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COORDINATE RINGS OF SOME SL2-CHARACTER VARIETIES

VICENTE MUÑOZ AND JESÚS MARTÍN OVEJERO

Abstract. We determine generators of the coordinate ring of SL2-character
varieties. In the case of the free group F3 we obtain an explicit equation of the
SL2-character variety. For free groups Fk, we find transcendental generators.
Finally, for the case of the 2-torus, we get an explicit equation of the SL2-
character variety and use the description to compute their E-polynomials.

1. Introduction

Let Γ be a finitely generated group and let G be an algebraic group over an al-
gebraically closed field k. The character variety X(Γ, G) parametrizes isomorphism
classes of representations ρ : Γ → G. Character varieties are rich objects that
contain geometric information linking distant areas in mathematics. An important
instance is when we take Γg = π1(Σg) to be the fundamental group of the compact
orientable surface of genus g ≥ 1. In this case, these character varieties are one
of the three incarnations of the moduli space of Higgs bundles, as stated by the
celebrated non-abelian Hodge correspondence [2, 8, 20]. For this reason, charac-
ter varieties of surface groups have been widely studied, particularly regarding the
computation of some algebraic invariants like their E-polynomial.

Character varieties also play a prominent role in the topology of 3-manifolds,
starting with the foundational work of Culler and Shalen [3], where the authors used
algebro-geometric properties of SL2(C)-character varieties to provide new proofs of
remarkable results, such as Thurston’s theorem that says that the space of hyper-
bolic structures on an acylindrical 3-manifold is compact, or the Smith conjecture
[3, Corollary 5.1.4]. Character varieties of 3-manifolds allow us even to study knots
K ⊂ S3, by analyzing the character variety associated to the fundamental group
of their complement, ΓK = π1(S3 − K). For instance, the geometry of these knot
character varieties has been studied in [6, 10, 11] for trivial links (i.e. when Γ is a
free group), and in [9, 15, 18, 19] for the torus knot, among others.

Fix G = SLr, the group of matrices of size r with trivial determinant. If we
have a presentation Γ = ⟨x1, . . . , xk | r1, . . . , rs⟩, then X(Γ, G) parametrizes k-tuples
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(A1, . . . , Ak) of matrices in G subject to the relations rj(A1, . . . , Ak) = I. In the
same vein as the isomorphism class of a semisimple matrix A is determined by the
traces of its powers, tr(Ai), 1 ≤ i ≤ r − 1, the (semisimple) k-tuples (A1, . . . , Ak)
are determined by the traces of suitable products of the matrices. In this paper,
we focus on the group SL2 and work out many identities with traces. This serves
to find coordinates for the character variety X(Γ, SL2). Note that there is a natural
embedding X(Γ, SL2) ⊂ X(Fk, SL2), where Fk is the free group of k elements, and
k is the number of generators of Γ. Therefore it is natural to look initially to the
case of the free group.

The structure of SL2(C)-character varieties of free groups has been well un-
derstood for some time. There is a modern treatment in [7], where historical
references can be found. We thank Sean Lawton for pointing this out to us. More
generally, there is an effective algorithm to compute the coordinate ring of any
SL2(C)-character variety for any finitely presentable group in [1]. Here we obtain
in an alternative way some of these coordinate rings, and establish connections
with results of [13] about their E-polynomials. We start with the following:

Theorem 1.1. Let A1, . . . , Ak ∈ SL2, then the character variety Xk = X(Fk, SL2)
is parametrized by Ti1...ip := tAi1 ...Aip

, i1 < · · · < ip with p = 1, 2, 3, where tA =
tr(A) denotes the function on matrices defined by the trace.

For the situation of k = 3, we can obtain an explicit equation. By Theo-
rem 1.1, the coordinates of X3 = X(F3, SL2) are given by (x, y, z, u, v, w, P ) =
(tA, tB , tC , tBC , tAC , tAB , tABC), where (A, B, C) ∈ X3. We have the following:

Theorem 1.2. The character variety X3 ⊂ k7 is a hypersurface defined by the
equation P 2 = (wz + vy + ux − xyz)P − x2 − y2 − z2 + uyz + vxz + wxy − uvw −
u2 − v2 − w2 + 4.

Next, we look at the case of the character varieties of a compact orientable
surface Σg of genus g ≥ 1. Its fundamental group is

π1(Σg) =
〈

a1, b1, . . . , ag, bg |
g∏

i=1
[ai, bi] = 1

〉
.

Take a conjugacy class [ξ] determined by an element ξ ∈ SL2; then we define, as
in [13],

Mξ =
{

(A1, B1, . . . , Ag, Bg) ∈ (SL2)2g |
g∏

i=1
[Ai, Bi] = ξ

}
// Stab(ξ)

=
{

(A1, B1, . . . , Ag, Bg) ∈ (SL2)2g |
g∏

i=1
[Ai, Bi] ∈ [ξ]

}
// SL2 .

(1.1)

There are five different types of conjugacy classes, namely [I], [−I], [J+], [J−]

and [ξt], where J± =
(

±1 0
1 ±1

)
are the Jordan types, and ξt =

(
λ 0
0 λ−1

)
,

t = λ + λ−1, λ ∈ C − {0, ±1}, are the diagonal types. For k = C, these varieties
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have been studied in [13] and the E-polynomials are computed in a series of papers
[13, 16, 17]. For g = 1, we have the following result from [13, Theorem 1.1].

Theorem 1.3. For the 2-torus Σ1 = T 2, the E-polynomials of Mξ are as follows:
e(MI) = q2 + 1,

e(M−I) = 1,

e(MJ+) = q2 − 2q − 3,

e(MJ−) = q2 + 3q,

e(Mξt
) = q2 + 4q + 1,

where q = uv, e(Mξ) ∈ Z[u, v].

