Z2[x,y]
〈x3,xy,y2−x2〉 ,

Z2[x]
〈x3,x2−2x〉 ,

Z8[x]
〈x2−4,2x〉 ,

Z4[x,y]
〈x3,x2−2,xy,y2−2,y3〉 ,

Z4[x]
〈x2〉 , Z4[x,y]

〈x2,y2,xy−2〉 ,
Z2[x,y]
〈x2,y2〉 ,

Z2[x,y]
〈x2,y2,xy〉 ,

Z4[x]
〈x3,2x〉 ,

Z4[x,y]
〈x3,x2−2,xy,y2〉 ,

Z8[x]
〈x2,2x〉 ,

F8[x]
〈x2〉 , Z4[x]

〈x3+x+1〉 ,
Z4[x,y]

〈2x,2y,x2,y2,xy〉 or Z2[x,y,z]
〈x,y,z〉2 , then WΓ(R) ∼= K7. Thus

γ(WΓ(R)) = 3 by Lemma 6.1. If R ∼= Z27, Z9[x]
〈3x,x2−3〉 ,

Z9[x]
〈3x,x2−6〉

Z3[x]
〈x3〉 , Z3[x]

〈x,y〉2 ,
Z9[x]
〈3,x〉2 , F9[x]

〈x2〉 or Z9[x]
〈x2+1〉 , then WΓ(R) ∼= K8. Thus by Lemma 6.2, γ(WΓ(R)) = 4. If

R ∼= Z5 × Z5 or F4 × Z7, then WΓ(R) ∼= K4,4 or K3,6 and hence by Lemma 6.2,
γ(WΓ(R)) = 2. If R ∼= F4 × F8, then WΓ(R) ∼= K3,7 and hence γ(WΓ(R)) = 3. If
R ∼= F4×F4, then WΓ(R) ∼= K3,8 and hence γ(WΓ(R)) = 3. If R ∼= F4×F11, then
WΓ(R) ∼= K3,10 and hence γ(WΓ(R)) = 4. If R ∼= Z5 × Z7, then WΓ(R) ∼= K4,6

and hence γ(WΓ(R)) = 4. If R ∼= Z4 ×Z3 or Z2[x]
〈x2〉 ×Z3, the embedding of WΓ(R)

onto N2 is shown in Figure 3. �

(1,0)

(1,0)

(2,0)

(2,0)(3,0)

(3,0)

(0,1) (0,1)

(0,1)(0,1)

(2,1)

(0,2)

(2,2)

(0,2)

Figure 3. Embedding of WΓ(Z4 × Z3) ∼= WΓ
(Z2[x]
〈x2〉 × Z3

)
on N2.
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