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SUMMING THE LARGEST PRIME FACTOR
OVER INTEGER SEQUENCES

JEAN-MARIE DE KONINCK AND RAFAEL JAKIMCZUK

ABSTRACT. Given an integer n > 2, let P(n) stand for its largest prime factor.
We examine the behaviour of Z P(n) in the case of two sets A, namely the

n<z
nEA
set of r-free numbers and the set of hA-full numbers.

1. INTRODUCTION

Given an integer n > 2, let P(n) stand for its largest prime factor, with P(1) = 1.
Even though this function is very chaotic because P(n) oscillates between small
and large values as n varies, its average value over large intervals is more smooth
and can be estimated.

The first significant estimate regarding the sum )
Erdés [I] as they proved that

P(n) is due to Alladi and

n<lz
2 2

™ x x?
P(n)=— .
Z (n) 12 logx +0 (log2 x)

n<z

This result was later improved by De Koninck and Ivié [2] when they showed that,

given any positive integer k, there exist computable constants cs, ..., ci such that
2 2 2 2 2
T T x x x
P(n) = — +02+--~+ck+0().
g ( ) 12 logx ]0g2 x logk T logk+1 T

A natural question to ask is how the above formula changes if instead of summing
P(n) over all natural numbers n < z, we restrict these numbers n to a particular
subset A of N. For this purpose, we will consider here two large families of integers,
namely the set of r-free numbers and the set of h-full numbers.

Given an integer n > 2, write its prime factorisation as n = ¢y ¢5? - - - ¢5=, where
Q1 < q2 < --- < g5 are primes and aq,as,...,as € N. Given fixed integers r > 2
and h > 2, we say that n is a r-free number if max(ay, g, ..., as) < r—1, whereas
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we say that n is a h-full number if min(aq, g, ..., as) > h. We will denote by F,
the set of r-free numbers; amongst these sets, the set Fo of square-free numbers
and the set F3 of cube-free numbers are often mentioned in the literature. On the
other hand, we will denote by P, the set of h-full numbers. Particular cases are
the set P2, known as the set of powerful numbers or square-full numbers, and the
set P3, the set of cube-full numbers.

In what follows we will make frequent use of the Riemann zeta function ((s)

defined by
o) 1 1 —1
C(S) = 7@: <1g> (S>1)
2 =15

P
Let u,-(n) be the characteristic function of the r-free numbers, that is,

1 if nis r-free,
pr(n) = {O otherwise,
implying in particular that its generating function is, for s > 1,
o fir(n) 1 1
S =TI et o)
L0 ) e
I, (1 _ %) ¢(rs)

Let xp(n) be the characteristic function of the h-full numbers, that is,

(n) 1 if n is h-full,
n)=
Xn 0 otherwise,

implying in particular that its generating function is, for s > 1,

OOXh(n)_ 1 1
m_H<1+phs+pmH>s+“'

n=1 P

—g(hs)H<1p,1w>1;[<1+pis+p(hl+l)s+--«> (1.1)

p

1 1 1
=((hs) [] (1 toomrns Tpmrs T p@h—n) -
p

Finally, let us mention that estimates for the counting functions F,.(z) := #{n <
x:n €F.} and Py(z) := #{n < x : n € Py} of these two families of numbers are
well-known. These are, for fixed integers r > 2 and h > 2,

F.(z) = %x +0 (x”") ) (1.2)
P,(z) = ypz'/" + O (x1/<h+1>) (1.3)
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for some positive constant ;. For a proof of in the simplest case, that is for
r = 2, see Theorem 8.25 in the book of Niven, Zuckerman and Montgomery [4];
for a proof of the general case, that is for any r > 2, see the survey paper of
Pappalardi [5]. For a proof of , see the paper of Ivic and Shiu [3], where in
fact a much more accurate formula is proved.

2. MAIN RESULTS

For our first set A, we choose the set of r-free numbers F,.. In this case we can
prove the following.

Theorem 2.1. Let r > 2 be a fized integer. Then, given any positive integer k,

there exist computable constants dy,ds, . ..,d; such that
z2 x? x? z2
P(n) = r(n)P(n) =d ——+d +-4d —|—O< : ),
; (n) nz;w,u (n)P(n) 1loga: 210g2x klogkx logkﬂm
n€F, -

where in particular, in light of (1.2)),

o I e(n) o C(2)
d = d; ) n2  2¢(2r)

n=1

Remark 2.2. In the case » = 2, that is, the case of square-free numbers, we have

2 1
@ _ @) _ 15 osa009. .

VoToc4) 2w T

In the case r = 3, that is, the case of cube-free numbers, we have

3 _ $2) 315 _ o eieaae. .