We look at the character varieties Mξ more closely by working out trace identi-
ties for commutators of two matrices. First, for matrices (A, B), we determine the
equation for (x, y, z) = (tA, tB , tAB),

F (x, y, z) = t[A,B] = x2 + y2 + z2 − xyz − 2,

which produces the character varieties
Xt = F −1(t) =

{
(A, B) ∈ (SL2)2 | tr([A, B]) = t

}
// SL2

for t ∈ C. Then
• Xt = Mξt for t ̸= ±2,
• X2 = MI ∪ MJ+ ,
• X−2 = M−I ∪ MJ− .

We study the geometry of the character varieties Xt, and recover the results of
Theorem 1.3. More specifically:

Theorem 1.4. Let t ∈ C. We have the following:
• For t ̸= ±2, the character variety Xt ⊂ C3 is a smooth surface, and e(Xt) =

q2 + 4q + 1.
• For t = 2, the character variety X2 ⊂ C3 has 4 ordinary double points. We

have MJ+ ⊂ MI , X2 = MI , and e(X2) = q2 + 1.
• For t = −2, the character variety X−2 ⊂ C3 has only one singular point

which is an ordinary double point. We have X−2 = M−I ⊔ MJ− , and
e(X−2) = q2 + 3q + 1.

2. Moduli of representations and character varieties

Let Γ be a finitely presented group, and let G < GLr be an algebraic group
over an algebraically closed field k. A representation of Γ in G is a homomorphism
ρ : Γ → G. Consider a presentation Γ = ⟨x1, . . . , xk | r1, . . . , rs⟩. Then ρ is de-
termined by the k-tuple (A1, . . . , Ak) = (ρ(x1), . . . , ρ(xk)) subject to the relations
rj(A1, . . . , Ak) = I, 1 ≤ j ≤ s. The space of representations is

R(Γ, G) = Hom(Γ, G) =
{

(A1, . . . , Ak) ∈ Gk | rj(A1, . . . , Ak) = I, 1 ≤ j ≤ s
}

.
(2.1)

Rev. Un. Mat. Argentina, Vol. 67, No. 1 (2024)
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Therefore R(Γ, G) is an affine algebraic set.
We say that two representations ρ and ρ′ are equivalent if there exists P ∈ G

such that ρ′(g) = P −1ρ(g)P for every g ∈ G. This corresponds to a change of basis
in kr, as G < GLr (the change of basis is in G, so it respects the structure that
the group G determines). Note that the action of G descends to an action of the
projective group PG < PGLr on R(Γ, G). The moduli space of representations is
the GIT quotient

M(Γ, G) = R(Γ, G) // G.

Recall that by definition of GIT quotient for an affine variety, if we write R(Γ, G) =
Spec O, then M(Γ, G) = Spec O G.

Suppose from now on that G = SLr. A representation ρ is reducible if there ex-
ists some proper subspace V ⊂ kr such that, for all g ∈ G, we have ρ(g)(V ) ⊂ V ;
otherwise ρ is irreducible. If ρ is reducible, then let V ⊂ kr be an invariant
subspace, and consider a complement kr = V ⊕ W . Let ρ1 = ρ|V and let ρ2
be the induced representation on the quotient space W = kr/V . Then we can

write ρ =
(

ρ1 0
f ρ2

)
, where f : Γ → Hom(W, V ). Take Pt =

(
t IV 0

0 IW

)
, where

k = dim V . Then P −1
t ρPt =

(
ρ1 0
tf ρ2

)
→ ρ′ =

(
ρ1 0
0 ρ2

)
, when t → 0. Therefore

ρ and ρ′ define the same point in the quotient M(Γ, G). Repeating this, we can
substitute any representation ρ by some ρ̃ =

⊕
ρi, where all ρi are irreducible

representations. We call this process semisimplification, and ρ̃ a semisimple repre-
sentation; also ρ and ρ̃ are called S-equivalent. The space M(Γ, G) parametrizes
semisimple representations [14, Theorem 1.28].

Given a representation ρ : Γ → G, we define its character as the map χρ : Γ → k,
χρ(g) = tr ρ(g). Note that two equivalent representations ρ and ρ′ have the same
character. There is a character map χ : R(Γ, G) → kΓ, ρ 7→ χρ, whose image

X(Γ, G) = χ(R(Γ, G))

is called the character variety of Γ. Let us give X(Γ, G) the structure of an algebraic
variety. The traces χρ span a subring B ⊂ A. Clearly B ⊂ AG. As A is noetherian,
and G is a linear algebraic group over an algebraically closed field, we have that
AG is a finitely generated algebra. Therefore, since Γ is finitely presented, B is a
finitely generated k-algebra. Hence there exists a collection g1, . . . , ga of elements
of G such that χρ is determined by χρ(g1), . . . , χρ(ga) for any ρ. Such collection
gives a map

χ̄ : R(Γ, G) → ka, χ̄(ρ) = (χρ(g1), . . . , χρ(ga)),

and X(Γ, G) ∼= χ̄(R(Γ, G)). This endows X(Γ, G) with the structure of an algebraic
variety, which is independent of the chosen collection. The natural algebraic map

M(Γ, G) → X(Γ, G)

is an isomorphism (see [11, Chapter 1]). This is the same as to say that B = AG,
that is, the ring of invariant polynomials is generated by characters.
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2.1. Hodge structures and E-polynomials. Later we need the notion of E-
polynomial, which is an invariant of a complex algebraic variety constructed as
an Euler characteristic of its Hodge numbers. We introduce the basic definitions.
Here the ground field is k = C. A pure Hodge structure of weight k consists
of a finite dimensional complex vector space H with a real structure, and a de-
composition H =

⊕
k=p+q Hp,q such that Hq,p = Hp,q, the bar meaning com-

plex conjugation on H. A Hodge structure of weight k gives rise to the so-called
Hodge filtration, which is a descending filtration F p =

⊕
s≥p Hs,k−s. We define

Grp
F (H) := F p/F p+1 = Hp,k−p.
A mixed Hodge structure consists of a finite dimensional complex vector space H

with a real structure, an ascending (weight) filtration · · · ⊂ Wk−1 ⊂ Wk ⊂ · · · ⊂ H
(defined over R) and a descending (Hodge) filtration F such that F induces a pure
Hodge structure of weight k on each GrW

k (H) = Wk/Wk−1. We define Hp,q :=
Grp

F GrW
p+q(H) and write hp,q for the Hodge number hp,q := dim Hp,q.

