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DISTANCE LAPLACIAN EIGENVALUES OF GRAPHS,
AND CHROMATIC AND INDEPENDENCE NUMBER

SHARIEFUDDIN PIRZADA AND SALEEM KHAN

Abstract. Given an interval I, let mDL(G)I (or simply mDLI) be the num-
ber of distance Laplacian eigenvalues of a graph G which lie in I. For a
prescribed interval I, we give the bounds for mDLI in terms of the inde-
pendence number α(G), the chromatic number χ, the number of pendant
vertices p, the number of components in the complement graph C

G
and the

diameter d of G. In particular, we prove that mDL(G)[n, n + 2) ≤ χ − 1,
mDL(G)[n, n+ α(G)) ≤ n− α(G), mDL(G)[n, n+ p) ≤ n− p and discuss the
cases where the bounds are best possible. In addition, we characterize graphs
of diameter d ≤ 2 which satisfy mDL(G)(2n− 1, 2n) = α(G) − 1 = n

2 − 1. We
also propose some problems of interest.

1. Introduction

The Laplacian matrix has been applied to several fields, such as randomized algo-
rithms, combinatorial optimization problems, machine learning, complex networks,
chemistry, signal processing, and the design of graph wavelets. In this regard, it
becomes important to investigate the eigenvalues of the Laplacian. The distribu-
tion of Laplacian eigenvalues of a graph G in relation to various graph parameters
of G has been studied extensively, and the main purpose of such study is to under-
stand how the eigenvalues of the matrix L(G) are related to classical parameters of
graphs. Grone et al. [8] showed that for a tree T with diameter d, mL(T )(0, 2) ≥ bd2c.
Merris [13] proved, among many other results, that for a connected graph G with
n = 2q vertices, mL(G)[0, 1) = q and mL(G)[1, 2) = 0, where q is the number of
pendant neighbours. Guo and Wang [9] showed that if G is a connected graph with
matching number ν(G), then mL(G)(2, n] > ν(G), where n > 2ν(G). Some work
in this direction can be seen in [5]. Recently, Ahanjideh et al. [1] obtained bounds
for mL(G)I in terms of structural parameters of G. In particular, they showed
that mL(G)(n− α(G), n] ≤ n− α(G) and mL(G)(n− d(G) + 3, n] ≤ n− d(G)− 1,
where α(G) and d(G) denote the independence number and the diameter of G,
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146 S. PIRZADA AND S. KHAN

respectively. Besides, they also proved that for a triangle-free or quadrangle-free
graph G, mL(G)(n− 1, n] ≤ 1.

The distance Laplacian matrix generalizes the distance matrix and both have
found applications in chemistry. The distribution of the distance Laplacian eigen-
values of a graph G with respect to its structural parameters has not received its
due attention, and our investigation in this paper is an attempt in that direction.
We investigate distance Laplacian eigenvalues of G in relation to the chromatic
number χ and the number of pendant vertices. In addition to many other results,
we prove that mDL(G)[n, n+ 2) ≤ χ− 1 and show that the inequality is sharp. We
also prove that mDL(G)

(
n, n+

⌈
n
χ

⌉)
≤ n−

⌈
n
χ

⌉
−CG+ 1, where CG is the number

of components in G, and discuss some cases where the bound is best possible. In
addition, we prove that mDL(G)[n, n + p) ≤ n − p, where p ≥ 1 is the number of
pendant vertices. We determine the distribution of distance Laplacian eigenvalues
of G in terms of the independence number α(G) and diameter d. In particular, we
prove that mDL(G)[n, n+α(G)) ≤ n−α(G) and show that the inequality is sharp.
We show that mDL(G)[0, dn] ≥ d + 1. We characterize the graphs with diameter
d ≤ 2 satisfying mDL(G)(2n− 1, 2n) = α(G)− 1 = n

2 − 1.
The rest of the paper is organized as follows. In Section 2, we present the

notations and known results which will be used to prove our results. In Section 3,
we obtain the bounds for the distance Laplacian eigenvalues of G in relation to
the chromatic number χ and the number of pendant vertices p and discuss some
cases where the bound is best possible. In Section 4, we find relationships between
the distance Laplacian eigenvalues of G with the independence number α(G) and
diameter d. In Section 5, we propose some research problems.

2. Preliminaries and lemmas

Throughout this paper, we consider simple and connected graphs. A simple
connected graph G = (V,E) consists of the vertex set V (G) = {v1, v2, . . . , vn} and
the edge set E(G). The order and size of G are |V (G)| = n and |E(G)| = m,
respectively. The degree of a vertex v, denoted by dG(v) (we simply write by dv) is
the number of edges incident on v. Further, NG(v) denotes the set of all vertices
that are adjacent to v in G and G denotes the complement of G. A vertex u ∈ V (G)
is called a pendant vertex if dG(u) = 1. For other standard definitions, we refer the
reader to [6, 14].

