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THE JOHN-NIRENBERG INEQUALITY FOR
ORLICZ-LORENTZ SPACES IN A PROBABILISTIC SETTING

LIBO LI AND ZHIWEI HAO

ABSTRACT. The John—Nirenberg inequality is widely studied in the field of
mathematical analysis and probability theory. In this paper we study a new
type of the John—Nirenberg inequality for Orlicz—Lorentz spaces in a proba-
bilistic setting. To be precise, let 0 < ¢ < co and ® be an N-function with
some proper restrictions. We prove that if the stochastic basis {Fn},>0 is
regular, then BMOg ¢ = BMO, with equivalent (quasi)-norms. The result is
new, which improves previous work on martingale Hardy theory.

1. INTRODUCTION

One of the most important properties of BM O spaces (spaces of functions satis-
fying a bounded mean oscillation) is the so-called John—Nirenberg inequality, which
was originally proved by John and Nirenberg in [14]. It was later extended to the
probabilistic context by Garsia and Herz in [3} [8]. In this paper, we deal with the
John—Nirenberg inequality for the new type of BM O spaces in probability theory.

Before describing our main results, we recall the classical John—Nirenberg in-
equality in probability theory. Let (2, F,P) be a probability space and {F,},>0
be a non-decreasing sequence of sub-o-algebras of F such that F = o( U0 fn).
The expectation operator and the conditional expectation operator with respect
to F, are denoted by E and E,, respectively. A sequence of f = (f)n>0 of ran-
dom variables is said to be a martingale if f,, is F,-measurable, E(|f,|) < oo and
E,(fn+1) = fn for each n > 0. The spaces BMO,,, 1 < p < 00, are defined as

1
BMO, = {f € Ly | fllmo, = Slil[)) |En (] f — fn|p)||L/j < 00}7
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where the f, = E,(f). Let T be the set of all stopping times with respect to
{Fn}n>0. It is easy to check that (see [8] [19] 25])

H(f - fT)X{T<OO}HLp
P(r < oo)l/P

IfllBrmo, = sup
TET

Note that BMOs = BMO. Based mainly on duality ((H;)* = BMO), the John—
Nirenberg inequality plays an important role in classical analysis and martingale
theory.

The well-known John—Nirenberg inequality (one of the most important theorems
in martingale theory, see [8,[25]) says that if the stochastic basis {F,, }»>¢ is regular,
then BMO,, = BMO with respect to these norms. That is,

I fllzaro S\ fllBmo, S fllBmo, 1< p<oo. (1.1)

Here, the stochastic basis {F,, },>0 is said to be regular if there exists R > 1 such
that

fnSanfl Vn21

holds for all non-negative martingales f = (f,)n>0 adapted to {F,}n>0. The
reader is referred to [19, 22] 25] for more information about martingale theory and
regularity. Now the probabilistic version of the John—Nirenberg inequality has been
extended to various known function spaces, such as the rearrangement invariant
Banach function space [2, [26], the Lebesgue space with variable exponents [I3],
the non-commutative Lebesgue space [10} [I5], the Lorentz space [9, 12 [17], and
the Iwaniec—Sbordone space [5]. It is worth noting that these spaces are Banach
function spaces.

In this paper, we will continue to answer whether the John—Nirenberg inequal-
ity is true for the non-Banach function spaces. Our purpose is to establish the
John—Nirenberg inequality in the probabilistic version of Orlicz—Lorentz spaces
Ly 4 (where 0 < ¢ < oo and @ is an N-function), introduced in [6] (see section 2).
Our main result, stated informally, reads as follows.

Theorem 1.1. Let 0 < g < oo and ® be an N-function with some proper restric-
tions. If the stochastic basis {F,}n>0 is reqular, then

BMOg,, = BMO.

For the precise statement see Theorem 3.2 in section 3, where we also define the
class BMOg 4. In order to prove theorem above, we need to discover more prop-
erties of the Orlicz—Lorentz spaces associated with 0 < ¢ < oo and N-function ®.
Such properties (see section 2) improve the properties of classical Lebesgue and
Lorentz spaces.

Throughout this paper, we denote by C an absolute positive constant that is
independent of the main parameters involved but whose value may differ from line
to line. The notation f < g stands for the inequality f < Cg. If we write f =~ g,
we mean f < g < f.
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2. PRELIMINARIES

In this section, we give some preliminaries necessary for the whole paper.