Let Z be any quasi-projective algebraic variety (possibly non-smooth or non-
compact). The cohomology groups Hk(Z) and the cohomology groups with com-
pact support Hk

c (Z) are endowed with mixed Hodge structures [4]. We define the
Hodge numbers of Z by hk,p,q

c (Z) = hp,q(Hk
c (Z)) = dim Grp

F GrW
p+q Hk

c (Z). The
E-polynomial is defined as

e(Z) :=
∑
p,q,k

(−1)khk,p,q
c (Z)upvq.

The key property of Hodge–Deligne polynomials that permits their calculation
is that they are additive for stratifications of Z. If Z is a complex algebraic variety
and Z =

⊔n
i=1 Zi, where all Zi are locally closed in Z, then e(Z) =

∑n
i=1 e(Zi).

Also e(X × Y ) = e(X)e(Y ).
When hk,p,q

c = 0 for p ̸= q, the polynomial e(Z) depends only on the product uv.
This will happen in all the cases that we shall investigate here. In this situation,
it is conventional to use the variable q = uv. Basic cases are e(C) = q, e(Cr) = qr,
e(Pr) = qr + · · · + q2 + q + 1.

3. The character variety for free groups

Now we focus on the case of a free group. Let Γ = Fk := ⟨x1, x2, . . . , xk⟩ be the
free group generated by k elements. Then, the space of representations of Fk in
SLr is just

Hom(Fk, SLr) = (SLr)k = {(A1, A2, . . . , Ak) | Ai ∈ SLr},

the space of k-tuples of matrices in SLr. The moduli space of k-tuples of matrices
up to conjugation is

M(Fk, SLr) = (SLr)k // SLr .

As we said in Section 2, this is isomorphic to the character variety X(Fk, SLr).
This implies that there are finitely many g1, . . . , ga ∈ Fk such that a character
χρ ∈ X(Fk, SLr) is determined by χρ(g1), . . . , χρ(ga). Set ρ(xi) = Ai ∈ SLr, and
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also tr(A) = tA for the trace of a matrix A. For an element gj = xij1 . . . xijℓj
∈ Fk,

we have
χρ(g) = tr ρ(g) = tr(ρ(xij1) · · · ρ(xijℓj

)) = tr(Aij1 · · · Aijℓj
) = tAij1 ···Aijℓj

.

This implies that X(Fk, SLr) is parametrized by the above traces for j = 1, . . . , a,
that is,

M(Fk, SLr) −→ X(Fk, SLr) ⊂ ka

(A1, . . . , Ak) 7→
(
tAi11 ···Ai1ℓ1

, . . . , tAia1 ···Aiaℓa

) (3.1)

is a parametrization of the character variety.

Proposition 3.1. If k ≥ 2, the dimension of the character variety X(Fk, SLr) is
dimX(Fk, SLr) = (r2 − 1)(k − 1).

If k = 1, then
dimX(F1, SLr) = r − 1.

Proof. Let us assume that k ≥ 2. The action of SLr on irreducible representations
has finite stabilizer, so the action has generic orbits of dimension dim SLr. This
means that

dimX(Fk, SLr) = dim(SLr)k − dim SLr = (k − 1) dim SLr = (r2 − 1)(k − 1).
On the other hand, if k = 1, the character variety X(F1, SLr) = SLr // SLr is
canonically isomorphic to kr−1, as it is proved in [19], so it has dimension r−1. □

From now on we focus on the case of rank 2, that is, the group SL2. We want to
determine how many traces are needed in (3.1). First, we demonstrate some useful
matrix identities.

Lemma 3.2. Let P, Q ∈ SL2. Then the following holds:
QP = (tP Q − tP tQ)I + tP Q + tQP − PQ.

Proof. First of all, let us recall that tA−1 = tA for every A ∈ SL2. On the other
hand, the relation tAB = tBA holds for every pair of square matrices A, B of the
same size. Given A ∈ SL2, the following relation is given by the characteristic
polynomial of A,

A2 = tAA − I (3.2)
and therefore, the following holds:

A−1 = tAI − A. (3.3)
By (3.3), we can write (PQ)−1 as

Q−1P −1 = (PQ)−1 = tP QI − PQ.

Applying (3.3) to Q−1 and P −1 on the above equation we obtain
(tQI − Q)(tP I − P ) = tP QI − PQ,

therefore QP = (tP Q − tP tQ)I + tP Q + tQP − PQ, as required. □
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Proposition 3.3. Let A, B, C, P, Q ∈ SL2. Then the following statements hold:
(i) tI = 2.
(ii) tAB = tBA.
(iii) tA2 = t2

A − 2.
(iv) tABAB = t2

AB − 2.
(v) tP BAQ = tP QtAB − tP QtAtB + tAtP BQ + tBtP AQ − tP ABQ.
(vi) tP A2Q = tAtP AQ − tP Q.
(vii) tP A−1Q = tAtP Q − tP AQ.
(viii) tABC = tAtBC + tBtAC + tCtAB − tAtBtC − tACB.