If A is the adjacency matrix and D(G) = diag(d1, d2, . . . , dn) is the diagonal
matrix of vertex degrees of G, the Laplacian matrix of G is defined as L(G) =
D(G)− A. By the spectrum of G, we mean the spectrum of its adjacency matrix,
and it consists of the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. The Laplacian spectrum of G
is the spectrum of its Laplacian matrix, and is denoted by µ1(G) ≥ µ2(G) ≥ · · · ≥
µn(G) = 0. For any interval I, let mL(G)I be the number of Laplacian eigenvalues
of G that lie in I. Also, let mL(G)(µi(G)) denote the multiplicity of the Laplacian
eigenvalue µi(G).
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DISTANCE LAPLACIAN EIGENVALUES OF GRAPHS 147

In G, the distance between the two vertices u, v ∈ V (G), denoted by duv, is
defined as the length of a shortest path between u and v. The diameter of G, de-
noted by d, is the maximum distance between any two vertices of G. The distance
matrix of G, denoted by D(G), is defined as D(G) = (duv)u,v∈V (G). The trans-
mission TrG(v) (we will write Tr(v) if the graph G is understood) of a vertex v
is defined as the sum of the distances from v to all other vertices in G, that is,
TrG(v) =

∑
u∈V (G)

duv.

Let Tr(G) = diag(Tr(v1),Tr(v2), . . . ,Tr(vn)) be the diagonal matrix of vertex
transmissions ofG. Aouchiche and Hansen [2] defined the distance Laplacian matrix
of a connected graph G as DL(G) = Tr(G)−D(G) (or briefly written as DL). The
eigenvalues of DL(G) are called the distance Laplacian eigenvalues of G. Clearly
DL(G) is a real symmetric positive semi-definite matrix. We denote its eigenvalues
by ∂Li (G) and order them as 0 = ∂Ln (G) ≤ ∂Ln−1(G) ≤ · · · ≤ ∂L1 (G). The distance
Laplacian eigenvalues are referred to as DL-eigenvalues of G whenever the graph G
is understood. Some recent work can be seen in [15, 16]. For any interval I,
mDL(G)I represents the number of distance Laplacian eigenvalues of G that lie in I.
Also, mDL(G)(∂Li (G)) denotes the multiplicity of the distance Laplacian eigenvalue
∂Li (G). The multiset of eigenvalues of DL(G) is called the distance Laplacian
spectrum of G. If there are only k distinct distance Laplacian eigenvalues of G, say,
∂L1 (G), ∂L2 (G), . . . , ∂Lk (G) with corresponding multiplicities n1, n2, . . . , nk, then we
convey this information in matrix form as

(
∂L1 (G) ∂L2 (G) . . . ∂Lk (G)
n1 n2 . . . nk

)
.

We denote by Kn the complete graph of order n and by Kt1,...,tk the complete
multipartite graph with order of parts t1, . . . , tk. The star graph of order n is
denoted by Sn. Further, SKn,α denotes the complete split graph, that is, the
complement of the disjoint union of a clique Kα and n − α isolated vertices. For
two disjoint graphs G and H of order n1 and n2, respectively, the corona graph
G ◦H is the graph obtained by taking one copy of G and n1 copies of H, and then
joining the i-th vertex of G to every vertex in the i-th copy of H for all 1 ≤ i ≤ n1.

In a graph G, a subset M ⊆ V (G) is called an independent set if no two vertices
of M are adjacent. The independence number of G is the cardinality of the largest
independent set of G and is denoted by α(G). A set M ⊆ V (G) is dominating if
every v ∈ V (G) \M is adjacent to some member in S. The domination number
γ(G) is the minimum size of a dominating set.

The chromatic number of a graph G is the minimum number of colors required
to color the vertices of G such that no two adjacent vertices get the same color.
It is denoted by χ(G). The set of all vertices with the same color is called a color
class.

We now present some lemmas which will be used to prove our results.
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148 S. PIRZADA AND S. KHAN

Lemma 2.1 ([12]). Let M = (mij) be an n×n complex matrix having l1, l2, . . . , lp
as its distinct eigenvalues. Then

{l1, l2, . . . , lp} ⊂
n⋃
i=1

{
z : |z −mii| ≤

∑
j 6=i
|mij |

}
.

Theorem 2.2 (Cauchy Interlacing Theorem). Let M be a real symmetric matrix
of order n, and let A be a principal submatrix of M with order s ≤ n. Then

λi(M) ≥ λi(A) ≥ λi+n−s(M) (1 ≤ i ≤ s).

Lemma 2.3 ([2]). Let G be a connected graph with n vertices and m edges, where
m ≥ n. Let G∗ be the connected graph obtained from G by deleting an edge. Let
∂L1 ≥ ∂L2 ≥ . . . ≥ ∂Ln and ∂∗1

L ≥ ∂∗2
L ≥ . . . ≥ ∂∗n

L be the spectrum of G and G∗,
respectively. Then ∂∗i

L ≥ ∂Li for all i = 1, . . . , n.