2.1. N-functions. Let us first recall the definition of N-function. An N -function
is a continuous and convex function ® : [0,00) — R such that ®(s) > 0, s > 0,
®(s)/s — 0 as s — 0, and D(s)/s — oo as s —> co. It is well known that an
N-function ® has the representation

B(s) = / gt d,

where ¢ : [0,00) — R is continuous from the right, non-decreasing such that
@(s) >0, s> 0, $(0) =0 and ¢(s) — oo for s — oo.
Associated to ¢ we have the function ¢ : [0,00) — R defined by

P(t) = sup{s : ¢(s) < t},

which has the same aforementioned properties of ¢. We will call ¢ the generalized
inverse of ¢. The N-function ¥ defined by

\I/(t):/o Y(s)ds

is called the complementary N-function of ®.
We have the following relationship between an N-function and its complemen-
tary function.

Proposition 2.1 (See [23]). If ® is an N-function and ¥ is the complementary
of @, then
t<d Uty <2t V>0,

where @71 and ¥~ denote the inverse function of ® and ¥, respectively.

2.2. Orlicz spaces. Let (Q, F,P) be a complete probability space and f be an
F-measurable function defined on €). The distribution function of f is the function

As(f) given by
As(f)=P({weQ:|f(w)]>s}), s=0.

Denote by f* the decreasing rearrangement of f, defined by
ff@)=inf{s >0: X;(f) <t}, t>0,
with the convention that inf () = co.

Definition 2.2. Let ® be an increasing function. The Orlicz space Lo =
Lo(Q, F,P) is the set of all F-measurable functions f satisfying E(®(c|f])) < oo
for some ¢ > 0 and

[fllLe = inf {¢>0:E(®(|f]/c)) <1},

where E denotes the expectation with respect to P.
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If ®(t) =t (1 < p < 0), then Lg is the usual Lebesgue space L,. In this case
we denote || - ||z, by || ||z,. For the N-function ®, the functional |- ||z, is a norm
and thereby (Lg, |||, ) is @ Banach space. By a simple calculation, one can check
that for any A € F, P(A) > 0,

1
IxallLe = m

P(A)

Recall the Holder inequality on Orlicz spaces, which is analogous to the case of
classical Lebesgue spaces:

Proposition 2.3 (See [23]). Let ® be an N-function and U be the complementary
function of ®. There exists an absolute constant C > 1 depending only on ® and
U such that if f € Lg and g € Ly, we have

E(f9) < Clflzallgllzy-

Hardy, Littlewood and Pélya extended the above result to the more general case
as follows.

Proposition 2.4 (See [7]). Let ®; : [0,00) — R, i =1,2,3, be N-functions such
that

o1 (t) =07 ()P (t)  VE>0.

There exists an absolute constant C > 1 depending only on ®1 and ®o such that if
f € Ls, and g € Lg,, we have

19llLa, < ClfllLae, l9]lLa,-

The lower and upper Simonenko indices of N-function ¢ are respectively defined
as

td'(t) td'(t)
— inf d = .
Pe =) MY TR0
Clearly, 1 < pg < g < co. Simonenko introduced these indices in [24]. Moreover,
Mao and Ren [23] prove that, if ® is an N-function with 1 < pg < go < oo and
¥ is the complementary of ®, then the lower and upper Simonenko indices of ¥
satisfy 1 < pg < qg < o0.

®(t)
tPe

Proposition 2.5. Let ® be an N-function with q < co. Then
o(t)
190

18 increasing

on (0,00) and is decreasing on (0, 00).

The above property of the indices of N-function ® will be used in what follows.
It is classical and can be found in [5] [TT].

Rev. Un. Mat. Argentina, Vol. 65, No. 2 (2023)



THE JOHN-NIRENBERG INEQUALITY 351

2.3. Orlicz—Lorentz spaces. Let 0 < ¢ < 0o and @ : [0,00) — [0,00) be an
increasing function such that ®(0) = 0 and lim, o, ®(r) = co. The Orlicz-Lorentz
space Lg 4(Q, F,P) consists of the F-measurable functions f with finite (quasi)-
norm | f| ., given by

o0 q dt 1/(1 .
(245 Exansnle) ™) ™ if0<q<oo,

1 fllre, =
iglgt||x{|f\>t}||% if ¢ = oco.