Proof. (i) and (ii) Immediate.
(iii) Since A ∈ SL2, the result follows from Equation (3.2) taking traces.
(iv) It follows from (iii) by just observing that ABAB = (AB)2.
(v) Use the formula of Lemma 3.2 multiplying on the left by P and on the right
by Q to get

PBAQ = P ((tAB − tAtB)I + tAB + tBA − AB)Q (3.4)
and take traces to obtain the sought formula.
(vi) Start with Equation (3.2), and multiply on the left by P and on the right by Q,
to get

PA2Q = tAPAQ − PQ.

Finally, taking traces we get the required formula.
(vii) From Equation (3.3), we get

PA−1Q = tAPQ − PAQ

and take traces.
(viii) In (v), take P = I, Q = C to get tBAC = tCtAB − tCtAtB + tAtBC + tBtAC −
tABC , as the claimed formula. □

Theorem 3.4. Let A1, . . . , Ak ∈ SL2, take a monomial x = Aα1
i1

. . . Aαm
im

, with
αj ∈ Z and 1 ≤ i1, . . . , im ≤ k. Then tx has a (polynomial) expression in terms of

Ti1...ip := tAi1 ...Aip
, 1 ≤ i1 < · · · < ip ≤ k.

Therefore the ring of functions of Xk = X(Fk, SL2) = Spec OXk
is given as

OXk
= k

[
{Ti1...ip}1≤i1<···<ip≤k

]
/I

for some ideal I of relations.

Proof. If αj < 0, we use Proposition 3.3 (vii) to write tx in terms of traces of
monomials in which αj ≥ 0. Now, if αj ≥ 2, we use Proposition 3.3 (vi) to write
tx in terms of traces of monomials in which αj is smaller. Repeating we can reach
an expression with αj = 0, 1. Doing this for all indices, we finally get a polynomial
expression in terms of tAi1 ...Aip

, 1 ≤ i1, . . . , ip ≤ k, where ij ̸= ij+1. That is, in
the monomial two consecutive matrices are distinct.

Now suppose that ij > ij+1. Then we use Proposition 3.3 (v) to get an expression
in which the traces appearing have either less number of matrices, or Aij

, Aij+1 are
swapped. In the first case, we can work by induction on the number of matrices
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involved to get to the result (note that the other operations do not increase the
number of matrices in a given monomial). In the second case, now we get an
expression PAij+1Aij

Q with ij+1 < ij . If now there are two consecutive matrices
repeated (that is, a square), we use Proposition 3.3 (vi) again. Otherwise, we have
managed to reorder two matrices. We can permute the matrices with this process
until i1 is the lowest index, so that i1 < i2, . . . , ip. We continue in this fashion until
i1 < i2 < · · · < ip. □

The number of monomials of the form Ai1 . . . Aip with 1 ≤ i1 < · · · < ip ≤ k
described in Theorem 3.4 is

k∑
p=1

(
k

p

)
= 2k − 1.

Corollary 3.5. For k = 2, the character variety X2 = X(F2, SL2) is isomorphic
to k3, and it is parametrized by (tA, tB , tAB) for (A, B) ∈ X2.

Proof. We have by Proposition 3.1 that dimX(F2, SL2) = 3. By Theorem 3.4, the
traces tA, tB , tAB parametrize. Therefore we have the result. □

4. Equation of the character variety X(F3, SL2)

Since a general algorithm to compute the ideal I described in Theorem 3.4 is
unknown, let us start by looking at the free group generated by three elements, F3.
The aim of this section is to study the character variety

X3 = X(F3, SL2) = {(A, B, C) | A, B, C ∈ SL2} // SL2 .

By Proposition 3.1, we have that dimX(F3, SL2) = 6. By Theorem 3.4, the traces

tA, tB , tC , tAB , tAC , tBC , tABC

generate the ring of functions of X(F3, SL2). These are 7 variables, hence there is
an embedding

X(F3, SL2) ⊂ k7,

and the character variety is a hypersurface defined by a single equation. To find
such equation, we work as follows. For the sake of clarity, let us set the following
variables:

x = tA, y = tB , z = tC ,

u = tBC , v = tAC , w = tAB ,

P = tABC .

Now we complete Theorem 1.2.
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Theorem 4.1. The character variety X3 ⊂ k7 is a hypersurface defined by the
equation

P 2 = (wz+vy+ux−xyz)P −x2 −y2 −z2 +uyz+vxz+wxy−uvw−u2 −v2 −w2 +4.

Proof. Since A, B, C ∈ SL2, by Proposition 3.3 (iv) the following holds:

tABCABC = t2
ABC − 2.

Then

tABCABC = tABBC(tAC − tAtC) + tAtABCBC + tCtABABC − tABACBC

(Prop. 3.3 (v))
= tABBC(tAC − tAtC) + tA

(
tABC(tBC − tBtC) + tBtABCC + tCtABBC

− tABBCC

)
+ tC

(
tABC(tAB − tAtB) + tBtAABC + tAtABBC

− tAABBC

)
−
(
tACBC(tAB − tAtB) + tBtAACBC + tAtABCBC

− tAABCBC

)
(Prop. 3.3 (v))

= (tBtABC − tAC)(tAC − tAtC) + tA

(
tABC(tBC − tBtC) + tB(tCtABC

− tAB) + tC(tBtABC − tAC) − (tBtCtABC − tBtAB − tCtAC + tA)
)

+ tC

(
tABC(tAB − tAtB) + tBtAtABC − tBtBC + tA(tBtABC − tAC)

− (tAtBtABC − tAtAC − tBtBC + tC)
)