Lemma 2.4 ([4]). Let t1, t2, . . . , tk and n be integers such that t1 + t2 + · · · +
tk = n and ti ≥ 1 for i = 1, 2, . . . , k. Let p = |{i : ti ≥ 2}|. The distance
Laplacian spectrum of the complete k-partite graph Kt1,t2,...,tk is

(
(n+t1)(t1−1), . . . ,

(n+ tp)(tp−1), n(k−1), 0
)
.

Lemma 2.5 ([2]). Let G be a connected graph with n vertices. Then ∂Ln−1 ≥ n,
with equality if and only if G is disconnected. Furthermore, the multiplicity of n as
an eigenvalue of DL(G) is one less than the number of components of G.

Lemma 2.6 ([3]). Let G be a graph with n vertices. If K = {v1, v2, . . . , vp} is
an independent set of G such that N(vi) = N(vj) for all i, j ∈ {1, 2, . . . , p}, then
∂ = Tr(vi) = Tr(vj) for all i, j ∈ {1, 2, . . . , p} and ∂ + 2 is an eigenvalue of DL(G)
with multiplicity at least p− 1.

3. Distribution of distance Laplacian eigenvalues, chromatic number
and pendant vertices

For a graph G with n vertices, let Trmax(G) = max{Tr(v) : v ∈ V (G)}. When-
ever the graph G is understood, we will write Trmax in place of Trmax(G).

By using Lemma 2.1 for the distance Laplacian matrix of a graph G with n ver-
tices, we get

∂L1 (G) ≤ 2 Trmax . (3.1)

The following fact about distance Laplacian eigenvalues will be used in what follows.

Fact 3.1. Let G be a connected graph of order n and having distance Laplacian
eigenvalues in the order ∂L1 (G) ≥ ∂L2 (G) ≥ · · · ≥ ∂Ln (G). Then

∂Ln (G) = 0 and ∂Li (G) ≥ n for all i = 1, 2, . . . , n− 1.
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First we obtain an upper bound for mDL(G)I, where I is the interval [n, n+ 2),
in terms of the chromatic number χ of G.

Theorem 3.2. Let G be a connected graph of order n and having chromatic num-
ber χ. Then

mDL(G)[n, n+ 2) ≤ χ− 1.
The inequality is sharp and is shown by all complete multipartite graphs.

Proof. Let t1, t2, . . . , tχ be χ positive integers such that t1+t2+· · ·+tχ = n, and let
these numbers be the cardinalities of χ partite classes of G. We order these numbers
as t1 ≥ t2 ≥ · · · ≥ tχ(G). Thus G can be considered as a spanning subgraph of
the complete multipartite graph H = Kt1,t2,...,tχ with t1 ≥ t2 ≥ · · · ≥ tχ as the
cardinalities of its partite classes. Using Lemma 2.4, we see that mDL(H)[n, n+2) =
χ−1. By Lemma 2.3 and Fact 3.1, we have mDL(G)[n, n+2) ≤ mDL(H)[n, n+2) =
χ− 1, proving the inequality. Using Lemma 2.4, we see that the equality holds for
all complete multipartite graphs. �

As a consequence of Theorem 3.2, we have the following observation.

Corollary 3.3. Let G be a connected graph of order n having chromatic number χ.
Then

mDL(G)[n+ 2, 2 Trmax] ≥ n− χ.
The inequality is sharp and is shown by all complete multipartite graphs.

Proof. By using Fact 3.1, we get

mDL(G)[n, n+ 2) +mDL(G)[n+ 2, 2 Trmax] = n− 1,

or

χ− 1 +mDL(G)[n+ 2, 2 Trmax] ≥ n− 1,

or

mDL(G)[n+ 2, 2 Trmax] ≥ n− χ.

Therefore, the inequality is established. The remaining part of the proof follows
from Theorem 3.2. �

In the following theorem, we characterize the unique graph with chromatic
classes of the same cardinality having n− 1 eigenvalues in the interval

[
n, n+ n

χ

]
.

Theorem 3.4. Let G be a connected graph of order n and having chromatic num-
ber χ. If the chromatic classes are of the same cardinality, then

mDL(G)

[
n, n+ n

χ

]
≤ n− 1,

with equality if and only if G ∼= Kn
χ ,...,

n
χ

.
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150 S. PIRZADA AND S. KHAN

Proof. Using Fact 3.1, we get the required inequality. Now, we will show that the
equality holds for the graph H = Kn

χ ,...,
n
χ

. Using Lemma 2.4, we have the distance
Laplacian spectrum of H as (

0 n n+ n
χ

1 χ− 1 n− χ

)
,

which clearly shows that the equality holds for the graph H. To complete the proof,
we will show that if G � H, then mDL(G)

[
n, n+ n

χ

]
< n− 1. Since the chromatic

classes are of the same cardinality, we see that G has to be an induced subgraph
of H and n = sχ for some integer s, so that s = n

χ . In H, let e = {u, v} be an edge
between the vertices u and v. Using Lemma 2.3, it is sufficient to take G = H − e.
In G, we see that Tr(u) = Tr(v) = n+ s− 1. Let A be the principal submatrix of
DL(G) corresponding to the vertices u and v. Then A is given by

A =
[
n+ s− 1 −2
−2 n+ s− 1

]
.