These spaces are the generalizations of classical Lorentz spaces L, , and they
coincide with L, , when ®(t) = t* for 0 < p < co. Moreover, if ®(t) = t? for
0 < g < o0, then Lg 4 is the usual Lebesgue space L,. The following fundamental
properties of the functional || - ||z, , were proved in [6]:

(1) ||fHLq,‘q >0, and ||f||Lq,q =0 if and only if f = 0;

2) [IX-Fllze, =M 1 fllzs , for any A € C;

B) If +9llea, <CUfLa, + l9llLa,):

4) lIxalze,, = lIxallLe = @ for any A € F and P(A4) > 0.

B(A)

Studies on the theory of Orlicz—Lorentz spaces can be found in [16] 2] 20 [18].

Next we shall present more properties of Orlicz—Lorentz spaces with N-function,
which are new and useful for the main results in the paper.

Proposition 2.6. Let 0 < ¢ < oo and ® be an N-function with qp < co. Then
1fllzs , and

1 . g
(a0, Gt )" %) " o< g < oo,
11z, = 1
sup gty () o=

are equivalent (quasi)-norms.

Proof. For any measurable function f, there exists a sequence of non-negative
simple functions {f,}nen such that f, 1 |f| a.e. Moreover, ds, 1T d; and f} 1
f*. Therefore, by using Lebesgue’s monotone convergence theorem, it suffices to
establish that the quasi-norm defined as ||| f|||s,q is equivalent to || f||s,4 for non-
negative simple functions.

Now let

N
f(UJ) = Z QX A; (O‘))a
=1

where {4;}Y, is a family of disjoint measurable sets and {ozj}é-vzl C R satisfy
0<a;<a;forl1 <i<j<N.Foranyt >0, we have

N
A(f) = Z BJ’X[ajﬁ—lﬁOéj)(t)’
j=1
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J
where ayy1 =0 and 8; = > P(4;) for 1 < j < N. Also, one can see that

N
)= a;x3,1.6,)(t)
j=1

where Gy = 0.
We first consider the case of ¢ = oo. Since ®~1(t) is increasing on (0,0), we
get

'
£, . = iuPtHX{lth}HL«p =sub g 1 (1/M(f))

= sup

t
t>OZ<I> 1(1/B; )X[%“’%)() 1<3<N<I> (1/BJ)

and
11l : Z (1)
s o = SUP —— =su B;
R K RIOOLA Do = FT( Vo
— max aj
TSN @1(1/8))
which implies
A Lo = 1fLeo0-

Now we consider the case of 0 < g < co. It follows from the Abel transformation
that

N

q N
.., =03 e [ (i) & = St - i)

N
Z O‘ _O‘z+1 (/Bz)a

i=1

where

w0 [ (aa) ¢

Rev. Un. Mat. Argentina, Vol. 65, No. 2 (2023)



THE JOHN-NIRENBERG INEQUALITY 353

It follows from Proposition that /l(i) is decreasing on (0,00). This implies

that
Bi 1 Tdt o 1 *dt
K(8) =4 / <W> t:q/% <<I><t>) t
_ /oo < t1/49 )qt (+a/ae) gy
1/ \®7H(t)

_1/ 00
( o ! —(1+a/qs) g4
1/51 1/B1

q@< - <1/ﬁi>>

The convexity of ® and ®(0) = 0 imply that %l(t) is increasing on (0,00). This

means that
t
(ﬁl)—q/ ( ) =) g
178: \®71(t)

1/6i t—(+a) 4
( 1(1/8s) ) 1/Bs t

- ( (U&))q
Hence we get

> (0! - at) () < MMM,

i=1

| A

Moreover, we have

I, =a [ O™ =a [ (i)
B qz/am ( 1/@)) cit (2.2)
N q
=3t o) (7))

Combining (2.1)) and (2.2)), one can see that

1o, < Mz, < 8“1 Loy

This completes the proof. O
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Note that if we consider the special N-function ®(t) =t* (¢t € [0,00), 1 < p <
00), then pe = g = p < oo (see [1]). From Proposition we obtain the following
fact:

Corollary 2.7. Let1 < p < oo and 0 < g < oco. The Lorentz spaces (Lp,qa II- ||prq)
are equivalent to (Ly.g, |l - lz,.,)- That is,

. ~ .
H ||Lp,q ~ Hl |HLp,q'

Using Proposition [2.6] we have the following embedding relationships among
these Orlicz—Lorentz spaces:

Proposition 2.8. Let 0 < ¢ < p < oo and ® be an N-function with g < oo.
Then Lg 4 is a subspace of Lg 5, i.e.,

[ze, SUflle, VI € Lag

Proof. Let f € Ly 4. For p = o0, it follows from <I>+1(t) being increasing on (0, o)
and Proposition [2.6] that

1/q
1 . t 1 e ) ds

, 0\ U
< <q / ((I)_lzl/s)ms)) d)

1
<N lzey < 0N 2oy

Taking the supremum over all ¢ > 0 for these inequalities, we hence obtain

1
e <aiIfle.,

Finally, when p < oo, it follows from Proposition [2.6] that

*° 1 " p7q+qu 1/p ( B )/
Wl = (p/ <q>(1/) / <S>> ) S, Iz, 2"

S Il za.,-

This completes the proof. O

We present the following Holder-type inequality for Orlicz—Lorentz spaces.

Proposition 2.9. Let ® be an N-function with 1 < pg < gp < o0 and ¥ be the
complementary of ®.
(i) Ifl<q<oo, f€Lpy and g € Ly 4, then we have

E(f9) < Cllfllza,ll9llLy. .-

where ¢’ satisfies 1/q+1/¢ = 1.
(i) If0 < ¢ <1, f € Ly 4 and g € Ly ~, then we have

E(f9) < Cllfllzaqll9llre o
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In order to prove the Holder-type inequality for Orlicz—Lorentz spaces, we need
the famous Hardy inequality as follows:

Lemma 2.10 (See [1]). For f and g measurable on a probability space (Q, F,P),
we have

Bo) = [ soab< [ ra ) ar
0
Now we prove Proposition 2.9}

Proof. Since the N-function ¢ satisfies the condition 1 < pgp < gp < 00, we have

1 < py < qg < oo for N-function ¥. Therefore || - ||¢,, and || - ||¢,4 are equivalent
to |l - le,q and ||| - ||lw ¢, respectively. According to Propositionn, we have
t 1 1

2= O-1(1/t) U=1(1/t) <t (23)
Applying Lemma and , we have
B9 < [ raer0ase [T s g 0F e

(i) Combining the Holder inequality and inequality (2.4)), we obtain, for 1 < ¢ <

s < [ lobyr ) ([ oty )

=2 f 2o, Nlgllzy , = 1fllLe, gLy, -
Moreover, for g = oo,

st <2 s (G 0 g O
=21 f lze.w NgllLe, = 1 fllLe o gllL.,-
(ii) Combining Proposition and , we have
S B 1 . \dt
509 <2 [ i 0w (G ) |
=2 fllze. Mol ze
R fllzellgle.
S llze N9l -
This completes the proof. (]

In particular, if ®(¢) = ¢? for ¢ € [0,00) in Theorem we obtain the Hoélder
inequality for classical Lorentz spaces.

Corollary 2.11. Let 1 < p < o0 and 0 < q < oo, then the following statements
hold:
(i) Ifl<qg<oo, feL,, and g € Ly 4, then we have

E(f9) < Clfllz, . l9llL, .-
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where 1/p+1/p' =1 and 1/q+1/¢' = 1.
(i) If0 < ¢ <1, feLyq and g € Ly o, then we have

E(f9) <Clflz, . l9lz, -

Remark 2.12. According to [4], the generalized Holder inequality for classical
Lorentz spaces also holds, i.e.,

1f9llL,q < Cllflly, o9l e (F € Loias 9 € Lpsgs),

where 0 < p,p1,p2 < oo and 0 < ¢,q1,¢2 < oo such that 1/p = 1/p; + 1/ps and
1/g=1/q1 +1/qa.

3. THE JOHN-NIRENBERG INEQUALITY

In this section, we prove the new John—Nirenberg inequality for Orlicz—Lorentz
spaces with N-function in a probabilistic setting. We first introduce the generalized
BMO associated with Orlicz-Lorentz space Lg 4.

Definition 3.1. Let ® be an N-function and 0 < g < co. We define the BMO
associated with Orlicz—Lorentz space Lg 4 as

BMOg = {f € Lag: |fllBrmos, < 0},

where

I(f = f")x Iz,
”fHBMO(M = sup {r<oco}llLe,q4 .
TeT ||X{7—<oo}||Lq>yq

Note that if &(t) =P, 0 < p < oo, then BMOg 4 becomes BMO,, , introduced
in [I7). Moreover, if ®(t) = t9, 0 < ¢ < oo, then BMOg , can be reduced to
BMO,. Now we present the main result in this paper.