−
(
tACBC(tAB − tAtB) + tBtAtACBC − tBtCBC

+ tAtABCBC − tAtABCBC + tBCBC

)
(Prop. 3.3 (vi))

= −z2 − x2 + vxz − v2 + (wz + vy + ux − xyz)P
−
(
tACBCtAB − tBtCBC + tBCBC

)
= −z2 − x2 + vxz − v2 + (wz + vy + ux − xyz)P

−
((

tAC(tBC − tBtC) + tCtABC + tBtACC − tABCC

)
tAB

− tB

(
tC(tBC − tBtC) + tBtCC + tCtBC − tBCC

)
(Prop. 3.3 (v))

+ t2
BC − 2

)
(Prop. 3.3 (iv))

= −z2 − x2 + vxz − v2 + (wz + vy + ux − xyz)P

−
((

tAC(tBC − tBtC) + tCtABC + tB(tACtC − tA)−tABCtC + tAB

)
tAB

− tB

(
tC(tBC − tBtC) + tB(t2

C − 2) + tCtBC − tBCtC + tB

)
+ t2

BC − 2
)

(Prop. 3.3 (vi))

= −x2 − y2 − z2 + uyz + vxz + wxy − uvw

− u2 − v2 − w2 + 2 + (wz + vy + ux − xyz)P.

□
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Theorem 4.1 can be rewritten as the following equality with traces for triples of
matrices A, B, C ∈ SL2,
t2
ABC = (tAtBC + tBtAC + tCtAB − tAtBtC)tABC − t2

A − t2
B − t2

C

+ tAtBtAB + tAtCtAC + tBtCtBC − t2
AB − t2

AC − t2
BC − tABtACtBC + 4.

(4.1)

Corollary 4.2. The variety X3 = X(F3, SL2) is a ramified double cover of the
plane k6. The variables tA, tB , tC , tAB , tAC , tBC are transcendental generators and
the ring of functions OX3 is a degree 2 extension of k[tA, tB , tC , tAB , tAC , tBC ].

By Theorem 4.1, X3 is a double cover over k6 ramified over V (∆), where ∆ =
Y 2 − 4X is the discriminant, with X, Y defined as in (5.2). This is a sextic in k6.
The singularities of X3 ⊂ k7 are at the points (x, y, z, u, v, w) ∈ V (∆), P = 1

2 X,
which are singular points of V (∆). The singular locus of X3 is determined in [5], and
it is equal to the reducible locus Xred

3 , which consists of representations (A, B, C)
which can be put, in a suitable basis, as

A =
(

λ 0
0 λ−1

)
, B =

(
µ 0
0 µ−1

)
, C =

(
ν 0
0 ν−1

)
.

This is a 3-dimensional subspace. Equivalently, A, B, C are pairwise commuting,
which by Equation (6.1), amounts to the equations

x2 + y2 + w2 = xyw − 2, x2 + z2 + v2 = xzv − 2, y2 + z2 + u2 = yzu − 2, P = 1
2X.

5. Generators of the ring of X(Fk, SL2) for k ≥ 4

Now we give an expression for the trace of matrices that extends Theorem 3.4
to products of more than four matrices.

Theorem 5.1. Let A, B, C, D ∈ SL2. The trace of ABCD can be expressed as
a polynomial expression in terms of tA, tB, tC , tAB, tAC , tAD, tBC , tBD, tCD,
tABC , tABD, tACD, and tBCD. More specifically,

tABCD = 1
2
(
tAtBCD + tBtACD + tCtABD + tDtABC + tADtBC − tACtBD

+ tABtCD − tADtBtC − tBCtAtD − tABtCtD − tCDtAtB + tAtBtCtD

)
.

(5.1)

Proof. By Proposition 3.3 (v), we have that
tABCD = tAD(tBC − tBtC) + tBtACD + tCtABD − tACBD,

tACBD = tCBDA = tCA(tBD − tBtD) + tBtCDA + tDtCBA − tCDBA,

tCDBA = tDBAC = tDC(tBA − tBtA) + tBtDAC + tAtDBC − tDABC .

Substituting the expression of each equation into the previous one, and using the
cyclicity of the traces, namely tDABC = tABCD, we obtain
tABCD = tAD(tBC − tBtC) + tBtACD + tCtABD −

(
tCA(tBD − tBtD)

+ tBtCDA + tDtCBA

)
+ tDC(tBA − tBtA) + tBtDAC + tAtDBC − tABCD,

Rev. Un. Mat. Argentina, Vol. 67, No. 1 (2024)



COORDINATE RINGS OF SOME SL2-CHARACTER VARIETIES 57

and hence

tABCD = 1
2

(
tAD(tBC − tBtC) + tBtACD + tCtABD −

(
tAC(tBD − tBtD) + tBtACD

+ tDtACB

)
+ tCD(tAB − tAtB) + tBtACD + tAtBCD

)
= 1

2

(
tAD(tBC − tBtC) + tBtACD + tCtABD − tAC(tBD − tBtD) − tBtACD

− tD

(
tAtBC + tBtAC + tCtAB − tAtBtC − tABC

)
+ tCD(tAB − tAtB)

+ tBtACD + tAtBCD

)
(Prop. 3.3 (viii))

= 1
2

(
tAtBCD + tBtACD + tCtABD + tDtABC + tADtBC − tACtBD

+ tABtCD − tADtBtC − tBCtAtD − tABtCtD − tCDtAtB + tAtBtCtD

)
(Simplifying).

□

As a consequence, the ring of functions of Xk = X(Fk, SL2) is generated by traces
of the product of at most three matrices. This completes the proof of Theorem 1.1.