Let c(x) be the characteristic polynomial of A. Then c(x) = x2 − 2(n+ s− 1)x+
(n+ s− 1)2 − 4. Let x1 and x2 be the roots of c(x) with x1 ≥ x2. It can be easily
seen that x1 = n+ s+ 1. Using Theorem 2.2, we have ∂L1 (G) ≥ x1 = n+ s+ 1 >
n+ s = n+ n

χ . Thus, mDL(G)
[
n, n+ n

χ

]
< n− 1 and the proof is complete. �

Now, we obtain an upper bound for the number of distance Laplacian eigenvalues
which fall in the interval

(
n, n+

⌈
n
χ

⌉)
.

Theorem 3.5. Let G � Kn be a connected graph on n vertices with chromatic
number χ. Then,

mDL(G)

(
n, n+

⌈
n

χ

⌉)
≤ n−

⌈
n

χ

⌉
− CG + 1, (3.2)

where CG is the number of components in G. The bound is best possible for χ = 2
(when n is odd) and χ = n − 1 as shown by Km+1,m, where n = 2m + 1, and
K2,1,1,...,1︸ ︷︷ ︸

n−2

, respectively.

Proof. Let n1 ≥ n2 ≥ · · · ≥ nχ be χ positive integers in that order such that
n1 + n2 + · · · + nχ = n and let these numbers be the cardinalities of χ partite
classes of G. Clearly, G can be considered as a spanning subgraph of the complete
multipartite graph H = Kn1,n2,...,nχ . Using Lemmas 2.3 and 2.4, we get

∂Li (G) ≥ ∂Li (H) = n+ n1 for all 1 ≤ i ≤ n1 − 1. (3.3)
As n1 is largest among the cardinalities of chromatic classes, it is at least equal to
the average, that is, n1 ≥ n

χ . Also, n1 is an integer, and therefore n1 ≥
⌈
n
χ

⌉
. Using

this fact in inequality (3.3), we get

∂Li (G) ≥ n+
⌈
n

χ

⌉
for all 1 ≤ i ≤ n1 − 1.
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Thus, there are at least n1 − 1 distance Laplacian eigenvalues of G which are
greater than or equal to n +

⌈
n
χ

⌉
. Also, from Lemma 2.5, we see that n is a

distance Laplacian eigenvalue of G with multiplicity exactly CG − 1. Using these
observations with Fact 3.1, we get

mDL(G)

(
n, n+

⌈
n

χ

⌉)
≤ n− (n1 − 1)− (CG − 1)− 1

= n− n1 − CG + 1

≤ n−
⌈
n

χ

⌉
− CG + 1,

proving the required inequality.
Let G∗ = K2,1,1,...,1︸ ︷︷ ︸

n−2

. Clearly,
⌈

n
n−1

⌉
= 2. Also, the complement of G∗ has

exactly n− 1 components. By Lemma 2.4, the distance Laplacian spectrum of G∗
is given as follows: (

0 n n+ 2
1 n− 2 1

)
.

Putting all these observations in inequality (3.2), we see that the equality holds for
G∗, which shows that the bound is best possible when χ = n− 1.

Let G∗∗ = Km+1,m, where n = 2m+ 1. In this case, we see that
⌈
n
2
⌉

= m+ 1 =
n+1

2 and the complement of G∗∗ has exactly 2 components. By Lemma 2.4, we
observe that the distance Laplacian spectrum of G∗∗ is given as follows:(

0 n 3n+1
2

3n−1
2

1 1 n−1
2

n−3
2

)
.

Using all the above observations in inequality (3.2), we see that the equality holds
for G∗∗ = Km+1,m, which shows that the bound is best possible when χ = 2 and
n is odd. �

The following are some immediate consequences of Theorem 3.5.

Corollary 3.6. Let G � Kn be a connected graph on n vertices with chromatic
number χ. Then,

mDL(G)

[
n+

⌈
n

χ

⌉
, ∂L1 (G)

]
≥
⌈
n

χ

⌉
− 1.

The bound is best possible for χ = 2 (when n is odd) and χ = n − 1 as shown by
Km+1,m, where n = 2m+ 1, and K2,1,1,...,1︸ ︷︷ ︸

n−2

, respectively.

Corollary 3.7. Let G � Kn be a connected graph on n vertices with chromatic
number χ. If G is connected, then

mDL(G)

(
n, n+

⌈
n

χ

⌉)
≤ n−

⌈
n

χ

⌉
.
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Proof. Since G is connected, we have CG = 1. Putting CG = 1 in inequality (3.2)
yields the desired result. �

The next theorem shows that there are at most n− p distance Laplacian eigen-
values of G in the interval [n, n+p), where p ≥ 1 is the number of pendant vertices
in G.