Loog(6) 4t

When choosing A = Py, we can prove the following general result.

Theorem 2.3. Let h > 2 be a fixed integer. Then, given any positive integer k,

there exist computable constants e1,es, ..., e, such that
z2/h 22/h 22/h 22/h
Y Pn)=er—+ea—s—+ - ter— +O<k+1),
< logz log™ z log" z log" "z
neby,
where h ) L ) )
61:*2 2/hl_[<1Jr 2k h+12/h+"'>'
2 & 25 (") (p"*1)

Remark 2.4. In the particular case of square-full numbers, we have, in light of
(1.1) with h =2 and s =1,

vy il I S U
el_zn_H(1+p2+p3+ ) Ce) — L9436

nePs P
In the case of cube-full numbers, we find

3 1 3 1 1 1

nePy p
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3. PRELIMINARY RESULTS

Let w(z) stand for the number of primes not exceeding x. Using the prime
number theorem in the form

| | —1)!
() x 1l 2z +.”+(l€ 1).x+0< x )’

~logz  loglz  logtw log" x log" ™ &
one can easily prove the following.

Lemma 3.1. Given any positive integer k, there exist k — 1 computable constants
as, ...,ar such that

> SO SR S ( X )
=_ a o 4a — .
p<Xp 2log X 2 log” X g logh X logh ™ X

We also have the following.

Lemma 3.2. Given fixed positive integers s and k, there exist computable constants
€0,55Cl,s,- - -, Ck,s Such that

Z 1 o Co,s + Cl,s + + Ck,s +O 1
n2 IOgS(x/n) - logsx logs+1x 10g5+k$ 10g8+k+1$ .
n<exp{4/logz}
(3.1)

On the other hand, given a fived integer r > 2, as well as fixed integers s,k € N,
there exist computable constants dos,d1,s, ..., dk,s such that

pir (1) do,s dy s dy,s ( 1 >
5 =t st ————+ O —— . (3.2
n;ﬁ n?log®(z/n) log’z  log®*lz log*t* z log" T F 1 1 (3.2)

Proof. We only provide the proof of (3.2]) since the proof of ([3.1) is similar. Since
logn

1
we assumed that n < y/z, we have that < 3 Therefore, for a fixed integer

logz
k>1landally < %, we may use the expansion

1
— =1+y+y’ +- "+ O

1-y
to write that, in the case s =1,
(1) _ pr (1)
n2 log(x/n) n2 lOgI (1 N logn)
logz

lo logh™? log”
_ /;cr(n) 14 losn g (L n
n?logx log x log" " x log™ x

r 1 r(n)l 1
_ (1) 4 Hr(n)logn

n? logzx n? log? z
~(n)lo =l 1 1
n log" x log" " x
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o ,
n)log’ n
Observing that, for each integer j > 1, the corresponding series E %

n

n=1
converges, estimate ([3.2)) in the case s = 1 easily follows. The case of an arbitrary
s € N can be handled similarly. O

Lemma 3.3. For each integer h > 2,

1 1 1
Z m2/h Z m2/h +0 <x1/h> (3-3)

m<z meP,
mePy,

and, for each fixed j € N,

> % =0(1). (3.4)

m<z
mePy,

Proof. First observe that, replacing the sum Z

m>x
mePy,

integration by parts and thereafter using the bound Py,(t) = O(t'/") guaranteed
by (L.3)), we obtain
o) 2 00
+ E/ 7P, (t) dt

1 > 1 Pp(t)
Z:L m2/h :/E 12/h dPy(t) = 2/ |

mePy, (3.5)

1 2 [ 1 no 1

Using (3.5)), it follows that

1 1 1 1 1
ZW:ZW_ZW:ZW+O(M>’

2/h by a Stieltjes integral, using

m<w mePy, m>x mePy,
mePy, mePy,
thus completing the proof of (3.3).
The proof of (3.4]) can easily be established using the same technique. O

4. PROOF OF THEOREM [2.1]

First observe that

=> wm)Pn)=>_p > pu(m)

n<x p<x mp<wx

P(m)<p
=Y p > wm+ > p Y w(m (4.1)
PEVE IS Va<pse e
:Ml(m)—‘ng(I).
It is trivial that ”
x x
- = . 4.2
< Do manlVE) < oo (4.2)

p<Vz
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To estimate My(z), first observe that if p > \/z, we have that z/p < p, in which
case the condition P(m) < p appearing in the definition of Ms(x) can be dropped.
Hence, inverting the sum over p with the sum over m, and then using Lemma 3.1
with X = \/z, we obtain