Corollary 5.2. Let A1, . . . , Ak ∈ SL2. Take a monomial x = Aα1
i1

. . . Aαm
im

, with
1 ≤ i1, . . . , im ≤ k and αj ∈ Z. Then tx has a (polynomial) expression in terms of

Ti1...ip := tAi1 ...Aip
, 1 ≤ i1 < · · · < ip ≤ k,

with p ≤ 3. Therefore
OX = k

[
{Ti1...ip}1≤i1<···<ip≤k,1≤p≤3

]
/I

for some ideal I of relations.

Proof. By Theorem 3.4, Ti1...ip
, with 1 ≤ p ≤ k, gives generators of the ring of

all tx. Now by Theorem 5.1, tAi1 ...Ai4
is expressible in terms of all traces of one,

two and three matrices among Ai1 , . . . , Ai4 . In general, for p ≥ 4,
tAi1 ...Aip

= tAi1 Ai2 Ai3 (Ai4 ···Aip )

is expressible in terms of the traces of products of one, two and three matrices
among Ai1 , Ai2 , Ai3 , and Q := Ai4 · · · Aip

. These are traces of products of less
than p − 1 matrices. By induction, we get the result. □

In virtue of Corollary 5.2, the number of generators of the ring OXk
is

k +
(

k

2

)
+
(

k

3

)
.

If we look at the case k = 4, to parametrize
X4 = X(F4, SL2) = {(A, B, C, D) | A, B, C, D ∈ SL2} // SL2

Corollary 5.2 says that we need the traces
tA, tB , tC , tD, tAB , tAC , tAD, tBC , tBD, tCD, tABC , tABD, tACD, tBCD,
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giving an embedding X(F4, SL2) ⊂ k14. By Proposition 3.1, dimX(F4, SL2) = 9,
so five of the above traces are algebraically dependent on the other ones. Letting
X(x, y, z, u, v, w) := wz + vy + ux − xyz,

Y (x, y, z, u, v, w) := −x2 − y2 − z2 + uyz + vxz + wxy − uvw − u2 − v2 − w2 + 4,

(5.2)
we have the equation

t2
ABC = X(tA, tB , tC , tBC , tAC , tAB) · tABC + Y (tA, tB , tC , tBC , tAC , tAB), (5.3)

and similarly for the others tABD, tACD, tBCD. This gives four algebraically de-
pendent variables.
Proposition 5.3. The trace tCD is algebraically dependent with tA, tB, tC , tD,
tAB, tAC , tBC , tAD, and tBD. Therefore tA, tB, tC , tD, tAB, tAC , tBC , tAD, tBD

are transcendental generators of OX4 .
Proof. Clearly there is an algebraic dependence relation between all these variables,
as the transcendental degree of the field that they generate is 9. The variables tA,
tB , tC , tD are clearly algebraically independent. Therefore, there is one of the
other variables that depends algebraically on the rest. Permuting the order of the
matrices, we can assume that it is tCD. □

It is not easy to find out an explicit algebraic equation satisfied by tCD in
Proposition 5.3. This can be done as follows. Consider the element tABCD =
t(AB)CD and apply Equation (4.1) to get

t2
ABCD = X(tAB , tC , tD, tCD, tABD, tABC)tABCD

+ Y (tAB , tC , tD, tCD, tABD, tABC),
(5.4)

with the expressions X, Y appearing in (5.2). Now use Equation (5.1) to substitute
tABCD in the above. This gives an equation involving tA, . . . , tD, tAB , . . . , tCD

and tABC , tABD, tACD, tBCD. Using Theorem 4.1 we have algebraic equations for
tABC , . . . , tBCD in terms of the traces tA, tB , tC , tD, tAB , tAC , tAD, tBC , tBD,
tCD. This will yield an equation involving all required traces. Note that we can
also work out an equation like (5.4) for tABCD = tA(BC)D or tABCD = tAB(CD) or
tABCD = t(DA)BC . This can serve to eliminate tABCD.
Corollary 5.4. In Xk = X(Fk, SL2), we have parameters for (A1, . . . , Ak) given
by tAi

, tAiAj
, tAiAjAk

, i < j < k. The parameters
tA1 , tA2 , tA1A2 , and tAj

, tA1Aj
, tA2Aj

, j ≥ 3,

are transcendental generators of OXk
.

Proof. First, by Proposition 3.1 the dimension of Xk is 3(k−1). Now tA1 , tA2 , tA1A2

generate OX2 by Corollary 3.5. For k = 3, Corollary 4.2 says that tA1 , tA2 , tA3 ,
tA1A2 , tA1A3 , tA2A3 are transcendental generators of OX3 . For k ≥ 4, we use
Proposition 5.3 applied to (A1, A2, Ai, Aj) to get an algebraic equation for tAiAj

in
terms of tA1 , tA2 , tAi

, tAj
, tA1A2 , tA1Ai

, tA1Aj
, tA2Ai

, tA2Aj
. Therefore the given

set of traces are transcendental generators. There cannot be less than they are
because dimXk = 3k − 3, which is the number of parameters in the list. □
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6. Character variety of the 2-torus

Now we are going to focus on the 2-torus T 2 and the space of representations
of its fundamental group Γ = π1(T 2) = ⟨x, y | [x, y] = 1⟩ in SL2. By the general
description in (2.1), we have that the character variety of a finitely generated group
embeds as a subvariety of the character variety of the free group Fk, where k is the
number of generators of the group. In this situation,

XT 2 = X(T 2, SL2) ⊂ X(F2, SL2) = k3,

the last equality by Corollary 3.5. Then XT 2 is parametrized by (tA, tB , tAB), and
there will be an equation describing this variety. To find it, we work out a relation
for the trace of a commutator.