Theorem 3.8. Let G � Kn be a connected graph on n vertices having p ≥ 1
pendant vertices. Then

mDL(G)[n, n+ p) ≤ n− p.

For p = n− 1, equality holds if and only if G ∼= Sn.

Proof. Let S be the set of pendant vertices so that |S| = p. Clearly, S is an
independent set of G. Obviously, the induced subgraph, say H, on the vertex set
M = V (G) \ S is connected. Let the chromatic number of H be q and n1 ≥
n2 ≥ · · · ≥ nq be the cardinalities of these chromatic classes in that order, where
1 ≤ q ≤ n−p and n1 +n2 + · · ·+nq = n−p. Let nk ≥ p ≥ nk+1, where 0 ≤ k ≤ q,
n0 = p if k = 0 and nq+1 = p if k = q. With this partition of the vertex set
V (G) into q + 1 independent sets, we see that G can be considered as an induced
subgraph of complete (q + 1)-partite graph L = Kn1,n2,...,nk,p,nk+1,...,nq . Consider
the following two cases.

Case 1. Let 1 ≤ k ≤ q so that n1 ≥ p. Then, from Lemmas 2.3 and 2.4, we get

∂Li (G) ≥ ∂Li (L) = n+ n1 ≥ n+ p for all 1 ≤ i ≤ n1 − 1.

Case 2. Let k = 0 so that p ≥ n1. Again, using Lemmas 2.3 and 2.4, we get

∂Li (G) ≥ ∂Li (L) = n+ p for all 1 ≤ i ≤ p− 1.

Thus, in both cases, we see that there are at least p− 1 distance Laplacian eigen-
values of G which are greater than or equal to n + p. As p ≥ 1, G has at most
two components, which after using Lemma 2.5 shows that n is a distance Lapla-
cian eigenvalue of G of multiplicity at most one. From the above observations and
Fact 3.1, we get

mDL(G)[n, n+ p) ≤ n− p,

which proves the required inequality.
For the second part of the theorem, we see that Sn is the only connected graph

having n−1 pendant vertices. The distance Laplacian spectrum of Sn by Lemma 2.4
is given as (

0 n 2n− 1
1 1 n− 2

)
and the proof is complete. �
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An immediate consequence follows.

Corollary 3.9. Let G � Kn be a connected graph on n vertices having p ≥ 1
pendant vertices. Then

mDL(G)[n+ p, ∂L1 (G)] ≥ p− 1.

For p = n− 1, equality holds if and only if G ∼= Sn.

Theorem 3.10. Let G be a connected graph of order n ≥ 4 having chromatic
number χ. If S = {v1, v2, . . . , vp} ⊆ V (G), where |S| = p ≥ n

2 , is the set of
pendant vertices such that every vertex in S has the same neighbour in V (G) \ S,
then

mDL(G)[n, 2n− 1) ≤ n− χ.

Proof. Clearly, all the vertices in S form an independent set. Since all the vertices in
S are adjacent to the same vertex, all the vertices of S have the same transmission.
Now, for any vi (i = 1, 2, . . . , p) of S, we have

T = Tr(vi) ≥ 2(p− 1) + 1 + 2(n− p− 1) = 2n− 3. (3.4)

From Lemma 2.6, there are at least p − 1 distance Laplacian eigenvalues of G
which are greater than or equal to T + 2. From inequality (3.4), we have T + 2 ≥
2n−3+2 = 2n−1. Thus, there are at least p−1 distance Laplacian eigenvalues of G
which are greater than or equal to 2n− 1, that is, mDL(G)[2n− 1, 2 Trmax] ≥ p− 1.
Using Fact 3.1, we have

mDL(G)[n, 2n− 1) ≤ n− p. (3.5)

We claim that χ(G) ≤ n
2 . If possible, let χ(G) > n

2 . We have the following two
cases to consider.

Case 1. Let p = n − 1. Clearly, the star is the only connected graph having
n − 1 pendant vertices. Thus, G ∼= Sn. Also, χ(Sn) = 2, a contradiction, as
χ(Sn) = 2 ≤ n

2 for n ≥ 4.

Case 2. n
2 ≤ p ≤ n − 2. Since p ≤ n − 2, there is at least one vertex, say u,

which is not adjacent to any vertex in S. Thus in the minimal coloring of G, at
least p + 1 vertices, say, u, v1, . . . , vp can be colored using only one color. The
remaining n − p − 1 vertices can be colored with at most n − p − 1 colors. Thus,
χ ≤ 1 + n − p − 1 = n − p ≤ n − n

2 = n
2 , a contradiction. Therefore, χ ≤ n

2 ≤ p.
Using this in inequality (3.5), we get

mDL(G)[n, 2n− 1) ≤ n− χ,

completing the proof. �

To have a bound solely in terms of the order n and the number of pendant
vertices p, we may relax the conditions p ≥ n

2 and n ≥ 4 in Theorem 3.10. This is
given in the following corollary.
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Corollary 3.11. Let G be a connected graph of order n. If S = {v1, v2, . . . , vp} ⊆
V (G) is the set of pendant vertices such that every vertex in S has the same neigh-
bour in V (G) \ S, then

mDL(G)[n, 2n− 1) ≤ n− p.