Ms(z) = Z p Z pir(m) = Z fir(m) Z p

Va<p<z m<z/p m<yz Va<p<az/m
= > we(m) Y p— > pe(m) > p
m<Vx p<z/m m<Vx p<Vz
23/2 (4.3)
m<\/z p<z/m
23/2
=M .
3(z)+ O <10g$>
Again using Lemma but this time with X = z/m, and thereafter using
formula (3.2)) of Lemma we obtain
1 (z/m)? (z/m)?
M;(z) = ur(m){ + az
gﬁ 2log(@/m)  “log?(x/m)
2 2
rera o (G )
log™(z/m) log™"" (x/m) (4.4)
1 & pp(m) ? x?
== d
QmZ=1 m? logx 210g2$
z? x2
+ootdi——+ 0 ——— ),
b logk T <1ogk+1 a:)
where we took the liberty to replace Z aia (T) by MT(?), a justified move
m m
m<./z m=1
since
Z pr(m) i fir(m) _ fr (M)
m2 m? m?
m<\x m=1 m>\/T
oo
° dt
1 m Nz t
2 () 1
= o —
2 5e o ()

Finally, gathering (4.2), (4.3) and (4.4) in (4.1)) completes the proof of Theorem [2.1]
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5. PROOF OF THEOREM 2.3

First, we write

U(m)::ZP(n): Z D Z 1= Z D Z 1

n<x pgxl/h mph <z pgml/h m<az/ph

nePp mEFy, mePpy,
P(m)<p P(m)<p
= > p 1+ > p> 1 6D
p<m1/(h+1) m<az/ph xl/(}L+1)<p<:E1/h m<az/ph
- mePy, - mePy,
P(m)<p P(m)<p

It follows from estimate (1.3)) that

U@y < >, p Y, 1= > pPh(;)

pgml/(h+1) m<ax/ph pggjl/(h+1)
mePy,
1/h 2h+41 (52)
T 2 R(h+1)
< Y p— =g/t <« ——.
log x

péml/(}b+1)

x
To evaluate Us(z), first observe that, for p > z'/("*1) we have that — <D
p

implying that in this case the condition P(m) < p appearing in the second sum
defining Us(z) can be dropped and therefore that

D)= >, p D 1= pd 1= > p) 1

zl/(}L+1)<p<z1/’L mph <z p<x1/h mph <z p<z1/(h+1) mph <z
- mePy, - mePy, - mePy,

x R(hFT)

- Z b Z 1+O< log x ) (5.3)

p<zl/h  mph<ec

mepy,
T(z)+ O LA ] s
-10)+0 (T ) =T +0 ().
here we made use of ([5.2)) and the fact that 2h+ 1 <
w w . —_— <
h(h+1) " h

Inverting the two sums appearing in the definition of T'(x), we can rewrite T (x)
as follows:

T@=2> > p=2 > v

m<a pl m<a 1/h
mePy plgl‘/m mePy, pg(m/m)
= > >, bt > >oop (5.4)
m<exp{y/logz} p<(z/m)l/h exp{y/logz} <m<pl/h p<(x/m)l/h
mePy, mePy,
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Again, using the bound Py, (t) < t'/" ensured by estimate (1.3)), we have, arguing
as we did in Lemma [3.3]

x\2/h 1
n@w< Y (D)=t Y —op
m m /
exp{y/logz}<m<pl/h exp{y/logz}<m<pl/h
meP), mePy,

= g%/ / =2 d P, (t)
exp{+/logz}

< z2/h <t2/ht1/h

€T
22/h

(5.5)

x x 2
+/ tn ey
EXP{\/@} exp{+/logz}

o 22/h

tl/h

L

< < .
exp{+/logz} exp{%\/@} 10gk+1 xT

Making use of Lemma with X = (z/m)Y/" and thereafter of formula (3.1
of Lemma we obtain

1 (afm)/" (e )2/
file) = 921 a2 2
" Zﬁ £ Foga/m) L log? (a/m)
PR 7.0 (/m)>/" (5.6)
+ kh—lklogk(x/m) +0 (10gk+1(i€/m)) }

22/h 22/P 22/h 22/P
=e +e +---+e +O0(—— |,
! log x 2 1og2 x . logk T (log'chl x>

where we used the fact that, in light of estimate (3.3 of Lemma

h /" 1 ha?h | K1 1
2logx Z m2/h " 2logx Z m2/h Z m2/h
m<exp{y/logz} m=1 m>exp{y/logz}
mePy, meky mePy,
2hp K1 1
x
" logz 2 ; m2/h (1 0 (.Z‘l/h>)
77167]Ph
and where we used estimate (3.4]) of Lemma to manage the other coeflicients
e; appearing in (5.6]).

Finally, gathering estimates (5.2)), (5.3)), (5.4)), (5.5) and (5.6) in (5.1)) completes
the proof of Theorem [2.3]
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