Lemma 6.1. For matrices A, B ∈ SL2, we have

t[A,B] = t2
A + t2

B + t2
AB − tAtBtAB − 2. (6.1)

Proof. We compute

[A, B] = ABA−1B−1 = AB(tAI − A)B−1 (by Eqn. (3.3))
= tAA − ABAB−1

= tAA − A
(
(tAB − tAtB)I + tAB + tBA − AB)B−1 (by Eqn. (3.4))

= tAA − (tAB − tAtB)AB−1 − tAA − tBA2B−1 + A2

= −(tAB − tAtB)A(tBI − B) − tB(tAA − I)(tBI − B)
+ tAA − I (by Eqn. (3.2))

= −tABtBA + tAt2
BA + tABAB − tAtBAB − tAt2

BA + t2
BI

+ tAtBAB − tBB + tAA − I

= −tABtBA + tABAB + t2
BI − tBB + tAA − I.

(6.2)
Taking traces,

t[A,B] = −tABtBtA + t2
AB + 2t2

B − t2
B + t2

A − 2,

producing the result. □

From now on, we fix the ground field k = C. Take a conjugacy class [ξ] = SL2 ·ξ
determined by an element ξ ∈ SL2 (the action of SL2 by conjugation). We have
the twisted moduli space of representations as defined in (1.1),

Mξ = {(A, B) ∈ (SL2)2 | [A, B] ∈ [ξ]} // SL2 .

There are five different types of conjugacy classes. We have [I], [−I], [J+], [J−],

and [ξt], where J± =
(

±1 0
1 ±1

)
are the Jordan types, and ξt =

(
λ 0
0 λ−1

)
,

t = λ + λ−1, λ ∈ C − {0, ±1}, are the diagonal types. Consider the trace map

tr : SL2 −→ C
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and note that
tr−1(t) = [ξt], t ∈ C − {±2},

tr−1(2) = [I] ⊔ [J+],
tr−1(−2) = [−I] ⊔ [J−].

Using the variables x = tA, y = tB , z = tAB , Lemma 6.1 gives the function
F (x, y, z) = t[A,B] = x2 + y2 + z2 − xyz − 2. (6.3)

Then we have the following twisted character varieties:
Xt = F −1(t) = {(A, B) ∈ SL2 | tr([A, B]) = t} // SL2

for t ∈ C. Then
• Xt = Mξt for t ̸= ±2,
• X2 = MI ∪ MJ+ ,
• X−2 = M−I ∪ MJ− .

Remark 6.2. Note the symmetry of equation (6.3). This is given by the change
of generators (A, B) 7→ (AB, B−1), which changes (tA, tB , tAB) 7→ (tAB , tB , tA).

We study the geometry of the character varieties Xt, and recover results of
Theorem 1.3. Now we prove Theorem 1.4.
Theorem 6.3. Let t ∈ C. We have the following:

• For t ̸= ±2, the character variety Xt ⊂ C3 is a smooth surface. The
E-polynomial of Xt is e(Xt) = q2 + 4q + 1.

• For t = 2, the character variety X2 ⊂ C3 has 4 ordinary double points.
Moreover, MJ+ ⊂ MI , X2 = MI , and e(X2) = q2 + 1.

• For t = −2, the character variety X−2 ⊂ C3 has only one singular point
which is an ordinary double point. Now X−2 = M−I ⊔MJ− , and e(X−2) =
q2 + 3q + 1.

Proof. We start analyzing the singular points of {F (x, y, z) = t}. We compute the
derivatives of F , (

∂F

∂x
,

∂F

∂y
,

∂F

∂z

)
= (2x − yz, 2y − xz, 2z − xy).

For a singular point, we have 2x = yz, 2y = xz, 2z = xy. From this, we get
x2 = y2 = z2 = 1

2 xyz and hence F = 1
2 xyz − 2.

• For t = −2, we have x2 = y2 = z2 = 1
2 xyz = 0, so there is a singular point

(x, y, z) = (0, 0, 0). The leading term of F is x2 + y2 + z2, hence the point
is an ordinary double point.

• For t = 2, we have x2 = y2 = z2 = 1
2 xyz = 4. Therefore, the singular

points are (2, 2, 2), (2, −2, −2), (−2, 2, −2) and (−2, −2, 2). Let us focus
on one of them, say (2, 2, 2); then the Hessian of F is

HF (2, 2, 2) =

 2 −z −y
−z 2 −x
−y −x 2

∣∣∣∣∣
(2,2,2)

=

 2 −2 −2
−2 2 −2
−2 −2 2

 ,
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which is non-degenerate, hence it is an ordinary double point. The other
singular points are similar.

• For t ̸= ±2, we have x2 = y2 = z2 = 1
2 xyz = 2 + t ̸= 0. Then x = ±y, x =

±z, hence 2x = yz = ±x2, and x = ±2. This implies that x2 = 4 = 2 + t,
hence t = 2. So for t ̸= ±2, the surface Xt is smooth.

To proceed, consider the completion of V (F −t) ⊂ C3 in the projective space P3.
This is given by the homogeneous polynomial

F̂t = x2u + y2u + z2u − xyz − (2 + t)u3

for projective coordinates [x, y, z, u]. We compute the derivatives(
∂F̂t

∂x
,

∂F̂t

∂y
,

∂F̂t

∂z
,

∂F̂t

∂u

)
= (2xu − yz, 2yu − xz, 2zu − xy, x2 + y2 + z2 − 3(2 + t)u2)

and look at a point at infinity, that is, u = 0. Then the above derivatives reduce
to (−yz, −xz, −xy, x2 + y2 + z2). This cannot vanish, because for this to be zero,
two coordinates should vanish, and hence x2 + y2 + z2 ̸= 0. This means that V (F̂t)
is smooth at the points at infinity.