4. Distribution of distance Laplacian eigenvalues, independence
number, and diameter

We now obtain an upper bound formDL(G)I, where I is the interval [n, n+α(G)),
in terms of order n and independence number α(G).

Theorem 4.1. Let G be a connected graph of order n having independence number
α(G). Then mDL(G)[n, n+α(G)) ≤ n−α(G). For α(G) = 1 or α(G) = n− 1, the
equality holds if and only if G ∼= Kn or G ∼= Sn. Moreover, for every integer n and
α(G) with 2 ≤ α(G) ≤ n− 2, the bound is sharp, as SKn,α satisfies the inequality.

Proof. We have the following three cases to consider.

Case 1. α(G) = 1. Clearly, in this case G ∼= Kn, and the distance Laplacian
spectrum of Kn is (

0 n
1 n− 1

)
.

Therefore, we have mDL(Kn)[n, n+ 1) = n− 1, which proves the result in this case.

Case 2. α(G) = n − 1. Since the star Sn is the only connected graph having
independence number n − 1, we have G ∼= Sn in this case. Now, n − α(Sn) =
n−n+ 1 = 1. From Lemma 2.4, the distance Laplacian spectrum of Sn is given as(

0 n 2n− 1
1 1 n− 2

)
.

Therefore, mDL(Sn)[n, 2n− 1) = 1, proving the result in this case.

Case 3. 2 ≤ α(G) ≤ n − 2. Without loss of generality, assume that N =
{v1, v2, . . . , vα(G)} ⊆ V (G) is an independent set with maximum cardinality. Let
H be the new graph obtained by adding edges between all non-adjacent vertices in
V (G) \N and adding edges between each vertex of N to every vertex of V (G) \N .
With this construction, we see that H ∼= SKn,α. Using Fact 3.1 and Lemma 2.3,
we see that mDL(G)[n, n+α(G)) ≤ mDL(H)[n, n+α(G)). So to complete the proof
in this case, it is sufficient to prove that mDL(H)[n, n+ α(G)) ≤ n− α(G). By [3,
Corollary 2.4], the distance Laplacian spectrum of H is given by(

0 n n+ α(G)
1 n− α(G) α(G)− 1

)
.

This shows that mDL(H)[n, n+ α(G)) = n− α(G). Thus the bound is established.
Also, it is clear that SKn,α satisfies the inequality for 2 ≤ α(G) ≤ n− 2. �

From Theorem 4.1, we have the following observation.
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Corollary 4.2. If G is a connected graph of order n having independence number
α(G), then α(G) ≤ 1 +mDL(G)[n+α(G), 2 Trmax]. For α(G) = 1 or α(G) = n−1,
the equality holds if and only if G ∼= Kn or G ∼= Sn. Moreover, for every integer n
and α(G) with 2 ≤ α(G) ≤ n − 2, the bound is sharp, as SKn,α satisfies the
inequality.

Proof. Using inequality (3.1) and Theorem 4.1, we have
mDL(G)[n, n+ α(G)) +mDL(G)[n+ α(G), 2 Trmax] = n− 1

or
n− α(G) +mDL(G)[n+ α(G), 2 Trmax] ≥ n− 1

or
α(G) ≤ 1 +mDL(G)[n+ α(G), 2 Trmax],

which proves the inequality. The proof of the remaining part is similar to that of
the proof of Theorem 4.1. �

Now, we obtain an upper bound for mDL(G)(n, n+α(G)) in terms of the indepen-
dence number α(G), the order n and the number of components of the complement
G of G.

Theorem 4.3. Let G be a connected graph with n vertices having independence
number α(G). Then

mDL(G)(n, n+ α(G)) ≤ n− α(G) + 1− k,

where k is the number of components of G. For α(G) = 1 or α(G) = n−1, equality
holds if and only if G ∼= Kn or G ∼= Sn. Furthermore, for every integer n and α(G)
with 2 ≤ α(G) ≤ n− 2, the bound is sharp, as SKn,α satisfies the inequality.

Proof. Since G has k components, we have by Lemma 2.5 that n is a distance
Laplacian eigenvalue of multiplicity exactly k − 1. Using Theorem 4.1, we have

mDL(G)(n, n+ α(G)) = mDL(G)[n, n+ α(G))−mDL(G)(n)
= mDL(G)[n, n+ α(G))− k + 1
≤ n− α(G) + 1− k.