Theorem 3.2. Let ® be an N-function with 1 < pe < qp < 00 and 0 < g < oco. If
the stochastic basis {Fy}n>0 is regular, then

BMOg , = BMO

with equivalent (quasi)-norms.

Proof. According to (|1.1), it is sufficient to prove

BMOg , = BMO,
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with equivalent (quasi)-norms. Let f € BMOg q; then f € Lo 4. If 1 < ¢ < o0,
then Proposition [2.9] gives

B If— 7z,
I fllBarro, = U B o)

I = )X e<ooy e,
= sup
veT P(V < OO)

(3.1)

”f - fu||L<1>,qHX{V<oo}||Lq,,q/
veT P(V < OO)

_ 1f = f"Ls.,

= sup

veT P(v < oco)P—1 (m) 7

N
w0

where ¥ is the complementary of ® and ¢’ satisfies 1/¢' +1/¢ = 1.
Using Proposition we have

1

1
P(v < oo)) = (1)71(

P(rv<oo)

P < oom—l( 7 IXesoylia:  (3:2)

Combining (3.1)) and (3.2)), we have

If = fllLe o IX{r<oo} | Ly g
fllBmo, S sup - =
I£llms0, < sup pra e
N If = flre.,
/2 sup —————— %
veT ||X{u<oo}||L<1>
_ Hf - fVHL@,q
veT ||X{v<oo}||Lq>,q
=[fllBmOs,,-

When 0 < ¢ < 1, Proposition 2.8 and (3.3) give

— 14
1o, < sup 1= Ees
veT HX{V<OQ}||L¢

_ v
< o I = Fle
veT ||X{u<oo}||L<I>
1f = flee.,

veT ||X{V<oo} HL<I>,q

£l BrOg -

On the other hand, let f € BMO;. It is easy to see that

BMO, = BMO C Ly, 4,
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e, f € Lgy,q- Indeed, BMO C Lgy41 € Lgy,q. We first consider the case of
0 < g < co. It follows from Proposition 2.4] that for any stopping time 7 € T,

1f = lze, = I = F)X{r<oot e,
dA
= (/ NN -7)x <oy 223 L A)

2 dA 1/q
( )‘q ”X{\ (f=rv )X{u<oo}\>>\}x{l/<00}||lz<p) )\)

( A (lxqcr- s+ )x{,,<oo}>/\}|LQ¢,||X{u<oo}|L(1>1)qd:\> /
=[|(f = FT)X{r<co} | Lgg.o IX{r<oo} | La, »
where
() =7 (t) - e,
Hence, combining this with Holder’s inequality for classical Lorentz spaces (see

Remark , we obtain

Lf = f e
I fllBrr0s,, = Sup ——=20
T€T ||X{T<oo}||Lq,’q

” (f - fT)X{‘r<oo} ||qu,,q HX{V<OO} ||L<1>1

<s
TeT ||X{T<OO}HL<I>
= Wit Iy
TeT ||X{T<OO}Hqu>
< sup ||(f - f )X{‘r<oo}||Lr,r||X{T<oo}”Ls,u
TET HX{T<OO}||qu>
B I(f = f)X{r<oot Iz,
= sup
TET ||X{T<OO}HLT
= lfllzaro,

where the real constant r > max{q,qs}, 0 < s < 00, 0 < u < 0o and

111
@ r s
1 1 1
=4,
g r u

According to the John—Nirenberg inequality for BMO (see (1.1)), one can get

1fBr0Os., S I flBMoO, S IfllBMOL 0<q<oo. (3.5)
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If ¢ = oo, it follows from Proposition and (3.5) that
[P I iy i 90

| £l BMOg o = SUD < (3.6)
reT IX{r<ootllLow ~ reT IX{r<ootllLa o
= fllBmOs. 0y S IflBMO,-
Thus, combining , 7 with , we have
BMOg = BMO, 0<qg<o0.
Hence the result is proved. This completes the proof of the theorem. O

Theorem improves the results from [I7]. That is, if we consider the case
®(t) = tP for t € [0,00) in Theorem we get the following result:

Corollary 3.3. Let 1 < p < 00, 0 < ¢ < oo. If the stochastic basis {Fp}n>0 is
reqular, then
BMO, , = BMO

with equivalent (quasi)-norms.
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