Now take t ̸= ±2. Then V = V (F̂t) ⊂ P3 is a smooth surface of degree 3.
By [12, Example 9.11], we have the Hodge numbers of V to be h1,0 = h0,1 = 0,
h2,0 = h0,2 = 0 and h1,1 = 7. Hence, the E-polynomial is e(V ) = q2 + 7q + 1,
where q = uv. Now, the intersection V∞ := V ∩ {u = 0} = ℓ1 ∪ ℓ2 ∪ ℓ3 consists of
3 lines and has E-polynomial e(V∞) =

∑
e(ℓi) −

∑
e(ℓi ∩ ℓj) = 3(q + 1) − 3 = 3q.

Therefore
e(Xt) = e(V ) − e(V∞) = q2 + 4q + 1.

Let f : SL2
2 → SL2, f(A, B) = [A, B]. As in [13, Section 4] we write X0 =

f−1(I), X1 = f−1(−I), X2 = f−1([J+]), X3 = f−1([J−]), so that f−1(tr−1(2)) =
X0 ⊔ X2 and f−1(tr−1(−2)) = X1 ⊔ X3. By [13, Section 4.3], the representations
of

X̄2 =
{

(A, B) | [A, B] = J+ =
(

1 0
1 1

)}
are of the form A =

(
a 0
b a−1

)
and B =

(
x 0
y x−1

)
. Conjugating by

(
t 0
0 1

)
, we

get the matrices

At =
(

a 0
tb a−1

)
, Bt =

(
x 0
ty x−1

)
, [At, Bt] = Jt,+ =

(
1 0
t 1

)
.

Taking t → 0, we get in the limit representations in X0. Therefore X2 is contained
in the closure of X0. This implies that MJ+ ⊂ MI . Hence X2 = MI .

To compute the E-polynomial note that X = V (F̂2) ⊂ P3 appears as a degen-
eration of V (F̂t) when t → 2. Such degeneration produces four singularities which
are ordinary double points. Each of them reduces the Betti number b2 by one,
hence b2(X) = 3. Therefore the E-polynomial of X is e(X) = q2 + 3q + 1. Now

e(X2) = e(X) − e(V∞) = q2 + 1.
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Finally, we look at the case t = −2. By [13, Section 4.2], M−I consists of one

point, which has representative A =
(

i 0
0 −i

)
, B =

(
0 1

−1 0

)
, with (tA, tB , tAB) =

(0, 0, 0), the singular point of X−2. Regarding MJ− , according to [13, Section 4.4],
the matrices of

X̄3 =
{

(A, B) | [A, B] = J− =
(

−1 0
1 −1

)}
are of the form A =

(
a c
b d

)
and B =

(
x z
y w

)
with z = 2(x + w), c = −2(a + d),

cy + 2dw + bz = 0. This implies that it cannot be (tA, tB) = (z, c) = (0, 0). So
MJ− = X−2 − M−I , and hence X−2 = MJ− ⊔ M−I .

To compute the E-polynomial note that Y = V (F̂−2) ⊂ P3 appears as a degen-
eration of V (F̂t) when t → −2. Such degeneration produces one ordinary double
point, hence b2(Y ) = 6 and e(Y ) = q2 + 6q + 1. Thus

e(X−2) = e(Y ) − e(V∞) = q2 + 3q + 1 = e(MJ−) + e(M−I). □

Note that the results of the E-polynomials of Theorem 6.3 agree with those of
Theorem 1.3.

7. Character variety of the genus 2 surface

We look at the character variety
M2 = X(π1(Σ2), SL2) = {(A, B, C, D) ∈ (SL2)4 | [A, B] [C, D] = I} // SL2 .

The dimension of Mg = X(π1(Σg), SL2), for the orientable compact surface Σg of
genus g, is dim Mg = 6g − 6. Therefore dim M2 = 6.

Proposition 7.1. The ring OM2 has transcendental generators tA, tB, tC , tD,
tAB, tAC .

Proof. We have that M2 ⊂ X4 = X(F4, SL2) and dimX4 = 9, generated by tA,
tB , tC , tD, tAB , tAC , tBC , tAD, tBD, where tCD is algebraically dependent on the
previous ones, by Corollary 5.4. Using [A, B] = [C, D]−1, we have t[A,B] = t[C,D],
and using Equation (6.1),

t2
A + t2

B + t2
AB − tAtBtAB = t2

C + t2
D + t2

CD − tCtDtCD,

thereby tCD is algebraically dependent on tA, tB , tC , tD, tAB .
Using Equation (6.2), we get

t[A,B]C = −tABtBtAC + tABtABC + t2
BtC − tBtBC + tAtAC − tC .

From [A, B] [C, D] = I, we rewrite [A, B]C = DCD−1 which implies that

−tABtBtAC + tABtABC + t2
BtC − tBtBC + tAtAC − tC = tC .

Using (5.3), which is an algebraic dependence of tABC on tA, tB , tC , tAB , tAC ,
tBC , and, unravelling the above, we get an algebraic equation, and then we isolate
tBC as algebraically dependent on tA, tB , tC , tAB , tAC .
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Now we use the equation [A, B] [C, D] = I to get [C, D]A = BAB−1, and
working as before we get an algebraic dependence of tAD on tA, tC , tD, tCD, tAC .
But using the dependence of tCD on tAB , we get that tAD is algebraically dependent
on tA, tB , tC , tD, tAB , tAC .

Finally take [A, B] [C, D] = I, to rewrite D−1[A, B] = CD−1C−1, and work
analogously to get an algebraic dependence of tBD in terms of tA, tB , tD, tAB ,
tAD. Using the previous paragraph, we get that tBD is algebraic dependent on tA,
tB , tC , tD, tAB , tAC . □
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