Thus the inequality is established. The remaining part of the proof follows by
observing the distance Laplacian spectrum of the graphs Kn, Sn and SKn,α given
in Theorem 4.1. �

We will use the following lemmas in the proof of Theorem 4.6.

Lemma 4.4 ([10]). If G is a graph with domination number γ(G), then we have
mL(G)[0, 1) ≤ γ(G).

Lemma 4.5 ([2]). Let G be a connected graph with n vertices and diameter d(G) ≤
2. Let µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) = 0 be the Laplacian spectrum of G. Then
the distance Laplacian spectrum of G is 2n − µn−1(G) ≥ 2n − µn−2(G) ≥ · · · ≥

Rev. Un. Mat. Argentina, Vol. 67, No. 1 (2024)



156 S. PIRZADA AND S. KHAN

2n−µ1(G) > ∂Ln (G) = 0. Moreover, for every i ∈ {1, 2, . . . , n−1}, the eigenspaces
corresponding to µi(G) and 2n− µi(G) are the same.

Now, we obtain an upper bound for mDL(G), where I is the interval (2n−1, 2n),
in terms of the independence number α(G). This upper bound is for graphs with
diameter d(G) ≤ 2.
Theorem 4.6. Let G be a connected graph with n vertices having independence
number α(G) and diameter d(G) ≤ 2. Then

mDL(G)(2n− 1, 2n) ≤ α(G)− 1
and the inequality is sharp as shown by Kn.
Proof. We know that every maximal independent set of a graph G is a minimal
dominating set of G. Therefore, α(G) ≤ γ(G). Using Lemma 4.4, we get α(G) ≥
mL(G)[0, 1). As G is connected, the multiplicity of 0 as a Laplacian eigenvalue of G
is one. Thus, α(G)−1 ≥ mL(G)(0, 1), that is, there are at least α(G)−1 Laplacian
eigenvalues of G which are greater than zero and less than one. Using this fact
in Lemma 4.5, we observe that there are at least α(G) − 1 distance Laplacian
eigenvalues of G which are greater than 2n− 1 and less than 2n. Thus,

mDL(G)(2n− 1, 2n) ≤ α(G)− 1.
Clearly, mDL(Kn)(2n− 1, 2n) = 0 and α(Kn) = 1, which shows that equality holds
for Kn. �

Our next result shows that the upper bound in Theorem 4.6 can be improved
for the graphs having independence number greater than n

2 .
Theorem 4.7. Let G be a connected graph with n vertices having independence
number α(G) > n

2 and diameter d(G) ≤ 2. Then mDL(G)(2n− 1, 2n) ≤ α(G)− 2.
Proof. If possible, let mDL(G)(2n−1, 2n) ≥ α(G)−1. Using Lemma 4.5, we see that
there are at least α(G)− 1 Laplacian eigenvalues of G which are greater than zero
and less than one. As G is connected, 0 is a Laplacian eigenvalue of multiplicity one.
Using these facts and Lemma 4.4, we have α(G) ≤ mL(G)[0, 1) ≤ γ(G) ≤ α(G).
Thus, γ(G) = α(G) > n

2 . This contradicts the well-known fact that γ(G) ≤ n
2 .

Thus the result is established. �

The following lemma will be used in Theorem 4.9.
Lemma 4.8 ([11]). Let G and G∗ be graphs with n1 and n2 vertices, respectively.
Assume that µ1 ≤ · · · ≤ µn1 and λ1 ≤ · · · ≤ λn2 are the Laplacian eigenvalues of
G and G∗, respectively. Then the Laplacian spectrum of G◦G∗ is given as follows:

(i) The eigenvalue λj + 1 with multiplicity n1 for every eigenvalue λj (j =
2, . . . , n2) of G∗;

(ii) Two multiplicity-one eigenvalues µi+n2+1±
√

(µi+n2+1)2−4µi
2 for each eigen-

value µi (i = 1, . . . , n1) of G.
Now, we characterize graphs with diameter d(G) ≤ 2 and independence number

α(G) which satisfy mDL(2n− 1, 2n) = α(G)− 1 = n
2 − 1.
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Theorem 4.9. Let G be a connected graph with n vertices having independence
number α(G) and diameter d(G) ≤ 2. Then mDL(G)(2n−1, 2n) = α(G)−1 = n

2 −1
if and only if G = H ◦K1 for some connected graph H.

Proof. Assume that G = H ◦K1 for some connected graph H. Then |H| = n
2 . Let

the Laplacian eigenvalues of H be µ1 ≥ · · · ≥ µn
2

. By Lemma 4.8, the Laplacian

eigenvalues of G are equal to µi+2±
√
µi2+4

2 , i = 1, . . . , n2 . We observe that half of
these eigenvalues are greater than 1 and the other half are less than 1. As G is
connected, 0 is a Laplacian eigenvalue of multiplicity one. So mL(G)(0, 1) = n

2 − 1.
Using Lemma 4.5, we see that there are n

2 −1 distance Laplacian eigenvalues which
are greater than 2n− 1 and less than 2n. Thus, mDL(G)(2n− 1, 2n) = n

2 − 1. Now,
we will show that α(G) = n

2 . Assume that V (G) = {v1, . . . , vn2 , v
′
1, . . . , v

′
n
2
}, where

V (H) = {v1, . . . , vn2 } and NG(v′i) = {vi}. If A is a maximal independent set, then
|A| ≤ n

2 . For if |A| > n
2 , then from the structure of G, we have at least one pair of

vertices in A, say vi, v′i, which are adjacent, a contradiction. As {v′1, . . . , v′n2 } is an
independent set, α(G) = n

2 . Thus, we have mDL(G)(2n−1, 2n) = α(G)−1 = n
2 −1.

Conversely, assume that mDL(G)(2n − 1, 2n) = α(G) − 1 = n
2 − 1. Using Lem-

mas 4.4 and 4.5, we see that α(G) = mL(G)[0, 1) ≤ γ(G) ≤ α(G), which shows that
γ(G) = α(G) = n

2 . Therefore, by [7, Theorem 3], G = H ◦K1 for some connected
graph H. �

The condition that α(G) = n
2 can be relaxed in Theorem 4.9 for the class of

bipartite graphs can be seen as follows.

Theorem 4.10. Let G be a connected bipartite graph with n vertices having in-
dependence number α(G) and diameter d(G) ≤ 2. Then, mDL(G)(2n − 1, 2n) =
α(G)− 1 if and only if G = H ◦K1 for some connected graph H.

Proof. Assume that G = H ◦ K1 for some connected graph H. Then the proof
follows by Theorem 4.9. So let mDL(G)(2n−1, 2n) = α(G)−1. Using Theorem 4.9,
it is sufficient to show that α(G) = n

2 . If possible, let the two parts of G have
different orders. Then, using Lemmas 4.4 and 4.5, we have

γ(G) < n

2 < α(G) = mDL(G)(2n− 1, 2n) + 1 = mL(G)[0, 1) ≤ γ(G),

which is a contradiction. Therefore, the two parts of G have the same order. Now,
if α(G) > n

2 , then by Lemma 4.7, mDL(G)(2n− 1, 2n) ≤ α(G)− 2, a contradiction.
Hence α(G) ≤ n

2 . Since the partite sets have the same order, we get α(G) = n
2 . �

Remark 4.11. From the above theorem, we see that if G is a connected bipartite
graph with n vertices, having independence number α(G) and diameter d ≤ 2
satisfying either of the conditions (i) G = H ◦K1 for some connected graph H, or
(ii) mDL(G)(2n− 1, 2n) = α(G)− 1, then α(G) = n

2 and n is even.

Now, we show that the number of distance Laplacian eigenvalues of a graph G
in the interval [0, dn] is at least d+ 1.
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Theorem 4.12. If G is a connected graph of order n having diameter d, then
mDL(G)

[
0, dn] ≥ d+ 1.

Proof. We consider the principal submatrix, say M , corresponding to the vertices
v1, v2, . . . , vd+1 which belong to the induced path Pd+1 in the distance Laplacian
matrix of G. Clearly, the transmission of any vertex in the path Pd+1 is at most
d(2n−d−1)

2 , that is, Tr(vi) ≤ d(2n−d−1)
2 for all i = 1, 2, . . . , d + 1. Also, the sum of

the off-diagonal elements of any row of M is less than or equal to d(d+1)
2 . Using

Lemma 2.1, we conclude that the maximum eigenvalue of M is at most dn. Using
Fact 3.1 and Theorem 2.2, there at least d + 1 distance Laplacian eigenvalues of
G which are greater than or equal to 0 and less than or equal to dn, that is,
mDL(G)

[
0, dn] ≥ d+ 1. �

From Theorem 4.12, we get the following observation after using inequality (3.1).

Corollary 4.13. Let G be a connected graph of order n having diameter d. If
dn < 2 Trmax, then

mDL(G)
(
dn, 2 Trmax] ≤ n− d− 1.

5. Concluding remarks

In general, we believe it is hard to characterize all the graphs satisfying the
bounds given in Theorem 4.1 and Theorem 3.2. Also in Theorem 4.9, we charac-
terized graphs with diameter d ≤ 2 satisfyingmDL(G)(2n−1, 2n) = α(G)−1 = n

2−1
and we left the case when d ≥ 3. So, the following problems will be interesting for
future research.
Problem 1. Determine the classes of graphs ϑ for which mDL(G)[n, n+ α(G)) =
n− α(G) for any G ∈ ϑ.
Problem 2. Determine the classes of graphs ϑ for which mDL(G)[n, n+ 2) = χ−1
for any G ∈ ϑ.
Problem 3. Determine the classes of graphs ϑ for which mDL(G)(2n − 1, 2n) =
α(G)− 1 = n

2 − 1 for any G ∈ ϑ with d ≥ 3.
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